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The Volume Operator in Loop Quantum Gravity
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The volume operator is a central object in loop quantum gravity (LQG). It is part of all matter
Hamiltonians as well as the Hamilton constraint encoding the dynamics of the theory. Therefore
it is mandatory to understand its spectral properties. Thislecture gives an introduction to basic
techniques necessary in order to perform such an analysis. Moreover results on the volume
operator are presented which point towards a better understanding of a presumably combinatorial
footing of LQG.

The plan of the lecture is as follows: After a short introduction, we outline the implementation
of the classical volume functional of a region in 3-space as an operator on the kinematic Hilbert
space of LQG. Then we introduce techniques crucial for computing the matrix elements of
the volume operator: First, aspects of the representation theory ofSU(2) are explained which
make it possible to use techniques from the recoupling theory of angular momenta. Second,
the mathematical concept of an oriented matroid is introduced and used in order to describe the
dependence of the matrix elements on non-diffeomorphic properties at vertices of embedded
graphs. The according effect on spectral properties is shown. In the last section a short summary
is given combined with an outlook on future research. A shortselection of literature is presented
a the end of these notes, which is intended as a starting pointfor reading.

We would like to stress, that the focus of these lectures is togive basic ideas and concepts to the
reader, it cannot replace a complete, mathematically rigorous introduction [1]. However we aim
at giving the reader an initial competence for starting his or her own studies on the important topic
of quantized volume and its fascinating conceptual consequences.
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Volume Operator Johannes Brunnemann

1. Motivation – Why Quantized Volume?

The classical starting point for the construction of loop quantum gravity (LQG) is the initial
value formulation of general relativity. Four dimensionalspacetimeM is foliated into three dimen-
sional spatial Cauchy hypersurfacesΣt parametrized by the time parametert ∈R. Then, on each
Σt it can be shown that the validity of Einstein’s equations onM is equivalent to imposing three so
called spatial diffeomorphism constraintsCa(x) (herea, . . . ,d = 1,2,3 denote spatial coordinates,
i, . . . ,n = 1,2,3 denote coordinates on the Lie algebrasu(2)) and the Hamilton constraintC(x) at
eachx∈ Σt . The formulation of the theory in terms of Ashtekar variables furthermore introduces
the Gauss constraintsGi(x). According to this procedure the 3-metricq and the extrinsic curvature
K on Σt are induced from the 4-metricg on M. In order to construct a quantum theory of grav-
ity, classical differential geometric objects have to be turned into operators. For this, the quantum
version of the volume functionalVR of a regionR⊆ Σt

VR =
∫

R

√
detq(x)d3x (1.1)

is a central object: It associates a volume to spatial regions and occurs in all matter Hamiltonians
[1]. Even more, the Hamilton constraint encoding the dynamics of LQG crucially depends on it.
In de-parametrized models the volume expression itself becomes part of physical quantities [10].

In this lecture, I will only discuss the original approach tothe volume operator as proposed by
[4, 5, 6]. However due to its importance there are also alternative approaches: see the lectures on
spinfoams and loop quantum cosmology as well as for example [12, 13, 11].

2. Regularization and Implementation on the Kinematic Hilbert SpaceH0

Choosing a coordinate chart onΣt , one gets for everyx ∈ Σt the components
qab(x) = ei

a(x)e
j
b(x)δi j of the 3-metric andKab(x) = K i

a(x)e
j
b(x)δi j of the extrinsic curvature. Here

ei
a(x) is a local triad,K i

a(x) = β−1(Ai
a(x)−Γi

a(x)) andδi j is the Cartan-Killing metric onsu(2). In
the latter expressionβ is the Barbero Immirzi parameter, which is chosen to be arbitrary real, but
non zero. We will set it to 1 for convenience here and use Einstein’s sum convention. Also we will
drop the x- and t-dependence.Ai

a is the Ashtekar connection,Γi
a the spin connection resulting from

the 3-metricq. Introducing densitized triadsEa
i =

√
detq ea

i (ea
i denotes the inverse triad) (1.1) can

be rewritten as

VR =

∫

R

d3x

√
1
3!

∣∣εabcε i jkEa
i (x)Eb

j (x)E
c
k(x)

∣∣ =:
∫

R

d3x
√∣∣q(x)

∣∣ , (2.1)

whereε i jk ,εabc are the total antisymmetric tensors (ε123= 1,ε213=−1 etc.). We have already seen
in the the introductory lectures on LQG, how the densitized triadsEa

i can be regularized and turned
into flux operatorŝEi

S as illustrated in figure 1.
A similar regularization procedure can be applied in order to promote (2.1) to an operator act-

ing on a spin network functionTγ(A) (γ a graph embedded intoΣ, A∈A a generalized connection)
contained in the kinematic Hilbert spaceH0. Starting point for the regularization is a choice of
coordinate charts coveringΣ. Then one introduces a cell decomposition ofΣ into cubesc(L)

I of
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Volume Operator Johannes Brunnemann

coordinate edge lengthL, such that inside each cube there is at most one vertexv of γ . Then the
integral

∫
R decomposes into a sum over cube integrals∑I

∫
c(L)

I
. At each vertexv we can w.l.o.g.

choose all edges to be outgoing fromv, because reorientation of edges corresponds to a unitary
transformation onH0, which leaves the spectrum of any operator invariant. In thecenter of cubes
c(L)

I containing a vertexv we have for every edge tripleeI ,eJ,eK intersecting atv the configuration
shown in figure 2.

S

nS e

ė

v

Figure 1: Action of Ei
S =

∫
Sd2s na

s(s) Ei
a(s)

on a single edge spin network functionfe:
Êi

S fe = ε(ė,nS)Ri
e fe. Ri

e is the right invariant vec-
tor field acting on the copy ofSU(2) associated toe.
Moreoverε(ė,nS) = sgn(na

Sėa) denotes the relative
orientation of surface normalnS and edge tangentė.

Sa
Sb

Sc

nSa
nSb

nSc

eI

eJ

eK

L
2

v

Figure 2: Regularization scheme
of the classical volume expression
by a cubic cell decomposition ofΣt

due to [5]: The center of a cubec(L)
I

contains a vertex v. The figure only
shows one octant of the cubec(L)

I .

This results in an action

( ̂
∫

c(L)
I

√
|q(x)|

)
Tγ(A) = ∑

eI∩eJ∩eK=v

√
|Z · q̂|(v) Tγ(A) (2.2)

whereZ is a constant given byZ = i Cregℓ
6
Pβ 3. Here the Planck lengthℓP, the Immirzi parameter

β ∈R andCreg, a regularization constant (from averaging over all cube orientations) occur. The
latter was found in [9] to be1

48. In the sequel we will setZ = 1 for simplicity. Moreover

q̂(v) Tγ(A) :=
(

εabcεi jk ε(ėI ,nSa) ε(ėJ,nSb) ε(ėK ,nSc) Ri
eI

Rj
eJ

Rk
eK

)
Tγ(A)

=:
(

εi jk ε(IJK) Ri
eI

Rj
eJ

Rk
eK

)
Tγ(A)

=:
(

ε(IJK) q̂IJK

)
Tγ(A) . (2.3)

Hereε(IJK) = sgn(det(ėI , ėJ, ėK)), denotes the relative orientation of the edge tangents atv. By
the Peter-Weyl theorem, everyTγ(A) can be written in terms of products of representation matrix
element functions[π j(he)]mn (here j = 0, 1

2,1, . . . denotes the weight of the 2j +1 dimensional irre-
ducible representationπ(·) of SU(2), he = he(A) ∈ SU(2)e is the parallel transport of the Ashtekar
connectionAi

a along an edgee⊂ Σ, m,n = − j,− j + 1, . . . , j −1, j are matrix indices). The right
invariant vector fieldsRi

e only act non-trivially on the copySU(2)e, labelled by the edgee. Conse-
quently Leibnitz’ rule for derivatives gives the total local volume action as a sum over all possible
triples. The fact that inside a cubec(L)

I the action of̂qIJK is non trivial at the vertexv only follows
from its antisymmetry: It only acts as a derivation non-trivially at a point, if all edge labels are

3
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mutually different. This condition is only fulfilled in a point, where at least 3 edges intersect, that
is a vertex. Hence in the regularization procedure above thelimit L → 0 can be taken without prob-
lems, because in the sum over all cubes only a finite number of terms gives a non zero contribution.
Moreover the choice of cell decomposition and coordinates is irrelevant for the result. Finally we
can write the total action of the volume operator on a spin network function as

V̂RTγ(A) =
[

∑
v∈V(γ)

√
| ∑
eI∩eJ∩eK=v

ε(IJK) q̂IJK |
]

Tγ(A) . (2.4)

As can be shown [6],̂VR is compatible to the projective structure of the kinematic Hilbert spaceH0,
that isV̂R is cylindrically consistent. The square root in (2.4) has now to be understood in terms of
operators: one has to find an eigenbasis in which the operator|∑eI∩eJ∩eK=v ε(IJK) q̂IJK | is diagonal
and then to take the square root in the sense of a matrix function. We see, that the action of̂VR

decays into local actions at single vertices. Hence in orderto analyze its action on a cylindrical
function Tγ(A) supported on an arbitrary embedded graphγ it is sufficient to restrict our analysis
to single vertices.

Alternative regularization. By a slightly different procedure [4] one obtains an expression
q̂(v)Tγ ∝ ∑eI∩eJ∩eK=v

√
|q̂IJK |. The two operators are structurally similar, but their properties differ

for (gauge invariant) vertices with more than (4) 3 edges. There is no dependence on the signs
ε(IJK): the volume in the regularization of [4] scales with the valence. This may lead to difficulties
if one wants to consider vertices with infinitely many edges.The absence of sign factors was also
found to lead to inconsistencies, if one wants the volume operator to be consistent with the flux
operator in the sense of [9]: Regarding the volume as fundamental, one can use the the classical
expressionsej

b ∝
{

Ai
a,VR

}
, Ea

i =
√

detqea
i = 1

2εi jkεabcej
bek

c, in order to define an alternative flux
operator. It was found in [9], that only the sign dependent version of V̂R leads to a consistent
(in the sense that the flux operators coincide) construction. Also in the implementation of the
Hamilton constraint as an operator the sign dependence seems to be crucial [1], in order to cancel
contributions from planar 3-valent vertices in the regularization procedure [1].

For these reasons we will consider the sign dependent version of the volume due to Ashtekar
and Lewandowski [5] in this lecture.

3. Evaluation of Matrix Elements

In order to perform the spectral analysis ofV̂R in (2.4) one has to find an explicit formula
for the matrix elements of the operatorsq̂IJK as well as to handle the sign factorsε(IJK) in full
generality.

3.1 Matrix Elements for q̂IJK : Representation Theory

In order to analyzêqIJK one can use the correspondence matrix element functions[π j(he)]mn

of irreducible representations ofSU(2) to states| j,m ;n
〉

of an abstract angular momentum system
[6]. We have

√
2 j +1[π j(he)]mn ≡

〈
he

∣∣ j,m ;n
〉

e and the action of right invariant vectorfieldsRi
eI

on spin network functions then corresponds to the action of angular momentum operatorsJi
eI

on
the angular momentum states well known from quantum mechanics. In this correspondence, a spin

4
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network function at a givenNv-valent vertexv can be written asTv~j~m~n(A) =
⊗Nv

k=1

〈
A
∣∣ jk,mk ;nk

〉
,

which is also called the tensor basis of the kinematic Hilbert spaceH0 at v. As is well known, the
tensor product of twoSU(2) irreducible representations of weightj1, j2 can be decomposed into
a direct sum of irreducible representations with weightsa2 = | j1− j2|, . . . , j1 + j2. In this way a
tensor basis function containingNv irreducible representations can be successively decomposed as
shown in figure 3.

j1
j2
j3
j4

jNv

j1
j2
j3
j4

a2 = | j1− j2|, . . . , j1+ j2
a3 = |a2− j3|, . . . ,a2+ j3

jNv

J

Figure 3: Tensor basis (left) and recoupling basis (right) as equivalent description.

The result is called a recoupling schemeTv~aJM~j~n(A) =
〈
A
∣∣~a12 J M ;~j ~n

〉
at the vertexv and can

be explicitly computed using Clebsch Gordan coefficients from the recoupling theory of angular
momentum. Here~a12 = (a2,a3, . . . ,aNv−1) is a vector of intermediate recoupling weights,J is the
total angular momentum and the subscript 12 denotes the factthat j1, j2 are coupled first. Moreover
M = ∑Nv

k=1mk and~n is as before and used in order to connectTv~j~m~n(A) at different vertices of the
graphγ . In this formalism the gauge invariant subspaceHGauss⊂ H0 can be easily computed:
by construction the recoupling schemes withJ = 0 fulfill the Gauss constraintsGi(v). Notice that
the labelling of edges is arbitrary. Indeed, different recoupling orders, that is different labellings of
edges, are connected by unitary transformations due to unitarity of the Clebsch Gordan coefficients.
In the recoupling basis, the operatorq̂(V) of (2.3) can be explicitly evaluated using the fact that
q̂IJK = εi jkJi

eI
J j

eJJ
k
eK

= i
4

[
(JIJ)

2,(JJK)2
]
, whereJi

IJ := Ji
I + Ji

J and (JIJ)
2
∣∣~aIJ JM; ~n

〉
= aIJ(aIJ +

1)
∣∣~aIJJ M; ~n

〉
is diagonal on a recoupling scheme, in which the representations jI , jJ are coupled

first [8]. As a consequence, the matrix elements of (2.3) can be explicitly evaluated. For a fixed
choice of recoupling scheme basis for the gauge invariant Hilbert spaceHGaussthe operator̂q(v)
can be represented as a sum of Hermitian matrices with varying pre-factors1.

q̂(v) ∝
∣∣∣ ∑

I ,J,K<Nv

σ(IJK) q̂IJK

∣∣∣ , (3.1)

whereσ(IJK) = ε(IJK)−ε(JKNv)+ε(IKNv)−ε(IJNv), with−4≤ σ(IJK)≤ 4. For the 4-vertex
a formula for the matrix elements was published in [7]. A general formula for the elements of the
matricesq̂IJK can be found in [8].

Gauge invariant 4 vertex. Equation (3.1) already suffices to analyze the volume spectrum at 4-
valent gauge invariant vertices: ForNv = 4 only a single matrix̂q123 needs to be computed, the sign
factorσ(123) only gives an overall scaling of the spectrum. Beside a numerical analysis [8, 14] one
can analytically compute the subspacekern(V̂) ⊂ HGaussfor the eigenvalue 0. Moreover one finds
that for a given vertexv the spectrum of̂V is non degenerate. The spectrum possesses a smallest
non zero eigenvalueλmin ≥ ℓ3

P

√
|Z σ(123)| jmax, where jmax = maxK=1...Nv{ jK}. For the largest

eigenvalue one findsλmax ∝ ( jmax)
3/2.

1In case of gauge invariance we haveJ = 0 and henceJi
eNv

= −∑Nv
K=1JeK .

5
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3.2 Arbitrary Valence: Sign Factor Combinatorics in Terms of Oriented Matroids

For a general valence2 Nv > 4 an explicit computation of (3.1) is much more involved. We have
already seen, that edge relabellings and analytic diffeomorphisms act unitarily onH0 and thus on
HGauss. Hence we need to classify all diffeomorphism equivalence classes of embeddings of anNv-
valent vertexv into Σ. Each such class is described by a set~σ of sign factors~σ := {σIJK}I ,J,K<Nv ,
which is diffeomorphism invariant by construction. However the signsσ(IJK) are not invariant
under edge-relabelling (≡ permutation of edge labels): each orbit of~σ under the permutation
groupPNv overNv elements gives one presumably distinct volume spectrum. Aswe will show in
this section, the classification of all such permutation equivalence classes of sign factors is a highly
non-trivial combinatorial task. As it turns out [15], the solution corresponds to a classification of
all oriented matroids [2] of rank 3.

Linear Dependence of Vector Configurations. In order to describe the sign factor properties, we
now give an abstract combinatorial description of linear dependencies among vector configurations
in R3. Given a sorted3 setE = (e1, . . . ,eN) ⊂R3 of N vectors, we define its familyB of oriented
basesbyB = {B= (eI ,eJ,eK)I<J<K ⊆E : B spansR3}. For every setS⊆E a basis orientationχB :
S → {0,±1} is defined as χB(S) = 1 or − 1 iff S ∈ B and 0 if
S /∈ B. The mapχB is also called chirotope in the literature. The notion of positive or neg-
ative sign of a basis orientation is subject to a choice. ForN = 5 on the left in figure 4 we have
B = {(123),(124),(134), (135),(145),(234),(235),(245)}, and χB(B) = ±sgn(detB), with
~χB = ±(+,+,−,−,−,+,+,+). To fix the sign in front corresponds to our choice of positive
orientation (right or left handed) of a dreibein.

Equivalently we may characterize the vector configuration in figure 4 in terms of its setC
of signed circuits, whereC :=

{
C ⊆ E : C is minimum linear dependence

}
: Given a setC ⊆ E

with cardinality NC, we say thatC = {eK1, . . . ,eKNC
} is a linear dependence if there exists a set

(λ1, . . . ,λNC) ∈ RNC, such that 0= ∑NC
n=1 λneKn. C is a minimum linear dependence ifλn 6= 0 ∀ n

and if C does not contain dependent subsets. Then we can writeC in terms of its signed sub-
sets: C = {C+,C−}, whereC± := {eKn : λn ≷ 0}. Moreover we define the support4 suppC =

C := C+ ∪C−. Now given a signed circuitC ∈ C we define for everyS⊆ E a map sgnC : S→
{0,±1} as sgnC(eK) = ±1 iff eK ∈ C± and 0 else. This classification is again defined only up
to a global sign: Indeed it must hold that(−C)± = C∓. Hence ifC = {C+,C−} ∈ C then also
−C := {−C+,−C−}= {C−,C+}∈C . For the example of figure 4 one findsC = {±C1,±C2,±C3}
with C1 =

{
{123},{4}

}
, C2 =

{
{12},{5}

}
andC3 =

{
{35},{4}

}
.

As it turns out, the two descriptions of the vector configuration in terms of oriented bases
B and signed circuitsC are equivalent: For everyB∈ B and for everye∈ E\B there is aunique
±C∈C such thatB∪{e}⊆C. Given two basesB1,B2 ∈B with B1 = (eI ,eM ,eN), B2 = (eL,eM ,eN)

there exists a±C∈ C with B1∪{eL} = B2∪{eI} ⊆C. Then the following identity holds [2]:

sgnC(eI ) sgnC(eL) = χB(B1) χB(B2) (3.2)

2Which is essential in order to describe graph changing operators such as the Hamilton constraint operator.
3With respect to an arbitrarily chosen label set.
4By constructionC = −C.
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e1

e2

e3

e4

e5

e1
e2

e3

e4

e5

v1

v2

v3

v4

Figure 4: Oriented matroid combinatorial framework. Left: vector representation ofM . Right: graph
representation ofM . Throughout the text we use the shorthandK ≡ eK .

Using (3.2) one can convert between the two descriptions of avector configuration. Notice that the
formalism described here can be easily generalized to vector configurations inRN with arbitrary
N > 0.

Definition of an Oriented Matroid. The definition outlined so far gives rise to the definition of
an oriented matroid: A familyC of signed subsetsC of a finite ground setE is called the set of
signed circuits of an oriented matroidM = (E,C ) if the circuit axioms(C0) . . . (C3) hold:

(CO) Non emptiness: /0/∈ C

(C1) Symmetry: C = −C ⇔ ±C∈ C

(C2) Incomparability:C1 = C2 ⇔ C1 = ±C2 ∀ C1,C2 ∈ C

(C3) Elimination: ∀ C1,C2 ∈C with C1 6= ±C2 : ∀ e∈C+
1 ∩C−

2 ∃C3 ∈ C :
C±

3 ⊆ {C±
1 ∪C±

2 }\{e}

A similar definition M = (E,B) of M can be given in terms of its oriented basesB [2, 15].
Notice that the definition of an oriented matroid is purely combinatorial. In particular it does not
refer to a vector configuration any more. Indeed, a vector configuration can be understood as a
realization of an abstract combinatorial oriented matroidM in terms of vectors [2]. However as it
turns out there there are far more realizations, all of whichcan be commonly described by oriented
matroids. This aspect will be further discussed in section 5.

Results for V̂. Using the oriented matroid framework one can compare numerical results [15]
on possible sign factor configurations~σ to results in the oriented matroids literature [16, 17]. A
summary is given in table 1. Column 3 shows the number of possible~ε := {εIJK}I ,J,K≤Nv con-

Nv # triples #~ε (Nv) sprinkled #~ε perm.
equiv. classes

# ~σ configs # realizable reor.
equiv. classes

3 1 2 1 1 1
4 4 16 3 3 1
5 10 384 4 4 1
6 20 23 808 41 39 4
7 35 3 486 720 706 673 11

Table 1: Sign factor combinatorics for 3–7-valent non-coplanar vertices, corresponding to the classification
of uniform rank 3 oriented matroids.

figurations obtained from sprinkling points on the unit sphere using Monte Carlo methods [14].
Column 4 shows the number of equivalence classes if theNv-element permutation groupPNv is

7
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factored out. Column 5 shows the corresponding number of~σ := {σIJK}I ,J,K<Nv - configuration for
a gauge invariantNv-valent vertex. Column 6 gives results from [16]: there the reorientation of
single elements is additionally factored out from the permutation equivalence classes. For a vector
configuration, this can be understood as the flipping of one vector at the origin to its negative direc-
tion. By factoring out this additional symmetry, one obtains column 6 from column 4. However,
for the case of aNv-valent vertexv reorientation does not mean reorientation of an edge. Rather
it means [15] that the tangent of an edgee adjacent tov is replaced by the tangent of a different
edgee′. Hence the spectrum of ˆqv of equation (3.1) isnot invariantunder reorientations. It is only
invariant under label permutations. Therefore the number of distinct spectra of ˆqv at a given vertex
v is given by the number of permutation equivalence classes ofthe sign factors~σ .

4. Spectral Properties

Having both at hand, matrix elements from recoupling theoryand sign factors from oriented
matroid theory it is possible to numerically compute the volume spectrum for all non diffeomorphi-
cally embedded verticesv with arbitrary valenceNv. As an example, results from [14] forNv = 5
are given in figures 5 and 6. Notice that we only have 3 non-trivial spectra (labelled by the~σ -index
0,1,2), because one~σ sign configuration at a vertex (the one where all tangent vectors have the
same relative orientation) is always trivial.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0  50  100  150  200  250

fr
eq

ue
nc

y

eigenvalue

Figure 5: Histograms for each sigma configura-
tion~σ at the generic (gauge invariant) 5-vertex up
to jmax = 25/2.

 0
 0.5

 1
 1.5

 2

 0  5  10  15  20  25

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

λmin

2 jmax

~σ -index

Figure 6: Smallest non-zero eigenvaluesλmin at
the (gauge invariant) 5-vertex

Figure 5 shows the volume spectrum for the generic gauge invariant 5-vertex. Here ‘generic’
means excluding co-planar edges. We use the notation~σ := (σ123,σ124,σ134,σ234). The green
color is for~σ0 = (2,2,2,0), the blue is for~σ1 = (2,0,0,0) and the purple for~σ2 = (2,2,4,0). Each
histogram has 512 bins. As it is obvious from the figures, the permutation equivalence class of
the sign factors~σ determines the overall shape of the spectrum at a given vertex. In particular the
presence of a smallest non-zero eigenvalueλmin (volume gap) depends on the sign factors. This
can be already seen forNv = 5 in figure 6, where we findλmin increasing, decreasing or constant as
the maximum spinjmax at the vertex is increased.
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5. Conclusions & Outlook

Although technically involved, the spectrum of the volume operator of LQG is accessible for
a complete numerical study. As it turns out, embedding properties of vertices determine the spec-
tral properties, in particular the presence of a volume gap depends of the permutation equivalence
class of signs. Taking the volume spectrum as fundamental this implies that the volume spectrum
contains (spatially diffeomorphism invariant) geometricinformation of the tangent space at a ver-
tex v. First steps towards a numerical study of the volume spectrum have already been performed
in [14, 15] for non co-planar (all triples of edge tangent linearly independent≡ uniform under-
lying oriented matroid) vertices. However in the oriented matroid literature [16, 17] sign data is
also available for non uniform oriented matroids, that is vertices with several co-planar triples of
edge tangents. Hence the spectral analysis of the volume operator needs to be extended to these
cases. Having this at hand semiclassical results for the volume spectrum [11, 18], which had been
restricted to only a few vertex embeddings, can now be checked in full generality.

As we have mentioned above, the abstract concept of an oriented matroidM has distinct
realizations apart from a vector configuration. From the LQGview point the most interesting case
is the realization ofM in terms of a directed graphγ instead of a vector configuration inRN.
The ground setE of M is then given by the setE(γ) of edges, the setC of signed circuits (min.
linear dependencies) is identified with the set of cycles in the graph. The setB of oriented bases
(spanning subsets) is identified with the set of spanning trees ofγ . The dimensionN of RN in the
vector representation gives the cardinality of elementsB∈B, called the rank ofM . In the case of a
directed graphN+1 is the number of vertices of the corresponding directed graph. As an example,
the vector realization of an oriented matroid of rank 3 as well as its corresponding realization as a
directed graph with 4 vertices are given in figure 4 .

As it has been explained in the introductory lectures for LQG, the construction of the kine-
matical Hilbert spaceH0 rests on the projective limit among a label set consisting ofembedded
directed graphs. Here a completely new perspective towardsa rigorous combinatorial formulation
of LQG is opened by the oriented matroid framework, if we can describe this projective limit in
terms of a projective limit among oriented matroids. Generalizations of the matroid framework to
infinite ground (edge-) sets have already been investigatedin the mathematics literature [19].

This analysis has the potential to shed light on the question, if the duality between graphs
(topology) and vertices (local embedding) has deeper implications for quantum gravity. This will
be subject to future research.
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