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1. Introduction

Our present fundamental physics rests on two pillars: Qunaritield Theory and General Relativ-
ity. One of the main question in this area of physics concdrasnatching of these two concepts.
In addition we hope to improve quantum field theory models digirzg "gravity" effects. Con-
structive methods led years ago to many beautiful ideasesudts, but the main goal to construct
a mathematical consistent model of a four dimensional Igcantum field theory has not been
reached. Renormalized pertubation expansions allow tqugeitum corrections order by order in
a coupling constant. The convergence of this expansioreXample as a Borel summable series,
can be questioned.

In recent years, a modification of the space-time structaed new models, which are nonlocal in
a particular sense. But these models, in general sufferardadditional disease, which is called
the Infrared Ultraviolet mixing [1]. Additional infraredrggularities show up. A possible way to
cure this problem has been found by us in previous work [2¢dto special models, which needed
4 (instead of 3) relevant/marginal operators in the defihiagrangian. We have been able to show
that the resulting model is renormalizable up to all ordarsdrtubation theory. In addition a new
fixed point appeared at a special value of the additional lamyponstant. This way, we were able
to tame the Landau ghost problem. Since the old problemsdifiaidal singularities due to partial
summing up the pertubation expansion do not show up, wevieetiet the pertubation expansion
will be Borel summable. That this new fixed point exists intpbation theory to all orders has
been shown in work by Rivasseau and collaborators.

The main open question concerns the nonpertubative catistiuof a nontrivial noncommutative
guantum field theory. Steps in that direction will be diseaskere.

Classical field theories for fundamental interactionsdteteveak, strong, gravitational) are of geo-
metrical origin. We may remind, that the Fermi interactiemon renormalisable, it needs a cutoff
around 300 GeV, otherwise unitarity is violated! This isatjcresolved by adding new particles,
theW*,Zz% W, and the confirmation of their existence was a great steprtsmeonsistency of
quantum field theory models. On the other hand the Standad&Melectroweak+strong) of parti-
cle physics is renormalisable, while gravity is not! In tiease of renormalisation theory one might
argue, that space-time should not be a smooth manifoldyatistances, gravity would be scaled
away. Or stated otherwise, the weakness of gravity detesrtime Planck scale, and geometry at
these tiny distances should be something different.

A promising approach concerns noncommutative geometrychndillows to unify the standard
model with gravity as a classical field theory.

Requirements: From Wightman axioms to Euclidean Schwingefunctions:

The principles of local quantum fields are easy to state,thméi$, up to now, impossible to con-
struct nontrivial models in four space-time dimensionse Téquired properties can be split into
guantum mechanical ones and relativity properties.

Quantum Mechanical Properties:

States are supposed to be represented by vectors of a deditbbrt spaceH.

The field operator is an operator valued distribution, singat with smooth test functions leads
to ®(f) acting on a dense domai, ®(f) = [ d*xd(x) f*(x).

The ground or vacuum stafeis unique (up to a phase) and cyclic.
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Space-time translations are symmetries: This implies ttimicommon spectrum of the energy-
momentum operataw (P,) lies in the closed forward light cone.

The ground stat@® € H is invariant undeg@:""

Relativistic properties:

There is an unitary representation of the Poincare gkyp) on H and fields transform covari-
antly. One of the main postulate concemsscroscopic Causalityor Locality. If the supports
of the smearing functiod andg are space-like separated, then the fields operators con{foute
Bosons) or anticommute (for Fermiong(f), (g)]+W =0 for  suppfc (suppg’
Typically one defines the expectation value of the produshodared field operators called Wight-
man functions:

Wh(f1®..® fn) = (Qle(f1) - @(fn)|Q)

It is not difficult to rephrase the requirements for the Wighn functions, but we shall not do it
here. For many purposes it is easier to go over to Euclidebwigiger functions obtained by using
analyticity of Wightman functions (in the so called extedgermuted tube).

The formal definition of Schwinger functions reads:

Su(z1, - 2n) = [ P(z1)...0(2)dv(P)

dv = Ze /tm@dy(d) ,

wheredy is the Gaussian measure corresponding to free fields witlpbivd correlation:
(@(x1)®(x2)) = C(x1,%2), or its Fourier transformC(py, p2) = 3(p1 — pz)p%ﬁ, @ above is a
stochastic variable.

As for interacting fields we have to rely grenormalized) pertubation expansions:

1 oo i
Sutxx0) = 5 [ [dgle /4O [ g(x) (1)

We may extract the free padiu (@) O [dg] e % 1 #-31(0.0)0"9) with correlations:
[ du@ota)... 000 = 3 [1C04 ~x) (12
pairings| €y

Up to now, all expressions are formal, in order to justify pnecedure, we may put a cut off:
Cu(p) = Sezine dae-a(P+m)
To deal with interactions we may a(%j ®*, and expand

ﬁ' (X)) (/dx ) (1.3)
(-A)"

= Sy (G Cu(x —yi) ~ A®© (1.4)
graphl N Syrm'N (G) /V|!_F|N ‘

S\|(X1...XN) =

As a result we may collect contributions to the same Feynnegraim and evaluate the degree of
divergence, which is given by (G) = (D—4)n+D — DT‘ZN, w(G)=2-2n, m(G) =4—N,
wheren denotes the order of the graph, or the number of vertidghe number of external linek,
the number of internal lines. Note that there @he+ N)!! number of Feynman graphs. Use Stirling
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formula and the factoﬁ from the exponential, the large order behawWdn! for the contributions
result, which indicates that there will be no Taylor or (Bpmonvergence.

Renormalization

If one may impose a finite number of renormalization condgighere we need 3a,m,A), for
example:

Gy(p? =0) = phys’ dpz Go(p? =0) = —%hys, Ga(p? = 0) = Apnys and no new interactions are

generated order by order in pertubation theory, we call tlhelehto be renormalizable (this is
implied by the BPHZ Theorem for the scakaf model).

According to a different point of view, we may follow WilsoRenormalization Group Flow ideas
and divide the covariance for free Euclidean scalar field gtices:

M—23i-1) efmza7x2/4a

CDm—Z)‘Pa Cj= /MZJ da qD/2 (1.5)

We may integrate out degrees of freedom:

Zn-1(Pm-1) /dUm Sn(@ht-Om-1) (1.6)
and obtain a relation between the actions at different scale
Zin1(Pp-1) = g S 2(Pmoa) (1.7)

Of course, in order to evaluate these expressions we hasetsame expansion.

As a matter of fact, in all these expansions a certain chafinité subgraphs ( for example with
m bubbles) grows like~ C™ml, and indicates that this expansion will not be Borel sumieaBn
easy estimate shows that the scale dependence of the apuaplistant will be given by:

Ao
A0
P71 BAoj

If the sign of B is positive it indicates the appearance of the so called darghost, or phrased
differently triviality of this model may result. A negativgn of 3 indicates asymptotic freedom.
The program of constructing a nontrivial interacting maedeas successfully done onlylh= 2,3
space-time dimensions. As fbr= 4 dimensions we have to rely first on renormalized pertubatio
theory and follow the renormalization group flow. In additive may add "Gravity" effects, or
guantize Space-Time: This led to our program of mergjegeral relativity ideas with quantum
physics through noncommutative geometry

Space-Time structure

That one should limit localisation in space-time followerfr a very simple old argument due to
Wheeler:

In order to localize two events, which are a distaBcapart, one has to do a scattering experiment
with particles whose enerdyc/A exceechc/D. Multiplying these quantities time8/c* yields the
Schwarzschild radius of the appropriate energy lump. latsiral to require that this radius should
be smaller than the distance between the events one staittgdsimce otherwise the scattered
particles will be captured by the black hole, which is formé&itting both inequalities together
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gives a lower bound to the distance of localizability of egeof the order of the Planck length.
D > Res= G/c*hc/A > G/c*hc/D which implies thaD > 1, 10-*°m.

Early ideas of modifying space-time were phrased alreadRibynann, Schrédinger and Heisen-
berg, but Snyder in 1947 was the first to formulate a defornpetestime geometry. Such ideas
become popular after 1986, when Alain Connes published bi& wn Noncommutative Geom-
etry. On of us (H. G.) started in 1992 (in work together wittMadore) to use honcommutative
manifolds (algebras) as a natural cut off for quantized fieésbry models. Doplicher, Fredenhagen
and Roberts used the Wheeler argument in 1994 to formulateriainty relations for deformed
fields and formulated deformed free fields. Filk in 1995 wasfitst to elaborate on Feynman rules
for models defined over deformed space-time, and finally besame popular due to the work of
Schomerus (1999), who observed, that such models may fesultstring theory after taking the
zero slope limit.

Ideas: Algebra, fields, diff. calculus,...

Typically one first refers to the Gelfand - Naimark theorenhjoli states that the algebra of con-
tinuous functions over a manifold is isomorphic to a comrtiveeC* algebra. Next one studies
deformations of such algebras, through associative nahftar products. Especially simple is the
Moyal space. One may start from the algebra of smooth funstaverD-dimensional Euclidean
space, and define theproduct as

(axb)(x) = / dPydPka(x+ 1@-k)b(x+y) € where@=—0" eMp(R)

Fields are sections of bundles, according to the Serre Svemmem, they can be identified as pro-
jective modules over the algehfa

A very essential requirement concerns the differentiadidak. We would like to have a dif-
ferential, which obeys the Leibniz rule and squares to ZByaduality vector fields can be defined.
Since we will be dealing in the following only with the canoal deformed space, there is no prob-
lem with having a differential calculus.

Next question resultsCan we make sense of renormalisation in Noncommutative Geagtric
Models?

As a first step we intend to construct simple quantum fieldrshewodels on simple noncommu-
tative geometries, e.g. the Moyal space. Of course, thisweybtain models with non-local
interaction.

The naive application of this procedure to tfeaction @p-real, Euclidean space) leads on Moyall
plane to the action:

1 v A
S:/d4x(idu(p*d“(p+7(p*(p+Z(pﬂp*(p*(p) (x) (1.8)

The Feynman rules can be obtained easily. Since we obtayncgulic invariance at the Vertex,
Graphs are best drawn as Ribbon Graphs on Riemann surfaitea eértain genus and a certain
number of boundary components. We obtain planar regularibation and non-planar graphs.
The planar graphs still reveal UV divergences, the nonplanas are finite for generic momenta.
On the other hand for exceptional momenta (if sums of incgnanoutgoing momenta vanish)
the contributions develop a IR singularity, which spdétienormalizability! In our previous work
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[2] we realized that the UV/IR-mixing problem can be solvgdadding a fourth relevant/marginal
operator to the Lagrangiarheorem: The quantum field theory defined by the action

A
S= /d“ Zox( A+Qz~2+u)(p+ (p*(p*(p*(p)() (1.9)

is perturbatively renormalisable to all orders in A.

The additional oscillator potenti&l?%? implements mixing between large and small distance scales
and results from the renormalisation proof. Maja Buric aridiidel Wohlgenannt [3] found an in-
teresting interpretation of this additional term: It réswds the coupling of the scalar field to the
scalar curvature within the truncation procedure (see thlsaontribution of Maja Buric to these
Proceedings).

Here, x refers to the Moyal product parametrised by the antisynimdix 4-matrix ©, andX'=
20~ 1x. The model is covariant under the Langmann-Szabo duaditysformation [4] and becomes
self-dual atQ = 1. Certain variants have also been treated, see [5] for awevaluation of the
B-functions for the coupling constan@ A in first order of perturbation theory leads to a coupled
dynamical system which indicates a fixed-pointat 1, while A remains bounded [6, 7]. The
vanishing of thg3-function atQ = 1 was next proven in [8] at three-loop order and finally in [2] t
all orders of perturbation theory. It implies that there ésimfinite renormalisation ok, and a non-
perturbative construction seems possible [10]. The Lagthast problem is solved. The vanishing
of the B-function to all orders has been obtained using a Ward igjef]. We extend this work
and derive an integral equation for the two-point functidmna by using the Ward identity and
Schwinger-Dyson equations. Usually, Schwinger-Dysora@gaos couple the two-point function
to the four-point function. In our model, we show that the Waentity allows to express the four-
point function in terms of the two-point function, resudiim an equation for the two-point function
alone. This is achieved in the first step for the bare two4dinction. We are able to perform the
mass and wavefunction renormalisation directly in thegrakequation, giving &elf-consistent
non-linear equation for the renormalised two-point funatialone Highern-point functions fulfil

a linear (inhomogeneous) Schwinger-Dyson equation, with the irdgeneity given bym-point
functions withm < n. This means that solving our equation for the two-point fiomcleads to a
full non-perturbative construction of this interactingagium field theory in four dimensions. So
far we treated our equation perturbatively up to third oiideY. The solution shows an interesting
number-theoretic structure.

We hope that a detailed analysis of our model will help for a-perturbative treatment of more re-
alistic Euclidean quantum field theories. We expect thatavelearn much about non-perturbative
renormalization of Euclidean quantum field theories in fdnensions from this almost solvable
model.

2. Matrix Model

It is convenient to write the action (1.9) in the matrix bas¢he Moyal space, see [2, 11]. It sim-
plifies enormously at the self-duality poif®= 1. We write down the resulting action functionals
for the bare quantities, which involves the bare masge and the wave function renormalisation
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Q> Z%(p. For simplicity we fix the length scale = 4. This gives

1
S= Z E(nnnHmn%m+V((p)a (2.1)
mneNZ
2 Z2A
Hon=Z (U2 + M +[n),  V(p) ==~ Grnhk @ Am (2.2)
mnkleNZ

Itis already used that this model has no renormalisationetoupling constant [9]. All summation
indicesm,n, ... belong toN?, with |m| := my + mp. The symbolNZ refers to a cut-off in the matrix
size. The scalar field is reapnn = ¢hm.

3. Ward Identity

The key step in the proof [9] that th@-function vanishes is the discovery of a Ward iden-
tity induced by inner automorphisngs— U @UT. Inserting into the connected graphs the special
insertion vertex

VAR Z(Han — Hnb) ¢bntha (3.1)

n

is the same as the difference of graphs with external indieesla, respectivelyZ(|al — \b\)Gi[gE]__ =
Gp.. —Ga.:

We write Feynman graphs in the self-dtqcél-model as ribbon graphs on a gergRiemann
surface withB external faces. Adding for each external face an externdéxeo get a closed
surface, the matrix index is constant at every face. Inmggitie special verte‘&(ei{t‘,S leads, however,
to an index jump fronato b in an external face which meets an external vertex. The sporaling
external sources at the jumped face are thysandJym, for some other indicem, n. According to
the Ward identity, this is the same as the difference betweemraphs with face indetx anda,
respectively:

Z(la| — |bi) (3.2)

Z(|a - |b)Glg.. = Go... ~ Ga.. (3.3)

The dots in (3.3) stand for the remaining face indices. WehesedH,, — Hnp = Z(|a — |b)).
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4. Schwinger-Dyson equation

The Schwinger-Dyson equation for the one-particle irréaladwo-point functionr2° reads

a a
Fab = >f::::::::@):::::::;< (4.1)
b b

The sum of the last two graphs can be reexpressed in terme dfithpoint function with insertion
vertex,

1 1 Gpp— Gy,
_ 72 1lnins _ 72 _ 1 p a
T=2A (Gap+ GGl ) = 2% > (Gap—Ga 2o |a|)) (4.2)
=Z°A - - :
%(Hap_rap Hop—Tbp pr—rpr(\p]—]a]))

This is a closed equation for the two-point function alorteénvolves the divergent quantitids,,
andZ, Upare.

5. Renormalization

Introducing the renormalised planar two-point functidf' by Taylor expansiof ap = Zugare—
p?+(Z-1)(Jaj+|b|) + e, with FE" = 0 and(dr"")go = 0, we obtain a coupled system of equa-
tions forly", Z and tpare. It leads to a closed equation for the renormalised fundfigh alone,
which is further analysed in the integral representation.

We replace the indices ia,b,...N by continuous variables iR .. Equation (4.2) depends
only on the lengtha| = a; + a of indices. The Taylor expansion respects this featurehabvte
replacey ,cnz by J&|pldp. After a convenient change of variabl@g =: u?%, |p| =: uzﬁ
and

ren _. 1-ap 1
e e ) &Y

and using an identity resulting from the symmeBy, = Gqo, we arrive at [12]:

Theorem 1. The renormalised planar connected two-point functigyp @f the self-dual noncom-
mutativeg;-theory satisfies the integral equation

1-a

—-B

GGBzl—l—)\(l_aﬁ(%p—gﬁ—ﬁg’/)—l—ll_aﬁ(%a—ga—a@) (5.2)
1_B GaB
T ap Goa—l)(%a—$a+a%o)
1- 1-a)(1-
_C;_(_iag)(gﬁ +%B_%O)+%(GBB)(GGIB_1)@> )
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wherea, € [0,1),

Gap GOp ._/l a Ggp ._/1 Gpp — Gap
.,%._/d = o = [ dp ,

and? = limgq_,o Za_Za,

6. Perturbation expansion

These integral equations are the starting point for a peative solution. In this way, the
renormalised correlation functions are directly obtajnedhout Feynman graph computation and
further renormalisation steps. We obtain

GGB:1+)\{A(IB—B)+B(IG—G)} (6.1)
+A2{AB((Ie —a)+(1g = B)+ (la — a)(Ip — B) + aB({(2) + 1))
+A(Bls —Blg) — aAB((15)* — 2Blp +1p)
+B(als — ala) ~ BBA((la)2 ~ 2ala +1a) | + O(A%)

whereA .= 11 aaﬁ, B:.= 11 aﬁﬁ and the following iterated integrals appear:

1
|a::/ dx - aa — _In(l—aq), 6.2)

Ia:_/ dx alx = '(a)+%(|n(l—a))2.

We conjecture thaG,g is at any order a polynomial with rational coefficientsang,A,B and
iterated integrals labelled by rooted trees.

7. Four-point Schwinger-Dyson equation

The knowledge of the two-point function allows a successaastruction of the whole theory.
As an example we treat the planar connected four-point fom&Gapcq.

Following thea-face in direction of an arrow, there is a distinguishedesegt which the first
ab-line starts. For this vertex there are two possibilities tfte matrix index of the diagonally
opposite corner to tha-face: eitherc or a summation verteg:
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We write the first contribution as a product of the ver#@x , the left connected two-point function,
the downward two-point function and an insertion, whichésxpressed by means of the Ward-
identity. After amputation of the external two-point fuitets we obtain the Schwinger-Dyson
equation for theenormalisedLPI four-point functionGapcd = GabGhcGedCGdal hpeq as follows:

1 1 Gy
ren __ Prren ren
rabcd =ZA ’a’ — ’C‘ (Gad ch) Z ’ ’ pr< I_pbcd rabcd) : (72)

In terms of the 1PI function we have

rren_rren
Z g =A (1— f)
ol i T
n Z|a|+|d|+u2 ren " p—jal
o+ bl + KT TPl T 2
rren rren
W
LATTe \ | -
512 (Tol-+ b1+ 12— FD)(pl + 1d + K2 ) (7.3)

Passing to the integral representation and the variabbesd3, we find forl" ;5,5 := 'L an inte-
gral equation, which manipulated appropriately allowsimg@mtake the limitf — 1 after insertion
of the expression for the wave function renormalisationstamt.

Theorem 2. The renormalised planar 1PI four-point functiéng,s of self-dual noncommutative
@}-theory (with continuous indices, 3, y, 5 € [0,1)) satisfies the integral equation

(1_ (1_ a)(l_ V5)(G05 - Gyé)

y61 51a By)l - i

a0)GppGsp [Nppys —Napys
Fogys = A - +/ PAP 1 " Bp)(i-op) b a ) e
" GusGpp(1—B) '

Gos +A (0~ "“/d (1—dp)(1—Bp)

1 A)A- O"S)Gﬁp (Gps — Gaé)
+/p P o3 (o=a) )
In lowest order we find
raﬁyéz}\—AZ((l_V)(|a—Ua:ill—a)(h/_y)
(1-3)(Ig—B)—(1-B)(I5—9)

55 )+003). 7.5)

Note thatl ;3,5 is cyclic in the four indices, and th&thooo= A + O(A3).
These integral equations might be the starting point of @aduarbative construction of a Euclidean
guantum field theory on a noncommutative space.

10
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