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Quantum deformation of Lorentzian spin foam models Winston J. Fairbairn

1. Introduction

Spin foam models can be viewed as discretised functional integrals for field theories of BF-
type. These types of theories admit a formulation with a cosmological constant in three and four
space-time dimensions. Models for theories with zero cosmological constant are based on the
representation theory of simple Lie groups. Such models are given by infinite sums that diverge
for a large class of manifolds. A natural regularisation is obtained by considering models based
on the representation theory of quantum groups. In three and four space-time dimensions, the later
models are believed to correspond to field theories with non-zero cosmological constant.

A prototypical example of such a procedure is provided by the Turaev-Viro [1] regularisa-
tion of the Ponzano-Regge model [2]. The Ponzano-Regge model defines a functional integral for
Euclidean three-dimensional gravity with zero cosmological constant. It is given by an infinite
weighted sum over all unitary, irreducible representations of the Lie group SU(2). Generically,
this sum diverges and a natural regularisation is obtained using quantum groups. The idea is that
Uy(su(2)), the quantum deformation of SU(2), admits only a finite number of irreducible repre-
sentations if the deformation parameter ¢ is chosen to be a root of unity. This leads to a natural
regularisation scheme for the Ponzano-Regge model; replace SU(2) in the definition of the model
by its quantum deformation U, (su(2)) at root of unity. The resulting model defines a 3d TQFT
called the Turaev-Viro model. Physically, the Turaev-Viro invariant is interpreted as a functional
integral for Euclidean three-dimensional gravity with positive cosmological constant A, if the de-
formation parameter ¢ is tuned to be a specific function of A.

Following this intuition, it seems natural to follow the same procedure to regularise the poten-
tial divergences of higher dimensional models. This procedure has successfully been applied to the
four-dimensional Ooguri [3] and Barrett-Crane [4, 5] models in [6, 7] and [8, 9] respectively. In
[10], we constructed an analysed a g-deformation of both Euclidean and Lorentzian versions of the
EPRL model [12]. Note also the independent work [11]. In this paper, we will summarise the re-
sults obtained for the Lorentzian model. For further details or for results concerning the Euclidean
model we refer the reader to the original paper [10].

2. The quantum Lorentz group

The model considered in this paper is based on the representation theory of the quantum
Lorentz group.

2.1 Hopf algebra structures

The quantum Lorentz group [13, 14] is defined as the quantum double of U,(su(2)), where
g =e ¥ €]0,1]is a real deformation parameter.

The Hopf algebra U,(su(2)). We start by introducing the Hopf algebra U, (su(2)), adopting the
conventions from [14]. The Hopf algebra U,(su(2)) is the associative algebra generated multi-
plicatively by four generators gz, J., subject to the relations

qZJZ _q_ZJz
=1, qeq =4y, V-] = qg—q ' .1y

+J,

q 9
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The comultiplication, counit and antipode are given by

M) =g 0q™, AU =q @)+ 04", (2.2)
g(qijl) =1, E(Ji) =0, (2.3)
S(qijz) —_ q$]z7 S(Ji) — _q:tlji’ (24)

The representation theory of U, (su(2)) with a real deformation parameter g closely resembles
the representation theory of the Lie group SU(2). Irreducible finite-dimensional unitary represen-
tations are labeled by “spins” I € N/2. As in the case of the Lie group SU(2), the representation
space V; of the irreducible representation 77 : U, (s1(2)) — End(V;) is (21 + 1)-dimensional. The
fusion rules for the tensor products V; ® V; resemble the ones for the representations of SU(2). We

have
I+J

vievie @ Vk, (2.5)
K=|I-J|

where the isomorphism = is given by the Clebsch-Gordan intertwining operators
Cck  vioV, = Vg, and CY :Vxk = Vi@V (2.6)

As all multiplicities in (2.5) are equal to one, these intertwiners are unique up to normalisation.
They are non-zero if and only if /+J — K, J+ K —I and K +1 — J are non-negative integers. Their
coefficients with respect to an orthonormal basis {e{n}m:,lml of the complex vector space V; are
the Clebsch-Gordan coefficients
1J
) ek, 2.7)

chem=x (7"
K g IJ np

K\ J K (I J m
m>en®ep’ and CIJ<en®ep):; K

The Hopf algebra F,(SU(2)). The Hopf algebra F,(SU(2)) is the dual of the Hopf algebra
U,(su(2)) and can be viewed as a quantum deformations of the algebra of polynomial functions on
SU(2). A basis of F,(SU(2)) is given by the matrix elements u,”, : U,(su(2)) — C in the unitary
irreducible representations of U, (su(2))

" (x) = €™ (m(x)el), Vx € Uy(su(2)). (2.8)
The duality pairing (, ) : Uy(su(2)) x F,(SU(2)) — C is given by
(o uy"y) = m(x)", (2.9)

The Hopf algebra structure of F,(SU(2)) is induced by the one on U, (su(2)) via the pairing (2.9).
In terms of the matrix elements u,”) , its algebra structure is characterised by the relations

uz”fz-uj”qZKZr‘,S(’?? I:) u,{s<ls< i;) 1 = uyy. (2.10)
Its comultiplication, counit and antipode take the form
Aluy) =Y up',@u”, @2.11)
e(ur"y) = 5?’31, (2.12)
S(u") = empit),g, 1", (2.13)
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where ;" is the Kronecker symbol for the representation labeled by I and the coefficients &, are
the matrix elements of the bijective intertwiner & : V; — V;* given explicitly by

€l = e_in(l+m)q1(l+l)qm5m7—n- (214)
The quantum Lorentz group. The quantum Lorentz group is the quantum double of U, (su(2))
D (Uy(su(2))) = Uy(su(2)) ® Fy(SU(2))*”,

where F,(SU(2))?” is the Hopf algebra F,(SU(2)) with opposite coproduct, and the symbol ‘&’
indicates that the Hopf subalgebras U,(su(2)) ® 1 and 1 ® F,(SU(2))?? do not commute inside
D (Uy(su(2))) but satisfy braided relations. See for instance [14]. As it is a quantum double, the
quantum Lorentz group is a quasi-triangular Hopf algebra. We will describe the corresponding
braiding later in the text.

The quantum double D(U,(su(2))) is called the quantum Lorentz group because it is a quan-
tum deformation of the universal enveloping algebra of the real Lie algebra sl(2,C)r = s0(3,1).
Indeed, the decomposition given above is the quantum analogue of the Iwasawa decomposition of
the Lorentz algebra

s[(2,C)r = su(2) ®an(2),

where an(2) is the Lie algebra of the Lie group

AN(2):{($ ;Ln1> | L eR*, nec}

This is a direct consequence of the quantum duality principle which yields the identities F,(SU(2)) =
Uy (su(2))* = U,(su(2)*) = Uy(an(2)), with the star *x* denoting duality at the level of Hopf alge-
bras. Therefore, we will frequently use the notation

D(U,(su(2))) = Uy(sl(2,C)Rr). (2.15)

2.2 Irreducible representations

The irreducible unitary representations of U, (s[(2,C)gr) were first classified by Pusz [15]. In
this paper, we will only consider the representations of the principal series. These representations
are labeled by a couple & = (n,p) with n € Z/2 and p € [0,%Z[ or with n = 0 and p € [0, 2Z].
We denote by (774, V) the representation of U, (s[(2,C)g) labeled by o. It is a Harish-Chandra
representation which decomposes into representations of U, (su(2)) as follows

Vo= PV, (2.16)

I=|n|

where V; is the left U, (su(2))-module introduced previously. A basis of the infinite dimensional
vector space Vg is given by {e!, | I € N,I > |n|,m = —I,...,I} where, for fixed I, {e,},——1. .1

3eey

is the basis of V; introduced above. In terms of this basis, the action of D(U,(su(2))) on the
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representation space Vy, is given by the standard action of U,(su(2)) and the following action of

Fy(su(2))
/
pnl M m
ma(u ) b =Y e
meep A;’v PANJ| m M

where A (a) are complex numbers defined in terms of analytic continuations of 6; symbols for

J L

,>A%@, (2.17)
np

U,(su(2)). As their expressions are lengthy and complicated, we will not give them here but refer
the reader to [14], where they are derived explicitly, and to [16] where their properties are studied
in details.

3. The quantum EPRL intertwiner

Given a triangulated 4-manifold, there are three essential ingredients for the definition of a
4d spin foam model; the set of representations assigned to the triangles, the intertwining operators
associated to the tetrahedra and the amplitudes for the 4-simplexes. In this section, we generalise
the classical construction [12] to the quantum group case.

3.1 Quantum EPRL representations

A quantum EPRL representation assigns a principal representation of the quantum Lorentz
group to a representation of the Hopf subalgebra U, (su(2)). This assignment depends on a fixed
parameter ¥ € R, called the Immirzi parameter, and is defined as follows

K= (n(K), p(K)) := (K, YK) 3.1

Remark that for this assignment to produce principal representation, the representations of U, (s11(2))
considered must be restricted to a specific subset of N/2 since p(K) must lie in [0, *Z[. This leads
us to the following definition.

Definition 3.1. (EPRL representations) Ler < = {K € N/2 | 0 < K < 4x/yk} label a subset
of representations of quantum SU(2). The Lorentzian EPRL representation of spin K € £ is the
principal representation of the quantum Lorentz group labeled by a(K) = (n(K), p(K)) := (K, yK).

Due to the restriction on the U,(su(2)) labels, the EPRL representation ¢¢(K) = (K,yK) is a
principal representation of the quantum Lorentz group. It decomposes into quantum SU(2) repre-
sentations as

Vaik) = PVi- (32)

3.2 Quantum EPRL intertwiner

The next step is to define the class of intertwining operators for the tetrahedra. Given a n-
tuple o« = (..., @) of principal representations of the classical Lorentz group SL(2,C)g, a key
ingredient appearing in the construction of the classical (i.e. non-deformed) EPRL intertwiner is
the linear map

/SL(2,(C)R X gn‘x" X) Vi = Via], (3.3)
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where dX is a Haar measure on SL(2,C)g and V]| = Q| Va,-
This expression is generalised to the quantum group case by introducing a Haar measure (a
biinvariant integral) on the Hopf algebra F,(SL(2,C)r) dual to the quantum Lorentz group

h:F,(SL(2,C)r) — C.
The map £ is a linear form satisfying
(h®id)A(x) = h(x)l, and (id@h)A(x) = h(x)1, Vx € F;(SL(2,C)R).

These identities imply that £ is invariant under the left- and right-action of the quantum Lorentz
group on its dual Hopf algebra F,(SL(2,C)g).

Let {x4}4 be a basis of F;(SL(2,C)g) and introduce the dual basis {x*}4 of the quantum
Lorentz group. Expression (3.3) is generalised as follows

= Zé)”a,- (A"D () h(xa), (3.4)
A i=1

where A" denotes the n-fold coproduct! in the quantum Lorentz group
A" = (A@id®" ) o AD for n>1, A=A

Now, consider an EPRL representation & (K) and the projection map fX : V,, — Vi associated
to the lowest weight factor in the decomposition (3.2). When applied to each copy of the tensor
product of n EPRL representations, the dual of this map induces an embedding

HomU (su(2 <®VK7 ) _>H0mU (s1(2,C)r <®Va, K;) ) ’ (35)

via the use of a Haar measure. This embedding will be noted f*. Using the above, we define a
quantum EPRL intertwiner as follows.

Definition 3.2. (Quantum EPRL intertwiner) Let K = (K}, ...,K,) be a n-tuple of elements of
2 and VK] = @}, Vk, be the corresponding representation space of Uy(su(2)). Denote by
o= (ai(Ki),...,0(K,)) the associated n-tuple of EPRL representations and by V]a] = Q' Vi,
the tensor product of their representation spaces. The quantum EPRL intertwiner g = f* (A[K])
associated to an intertwiner Ajx) in Homy, (5u(2))(V[K],C) is the linear map v4) : V|at] — C defined
by

=Y Ao Q) S <® ”a[(K[)(A(n_l)(x4>)> h(xa). (3.6)
A i=1 i=1

As this definition involves an infinite sum, it has to be established that the quantum EPRL
intertwiner is well-defined. In the following we will mainly be interested in the case n = 4. In this
case, an orthogonal basis of the vector space Homy, (sy(2 (®l 1VK,,(C) is given by:

Ak itienyas Ay = dio (Ciixor ®CIK3K4)'

'In the same way than the coproduct is used to tensor two representations of a coalgebra, the n-fold coproduct is
instrumental in tensoring n representations.
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Here, Cpjx = €k o CX, with & defined in (2.14), and d; : V; @V} — C; e/ ® el — &7, is the
evaluation map in the representation category of quantum SU(2). We now state an important
convergence result.

Theorem 3.3. Let A y be an element of the basis { A n}n and e Lla) = @ eki(a) a basis of

V(a]. The evaluation of the quantum EPRL intertwiner gy = f* (A n) is glven by

_ b
g (ecla) =Y, Y R2I+1gq 8 Ayt (on) Az, (ao) Ay (05) At (o)
ay by | M, dy I L ay by | M» d | I L,
K I d M, bll Cl K I | d M> | by ¢y
ay bz | mj dy | I Lj as by dy | 1 Ly
Ky I| ds ms | by c3 Ky 1 d4 My | b3y cy

A[KLN(e(Ifl‘ ® efj ® 6533 ® efj),
where [n], = (¢"—q™")/(q—q~") denotes a g-number. This multiple series converges absolutely.

This theorem implies that the defined ¢g-EPRL intertwiner is well-defined. Another important
property of the g-EPRL intertwiner is its behaviour under braiding. The representation category of
the quantum Lorentz group is a braided tensor category (with infinite dimensional objects) because
the quantum Lorentz group is a quasi-triangular Hopf algebra. This means that there exists an
R-matrix R € D(U,(su(2))) @ D(U,(su(2))) which is an immediate consequence of the fact that
we are working with a quantum double. From this R-matrix, one can construct an intertwining
operator g, a, : Voy @V, — Vi, ® Vg, called a braiding. This operator is given by

Coy,0p = TlX[,OCz © 7[061 o2y TCOQ (R)7 (37)

where 7:x®y— y®x is the flip map. Using the explicit form of the R-matrix [16] and the action
of the quantum Lorentz group on the module Vy, it is immediate to obtain the following expression
for the action of the braiding

K
c(xﬁ ®ed ZZef®e (LI g)(li

Note that although these sums are infinite, there is only a finite number of non-zero terms [16].

) d) AK(a). (3.8)

Consequently, there are no issues with convergence. We are now ready to state the following
result.

Proposition 3.4. The q-EPRL intertwiner 1) ; = f*(Ag) s) transforms as
K ¢
lOC] (K1)on(Kz)as(K3) o (Ky),J OCam,a; = ZA 2 (XZ lOC2 (K2) o4 (K)o (K3)ota(Kq),J 5

and is thus not invariant under braiding.

Note? that this is sharp contrast with the case of the quantum deformation of the Barrett-Crane
intertwiner [8, 9] which is invariant under braiding.

2Note also the abuse of notation in the right hand side of the above equation due to the fact that oy (K) is not
necessarily an EPRL representation. The notation is nevertheless used for notational compacity.
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4. The 4-simplex amplitude

We are now ready to construct the amplitude for 4-simplexes labeled by EPRL representations
and g-EPRL intertwiners. Such an amplitude is defined with the aid of the graphical calculus of
spin networks. There are two main difficulties in the definition of the amplitude that arise from
the fact that the representation spaces of the EPRL representations are infinite-dimensional. The
first is that there is no coevaluation map that intertwines the trivial representation of the quantum
Lorentz group on C with a representation on the tensor product Vy ® V,; and therefore no notion
of a quantum trace. The second difficulty is that a naive definition of the amplitude for the four-
simplexes gives an infinite answer.

These problems arise in a similar fashion in the classical Lorentzian BC [5] and EPRL [12]
models. A solution to the first problem was provided in [17] where a Lorentzian graphical calculus
based on non-invariant tensors and bilinear forms was invented. A regularisation prescription that
circumvents the second difficulty has been given in [18] and [19] for the BC and EPRL models,
respectively. Extending these procedures to the quantum Lorentz group, we will overcome these
issues and consistently construct a finite amplitude for the 4-simplexes.

4.1 Graphical calculus

The graphical calculus is defined by associating certain algebraic quantities to diagrams drawn
in the plane. We first describe the algebraic side of the calculus before relating the algebra to the
diagrams.

4.1.1 EPRL tensors and invariant bilinear form

We first need a notion of dual quantum EPRL intertwiners. These dual objects are required
since we cannot pair g-EPRL intertwiners together because of the absence of a coevaluation map.
As in the Lie group case, the vector space @, Vy, does not contain tensors that are invariant under
the action of the quantum Lorentz group and such objects do not exist per se. Accordingly, dual
q-EPRL intertwiners are replaced by non-invariant quantities which can be viewed as the quantum
group analogue of the boosted SU(2) intertwiners considered in [17]. These quantities, which are
referred to as vertex functions in [9], will be called EPRL tensors in the following.

Definition 4.1. (Quantum EPRL tensor) Let K = (K}, ...,K,,) be a n-tuple of representations of
U,(su(2)) labeled by elements of £. Denote by ot = (0t (K1), ..., 0, (K,,)) the associated n-tuple of
EPRL representations, and consider an element AX] Homy;, (s(2))(C,V[K]). The quantum EPRL
tensor W4 associated to AX) is defined by

)y (@ Toyx;) (A(nil) WA))) © ®flgi oAl
A i=1 i=1

wplol — Qx4, 4.1

where [ : Vk — Vg is the inclusion map associated to the direct sum (3.2). The vector space of
EPRL tensors associated with [o] is the vector space H|ot] := V[ot] @ F;(SL(2,C)R).

The second algebraic object required for the calculus is an invariant bilinear form with which
one can pair g-EPRL tensors.
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Ny X

Figure 1: Elements of the graphical calculus: ¢g-EPRL tensor, bilinear form and braiding.

Lemma 4.2. Let Vy, = @, V" be the dual to the vector space V. There exist a bijective inter-
twiner §% : Vo — V whose expression with respect to the basis {el}; , of Vo and the dual basis
{el9}) 4 of V}; is given by

0%(el) = e 0Ly, = caq "V 8y E1pa, 4.2)
where cg is a constant and €y is given by (2.14). The bilinear form By : Vo @ Vy — C
Ba(v,w) = 0% (w)(v), Yo, w € Vg, 4.3)
satisfies the invariance property Bo (v, T (a)w) = Ba (7 (S(a))v,w) for all a € D(U,(su(2))).

4.1.2 Graphical calculus

The elements of the graphical calculus are vertices, arcs and crossings. The diagram corre-
sponding to a g-EPRL tensor W1%l is a vertex, to which is attached a basis element of F,(SL(2,C)g),
with n lines coloured by elements of the n-tuple [o]. Arrows do not appear on the diagrams and
the convention is that all lines are pointing away from the vertex. The tensor product of p EPRL
tensors P14 @ ... @ W%! is given by drawing the p vertices on a horizontal line, the order in the
tensor product being read from left to right.

The second ingredient for the graphical calculus enables us to pair EPRL tensors. The pairing
is defined in terms of the invariant bilinear form B : Vy, ® Vi — C given above. In the diagrams,
this bilinear form is depicted by an arc® with which one can connect two different lines coloured
by the same representation.

When more than one pair of edges are paired in a diagram, crossings can occur. To each
crossing where the left-hand leg goes under the right-hand leg, we associate the third ingredient of
the graphical calculus; a braiding cq, ¢, -

An important class of diagrams are closed diagrams. A closed diagram I" with p vertices
corresponds to an element ¢ (I") of End (C) ® F,(SL(2,C))®? = F,(SL(2,C))“P. The evaluation
ev(T') of a closed diagram I" is then defined via the Haar integral in the spirit of Feynman diagram
evaluations.

The naive evaluation of a closed diagram with p vertices would correspond to setting ev(I") =
h®?(¢(T')). However, such an evaluation is generically divergent and needs to be regularised. This
is done in analogy to the classical case [18, 19] by removing the Haar measure or integration at one
(randomly chosen) vertex as in [9]. The invariance of the Haar integral implies that the result is
independent of the chosen vertex. Moreover, it implies that (h*7~! @ id)(¢(T")) = ev(I')1, where
ev(I') is a complex number or infinity and 1 is the unit in F,(SL(2,C)). The evaluation of I is

3Note that in contrast to the diagrams for ribbon categories, the upward and downward arcs have no direct meaning.
The arcs are free to go up and down between the vertices.



Quantum deformation of Lorentzian spin foam models Winston J. Fairbairn

Figure 2: Diagram I's

therefore obtained by applying p — 1 copies of the Haar measure to ®(I") and then applying the
counit of F,;(SL(2,C)) to the resulting expression

ev(l) =& (WP ' ®id)(¢(I))).
If the result is finite, the diagram I is said to be integrable.

4.2 Amplitude for the 4-simplexes

We are now ready to define the amplitude for the four-simplexes. Let M be an oriented, closed
triangulated 4-manifold. We will note A(y), A(3) and Ay the sets of triangles, tetrahedra and 4-
simplexes of M respectively.

A colouring of M is a map & : A;p) — Irrep U, (s[(2,C)r); A — aa, that associates an EPRL
representation to each oriented triangle A of M. Given a coloured triangulated manifold M, we
define, for every oriented tetrahedron 7 € A3), the state space

H, = <® VaA> ® F,(SL(2,C)R).

Aeot
A state is an assignment of a g-EPRL tensor ¥; € H; to each tetrahedron # of M.
The amplitude for a 4-simplex & in A4) is then a linear map
As: QR H —C;  As(¥1®...0W¥s) =ev(Ts), (4.4)
tedo

where the diagram I's is depicted in figure 2 and we have labeled the tetrahedra of do with labels
from one to five.

In [10], we proved the following theorem which ensures that the evaluation of the I's diagram
is well-defined, i. e. that the four-simplex amplitude is finite.

Theorem 4.3. The four-simplex amplitude ev(I's) converges absolutely.

5. The quantum spin foam model

Using the notations and definitions from the previous section, we can now define the partition
function for the quantum EPRL model associated to a closed, oriented triangulated manifold M:

ZM,y,q) =Y []2Kka+1]4] Ao (0, ¥s (). (5.1

KJ A o

10
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Here, ¢ € R is the deformation parameter, the sum ranges over all K in .Z and over the elements
of a basis of U,(su(2))-intertwiners (Ax) ;) entering the definition of the EPRL tensors for each
tetrahedron ¢ of M. The state W for the 4-simplex o is given by W = Q95 ¥, Where ¥, is the
state associated to the tetrahedron ¢. The products run over all the triangles A and 4-simplexes ¢ of
M.

The weight associated to the triangles is fixed from gluing arguments as in the classical case
[20]. As there is only a finite number of representations in the label set .Z, the sum involves only a
finite number of terms and hence converges. Given the convergence of the EPRL intertwiners and
the 4-simplex amplitude for fixed labels K, the convergence of the Lorentzian g-EPRL partition
function is therefore immediate for all closed triangulated manifolds M.

6. Discussion

We conclude with a remark on the physical interpretation of the quantum deformation pre-
sented in this paper. The model that we have considered is a g-deformed version of the EPRL spin
foam model. As the latter is a model for quantum gravity with vanishing cosmological constant, it
is plausible that the g-deformed model should describe some aspects of four-dimensional quantum
gravity in Lorentzian de-Sitter space. Its deformation parameter should then be related to a positive
cosmological constant A via

q = exp(~1,/12),
where [/, is the Planck length and [, = 1/ V/A the cosmological length.

Interestingly, this relation leads to a bound on the area spectrum. The area spectrum for a
triangle A of M that is coloured by a representation ¢¢(K) is given by

A) =8l y\/K(K+1).

With the relation between the deformation parameter g and the cosmological constant given above,
one obtains a bound on this spectrum in terms of the cosmological length /. in the regime where
Ip <<l

A(A) < 32712 (6.1)
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