
P
o
S
(
Q
G
Q
G
S
 
2
0
1
1
)
0
2
4

U(N) and holomorphic methods for LQG and Spin
Foams

Enrique F. Borja
Institute for Theoretical Physics III, University of Erlangen-Nürnberg,
Staudtstraße 7, D-91058 Erlangen (Germany).
Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC.
Facultad de Física, Universidad de Valencia, Burjassot-46100, Valencia (Spain).
E-mail: efborja@theorie3.physik.uni-erlangen.de

Jacobo Diaz-Polo
Department of Physics and Astronomy, Louisiana State University
Baton Rouge, LA, 70803-4001.
E-mail: jacobo@phys.lsu.edu

Iñaki Garay
Institute for Theoretical Physics III, University of Erlangen-Nürnberg,
Staudtstraße 7, D-91058 Erlangen (Germany).
E-mail: igael@theorie3.physik.uni-erlangen.de

The U(N) framework and the spinor representation for loop quantum gravity are two
new points of view that can help us deal with the most fundamental problems of the
theory. Here, we review the detailed construction of the U(N) framework explaining
how one can endow the Hilbert space of N-leg intertwiners with a Fock structure. We
then give a description of the classical phase space corresponding to this system in terms
of the spinors, and we will study its quantization using holomorphic techniques. We take
special care in constructing the usual holonomy operators of LQG in terms of spinors,
and in the description of the Hilbert space of LQG with the different polarization given
by these spinors.

3rd Quantum Gravity and Quantum Geometry School
February 28 - March 13, 2011
Zakopane, Poland

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:efborja@theorie3.physik.uni-erlangen.de
mailto:jacobo@phys.lsu.edu
mailto:igael@theorie3.physik.uni-erlangen.de


P
o
S
(
Q
G
Q
G
S
 
2
0
1
1
)
0
2
4

U(N) and holomorphic methods for LQG and Spin Foams

1. Introduction

Over the last few years, a new set of tools for approaching some of the fundamental
open problems in loop quantum gravity (LQG) has been developed. Since the identifica-
tion in [1, 2] of a characteristic U(N) symmetry in the Hilbert space of SU(2) intertwiners,
a new framework has emerged, producing some exciting results, but most importantly,
opening a brand new avenue to look at fundamental issues like the dynamics of the the-
ory or the identification of symmetries at a purely quantum level. The U(N) framework
can also be derived as the holomorphic quantization of a classical spinor system, provid-
ing, among other interesting insights, a novel way to study the semiclassical limit of the
theory. In this article we present a short but self-contained pedagogical introduction to
the core formulation and techniques that constitute the new U(N) framework for loop
quantum gravity, including the related spinor formulation and holomorphic quantization
methods.

The organization of the paper is as follows. In section 2 we present the so-called U(N)

framework for loop quantum gravity. We introduce a spinorial representation in section
3 and proceed to its quantization using holomorphic methods in section 4, providing a
full analogy with the U(N) framework. In section 5 we discuss an action principle for the
classical spinor system. Finally, in section 6 we present a short review of the “state of the
art” on the holomorphic methods based on the work by Livine and Tambornino [3], giving
strong formal consistency to the techniques presented here. We conclude summarizing
the main features of the presented framework.

2. The U(N) framework for intertwiners

Our starting point to introduce the U(N) framework will be to study the structure of
the Hilbert space of SU(2) intertwiners, the building blocks of spin network states. This
is, given a set of SU(2) representations (spins), the space of invariant tensors

Hj1,j2,... ≡ Inv[V j1 ⊗V j2 ⊗ . . .] ,

where V ji are the irreducible representation spaces associated to the spins j1, j2, . . .. In loop
quantum gravity these intertwiners can be dually regarded as a region of space with a
(topologically) spherical boundary punctured by the intertwiner’s legs [2].

In particular, let us consider the space of N-valent intertwiners and fixed total spin
J = ∑i ji (that can be thought of as the total area of the surface enclosing the intertwiner):

H(J)
N ≡

⊕

∑i ji=J

Hj1,..,jN .

As shown in [2], intertwiner spaces H(J)
N carry irreducible representations of U(N)

and the full space HN can be endowed with a Fock space structure with creation and
annihilation operators compatible with the U(N) action [4]. This structure is at the foun-
dation of the U(N) techniques, and we will review its basic construction in what follows.
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U(N) and holomorphic methods for LQG and Spin Foams

We start by introducing the well-known Schwinger representation of the su(2) alge-
bra. This representation describes the generators of su(2) in terms of a pair of uncoupled
harmonic oscillators. In our case, we introduce 2N oscillators –a pair for each leg of the
intertwiner– with creation operators ai,bi, i running from 1 to N:

[ai, a†
j ] = [bi,b†

j ] = δij , [ai,bj] = 0.

The local su(2) generators at each leg of the intertwiner can be expressed then as
quadratic operators:

Jz
i =

1
2
(a†

i ai − b†
i bi), J+i = a†

i bi, J−i = aib†
i , Ei = (a†

i ai + b†
i bi). (2.1)

As expected, the Ji’s constructed this way satisfy the standard commutation relations of
the su(2) algebra while the total energy Ei commutes with all the generators:

[Jz
i , J±i ] = ±J±i , [J+i , J−i ] = 2Jz

i , [Ei,~Ji] = 0.

The operator Ei is the total energy carried by the pair of oscillators ai,bi and its eigen-
value is twice the spin 2ji of the corresponding SU(2) representation. We can express the
standard SU(2) Casimir operator in terms of this energy as:

~J2
i =

Ei

2

(
Ei

2
+ 1
)

=
Ei

4
(Ei + 2) .

As it is well-known, in the context of LQG the spin ji is related to the area associated
with the i-th leg of the intertwiner. In this particular framework, the most natural choice
for the regularization of the area operator is such that the spectrum is given directly by
the operator Ei/2 (the spin ji); while in principle there is no fundamental reason for this
choice to be preferred over the ohter options, this area spectrum favors the physical inter-
pretation of the symmetries we study here1, so we will consider this case in the present
paper.

The key observation now is that one can use these harmonic oscillators to construct
operators acting on the Hilbert space of intertwiners, i.e., operators that are invariant
under global SU(2) transformations generated by ~J ≡ ∑i~Ji. These constitute the starting
point of the U(N) formalism, and they are quadratic invariant operators acting on pairs
of (possibly equal) legs i, j [1, 2]:

Eij = a†
i aj + b†

i bj, E†
ij = Eji,

Fij = (aibj − ajbi), Fji = −Fij.

1With this choice of area spectrum, the U(N) symmetry generated by the Eij operators can be interpreted
as the group of area-preserving diffeomorphisms on a discretized sphere.
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U(N) and holomorphic methods for LQG and Spin Foams

The operators E, F, F† form a closed algebra2:

[Eij, Ekl ] = δjkEil − δilEkj, (2.2)

[Eij, Fkl ] = δil Fjk − δikFjl , [Eij, F†
kl ] = δjkF†

il − δjl F†
ik,

[Fij, F†
kl ] = δikEl j − δilEkj − δjkEli + δjlEki + 2(δikδjl − δilδjk),

[Fij, Fkl ] = 0, [F†
ij , F†

kl ] = 0.

We can see that commutators of Eij operators have the structure of a u(N)-algebra
(which motivates the name of the U(N) framework). The diagonal operators are precisely
the operators giving the energy on each leg, Eii = Ei. Then the value of the total energy
E ≡ ∑i Ei gives twice the sum of all spins 2×∑i ji, i.e. twice the total area.

The Eij-operators change the energy/area carried by each leg, while still conserving
the total energy, while the operators Fij (resp. F†

ij) decrease (resp. increase) the total area E
by 2:

[E, Eij] = 0, [E, Fij] = −2Fij, [E, F†
ij ] = +2F†

ij .

This suggests that we can decompose the Hilbert space of N-valent intertwiners into sub-
spaces of constant area:

HN =
⊕

{ji}
Inv

[
⊗N

i=1V ji
]
=
⊕

J∈N

⊕

∑i ji=J

Inv
[
⊗N

i=1V ji
]
=
⊕

J

H(J)
N ,

where as before V ji denote the Hilbert space of the irreducible SU(2)-representation of
spin ji, spanned by the states of the oscillators ai,bi with fixed total energy Ei = 2ji.

In [2], the structure of these subspaces H(J)
N of N-valent intertwiners with fixed total

area J was studied, identifying the irreducible representations of U(N), generated by the
Eij operators, that they naturally carry. Then the operators Eij allow to navigate from

state to state within each subspace H(J)
N . On the other hand, operators Fij, F†

ij allow to

go from one subspace H(J)
N to the next H(J±1)

N , thus endowing the full space of N-valent
intertwiners HN with a Fock space structure, with creation operators F†

ij and annihilation
operators Fij.

Finally, it was also found that the whole set of operators Eij, Fij, F†
ij satisfy the following

quadratic constraints [5]:

∀i, j, ∑
k

EikEkj = Eij

(
E
2
+ N − 2

)
, (2.3)

∑
k

F†
ikEjk = F†

ij
E
2

, ∑
k

EjkF†
ik = F†

ij

(
E
2
+ N − 1

)
, (2.4)

∑
k

EkjFik = Fij

(
E
2
− 1
)

, ∑
k

FikEkj = Fij

(
E
2
+ N − 2

)
, (2.5)

∑
k

F†
ikFkj = Eij

(
E
2
+ 1
)

, ∑
k

FkjF†
ik = (Eij + 2δij)

(
E
2
+ N − 1

)
. (2.6)

2This is in contrast with the standard SU(2) bilinear scalar-product operators of the kind (
−→
J i ·
−→
J j),

which do not satisfy a closed algebra.
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U(N) and holomorphic methods for LQG and Spin Foams

As noticed in [5] and further extended in [6], these relations have the structure of con-
straints on the multiplication of two matrices Eij and Fij. This is one of the main hints that
will lead to the derivation of the U(N) framework as a quantization of a classical matrix
model, as we are going to see in following sections.

3. Classical spinor formalism

A very interesting feature of the new U(N)-framework is that it can be re-derived
in terms of spinors in a rather straightforward way [3, 6]. The operators in the U(N)-
formalism can be shown to arise as the quantization of classical spinor matrices. This
connection can help understand the geometrical meaning of spin network states in LQG,
as well as provide hints on the semi-classical limit of the full theory. There is also a connec-
tion with the so-called “twisted geometries” [7, 8] that express the classical phase space
of loop quantum gravity on a given graph as a classical spinor model, unravelling the
relation between spin networks and discrete geometry. This could provide new ideas on
the study of spin network dynamics through the spinfoam approach.

We are going to present the basic concepts that lead to recast the U(N)-framework in
terms of spinors, showing how this is related to standard SU(2) intertwiners in LQG. Let
us start by introducing the spinor notation that we will use [3, 4, 6, 8, 9]. Let z be a spinor

|z〉 =
(

z0

z1

)
, 〈z| =

(
z̄0 z̄1

)
.

We can associate it to a geometrical 3-vector ~X(z), defined from the projection of the 2× 2
matrix |z〉〈z| onto Pauli matrices σa (taken Hermitian and normalized so that (σa)2 = I):

|z〉〈z| = 1
2

(
〈z|z〉I + ~X(z) ·~σ

)
. (3.1)

It is straightforward to compute the norm and the components of this vector in terms of
the spinors:

|~X(z)| = 〈z|z〉 = |z0|2 + |z1|2, Xz = |z0|2 − |z1|2, Xx = 2< (z̄0z1), Xy = 2= (z̄0z1).

With this, the spinor z is entirely determined by the corresponding 3-vector ~X(z) up to a
global phase. We can give the reverse map:

z0 = eiφ

√
|~X|+ Xz

2
, z1 = ei(φ−θ)

√
|~X| − Xz

2
, tanθ =

Xy

Xx ,

where eiφ is an arbitrary phase.
Let us also introduce now the duality map ς acting on spinors:

ς

(
z0

z1

)
=

(
−z̄1

z̄0

)
, ς2 = −1.

5
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U(N) and holomorphic methods for LQG and Spin Foams

This is an anti-unitary map, 〈ςz|ςw〉 = 〈w|z〉 = 〈z|w〉, and we will write the related state
as

|z] ≡ ς|z〉, [z|w] = 〈z|w〉.
This map ς maps the 3-vector ~X(z) onto its opposite:

|z][z| = 1
2

(
〈z|z〉I− ~X(z) ·~σ

)
.

In order now to describe N-valent intertwiners, we consider N spinors zi and their
corresponding 3-vectors ~X(zi). A standard requirement is to ask the N spinors to satisfy
a closure condition, i.e., that the sum of the corresponding 3-vectors vanish, ∑i ~X(zi) = 0.
Recalling the definition of ~X(zi), this closure condition can be expressed in terms of 2× 2
matrices:

∑
i
|zi〉〈zi| = A(z)I, with A(z) ≡ 1

2 ∑
i
〈zi|zi〉 =

1
2 ∑

i
|~X(zi)|. (3.2)

This further translates into quadratic constraints on the spinors:

∑
i

z0
i z̄1

i = 0, ∑
i

∣∣z0
i
∣∣2 = ∑

i

∣∣∣z1
i

∣∣∣
2
= A(z). (3.3)

In simple terms, this means that the two components of the spinors, z0
i and z1

i , form or-
thogonal N-vectors of equal norm. In order to simplify the notation, let us introduce the
matrix elements of the 2× 2 matrix ∑i |zi〉〈zi| :

Cab = ∑
i

za
i z̄b

i .

Then the closure constraints are written very simply:

C00 − C11 = 0, C01 = C10 = 0.

4. (Anti-)holomorphic quantization

Let us construct the classical phase space in terms of spinors. We will then proceed to
its quantization, following [3, 6].

We start by postulating simple Poisson bracket relations for a set of N spinors:

{za
i , z̄b

j } ≡ i δabδij, (4.1)

with all other brackets vanishing, {za
i ,zb

j }= {z̄a
i , z̄b

j }= 0. They exactly reproduce the Pois-
son bracket structure of 2N uncoupled harmonic oscillators.

Our expectation now is to have the closure constraints generating global SU(2) trans-
formations on the N spinors. Let us then compute the Poisson brackets between compo-
nents of the C-constraints :

{C00 − C11,C01} =−2iC01, {C00 − C11,C10} =+2iC10, {C10,C01} = i(C00 − C11), (4.2)

{TrC,C00 − C11} = {TrC,C01} = {TrC,C10} = 0.

6
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U(N) and holomorphic methods for LQG and Spin Foams

These four components Cab do indeed form a closed u(2) algebra, with the three closure
conditions C00 − C11, C01 and C10 being generators of a su(2) subalgebra. We will denote
as ~C these three su(2)-generators, with Cz ≡ C00−C11 and C+ = C10 and C− = C01. One can
already guess that these three closure conditions ~C will be related to the SU(2) generators
~J at the quantum level, while the operator TrC will correspond to the total energy/area E.

Following the aim to relate the U(N) framework to a classical matrix model, we in-
troduce matrices M and Q, in correspondence to the operators E and F. These matrices
should respectively satisfy the hermiticity M = M† and antisymmetry tQ = −Q condi-
tions, as well as the classical analogs to the quadratic constraints (2.3–2.6). Up to a global
phase, the general form of these matrices is given by (see [6] for details):

M = λU∆U−1, ∆ =




1
1

0N−2


 ,

Q = λU∆ε
tU, ∆ε =




1
−1

0N−2


 ,

where U is a unitary matrix U†U = I. Then, if we define spinors such that

zi ≡
(

ūi1
√

λ

ūi2
√

λ

)
, λ ≡ TrM/2, (4.3)

uij being the elements of the unitary matrix U, we can write the components of M and Q
as

Mij = 〈zi|zj〉 = 〈zj|zi〉, Qij = 〈zj|zi] = [zi|zj〉 = −[zj|zi〉. (4.4)

One can see that, in this setting, the unitarity condition on the matrices U is equivalent to
the closure conditions on the spinors.

If we now compute the Poisson brackets of the Mij and Qij matrix elements:

{Mij, Mkl} = i(δkj Mil − δil Mkj),

{Mij, Qkl} = i(δjkQil − δjlQik),

{Qij, Qkl} = 0,

{Q̄ij, Qkl} = i(δik Ml j + δjl Mki − δjk Mli − δil Mkj),

we observe that they reproduce the expected commutators (2.2) up to the i-factor. We
further check that these variables commute with the closure constraints generating the
SU(2) transformations:

{~C, Mij} = {~C, Qij} = 0. (4.5)

Finally, one can also compute their commutator with TrC:

{TrC, Mij} = 0, {TrC, Qij} = {∑
k

Mkk, Qij} = +2i Qij,

7
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U(N) and holomorphic methods for LQG and Spin Foams

which confirms that the matrix M is invariant under the full U(2) subgroup and that TrC
acts as a dilatation operator on the Q variables, or reversely that the Qij acts as creation
operators for the total energy/area variable TrC.

We have already characterized the classical phase space associated to spinors zi and
matrices Mij, Qij. Let us now proceed to its quantization. In order to do so, we will con-

sider Hilbert spacesH(Q)
J of homogeneous polynomials in Qij of degree J:

H(Q)
J ≡ {P ∈ P[Qij] | P(ρQij) = ρJ P(Qij), ∀ρ ∈ C} . (4.6)

These are completely anti-holomorphic polynomials in zi (holomorphic in z̄i) and of order
2J.

One can show that these Hilbert spacesH(Q)
J are isomorphic to the Hilbert spaceH(J)

N
of N-valent intertwiners with fixed total area J. To this purpose, we will construct the
explicit representation of the operators resulting from the quantization of Mij and Qij on

H(Q)
J and show that they match the action of the U(N) operators Eij and F†

ij described ear-
lier. We choose to quantize z̄i as multiplication operators while promoting zi to derivative
operators:

̂̄za
i ≡ z̄a

i × , ẑa
i ≡

∂

∂z̄a
i

, (4.7)

which satisfy the commutator [ẑ, ˆ̄z] = 1 as expected for the quantization of the classical
bracket {z, z̄} = i. We can then quantize the matrix elements Mij and Qij and the closure
constraints following this correspondence:

M̂ij = z̄0
i

∂

∂z̄0
j
+ z̄1

i
∂

∂z̄1
j

,

Q̂ij = z̄0
i z̄1

j − z̄1
i z̄0

j = Qij ,

̂̄Qij =
∂2

∂z̄0
i ∂z̄1

j
− ∂2

∂z̄1
i ∂z̄0

j
,

Ĉab = ∑
k

z̄b
k

∂

∂z̄a
k
.

It is straightforward to check that the Ĉab and the M̂ij respectively form a u(2) and a u(N)

Lie algebra, as expected:

[Ĉab, Ĉcd] = δadĈcb − δcbĈad, [M̂ij, M̂kl ] = δkj M̂il − δil M̂kj, [Ĉab, M̂ij] = 0. (4.8)

which amounts to multiply the Poisson bracket 4.2 and 4.5 by −i.
Let us analyze the structure resulting from this quantization. First, by checking the

action of the closure constraints on functions of the variables Qij :

~̂CQij = 0, (̂TrC)Qij = 2Qij,

∀P ∈ H(Q)
J = PJ [Qij], ~̂C P(Qij) = 0, (̂TrC)P(Qij) = 2J P(Qij),

8
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U(N) and holomorphic methods for LQG and Spin Foams

we see that wave functions P ∈ H(Q)
J are SU(2)-invariant (vanish under the closure con-

straints) and are eigenvectors of the TrC-operator with eigenvalue 2J.
Second, operators M̂ and (̂TrC) acting on the Hilbert space H(Q)

J (i.e., on SU(2)-
invariant functions vanishing under the closure constraints) satisfy the same quadratic
constraints as the u(N)-generators Eij:

(̂TrC) = ∑
k

M̂kk, ∑
k

M̂ik M̂kj = M̂ij

(
(̂TrC)

2
+ N − 2

)
. (4.9)

This allows us to get the value of the (quadratic) U(N)-Casimir operator on the space
H(Q)

J :

∑
ik

M̂ik M̂ki = (̂TrC)
(
(̂TrC)

2
+ N − 2

)
= 2J(J + N − 2).

Therefore, we can conclude that the quantization of our spinors and M-variables exactly
matches the u(N)-structure on the intertwiner space (with the exact same ordering):

H(Q)
J ∼H(J)

N , M̂ij = Eij, (̂TrC) = E. (4.10)

In the third place, turning to the Q̂ij-operators, it is straightforward to check that they
have the exact same action that the F†

ij operators, they satisfy the same Lie algebra commu-
tators (2.2) and the same quadratic constraints (2.4-2.6). Clearly, the simple multiplicative
action of an operator Q̂ij sends a polynomial in PJ [Qij] to a polynomial in PJ+1[Qij]. Re-

ciprocally, the derivative action of ̂̄Qij decreases the degree of the polynomials and maps
PJ+1[Qij] onto PJ [Qij].

Finally, let us consider the scalar product on the space of polynomials P[Qij]. There
seems to be a unique measure (up to a global factor) compatible with the correct Hermitic-
ity relations for M̂ij and Q̂ij, ̂̄Qij [6]. It is given by:

∀φ,ψ ∈ P[Qij], 〈φ|ψ〉 ≡
∫

∏
i

d4zi e−∑i〈zi |zi〉 φ(Qij)ψ(Qij) . (4.11)

Then it is easy to check that we have M̂†
ij = M̂ji and Q̂†

ij =
̂̄Qij as desired.

The spaces of homogeneous polynomials PJ [Qij] are orthogonal with respect to this

scalar product. The quickest way to realize that is to consider the operator (̂TrC), which is
Hermitian with respect to this scalar product and takes different values on spaces PJ [Qij]

for different values of J. Thus these spaces PJ [Qij] are orthogonal to each other.
This concludes the quantization procedure, showing that the intertwiner space for N

legs and fixed total area J = ∑i ji can be constructed as the space of homogeneous poly-
nomials in Qij of degree J. We obtain a description of intertwiners as anti-holomorphic
wave-functions of spinors zi constrained by the closure conditions3.

3An alternative construction [6], which can be considered as “dual” to the representation defined above,
can also be carried out based on coherent states for the oscillators. This approach yields, upon quantization,
the framework of the U(N) coherent intertwiner states introduced in [4] and further developed in [9].

9
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5. Classical action and effective dynamics

Once we have constructed the Hilbert space of a single intertwiner, and in order to
make contact with the standard spin network formulation of loop quantum gravity, we
want to apply this framework to graphs. Therefore, we will have several intertwiners
glued together according to the corresponding graph structure. We will then write an
action principle in terms of spinors, compatible with the Poisson bracket structure (4.1). In
order to do so, we need to take into account the closure constraints, but also the matching
conditions coming from the gluing of intertwiners.

The key element to elaborate the connection between the spinor formalism and the
standard formulation of LQG is the reconstruction of the SU(2) group element ge (the
holonomy) associated to an edge in terms of the spinors [8]. Let us consider an edge
e with a spinor at each of its end-vertices zs(e),e and zt(e),e. There exists a unique SU(2)
group element mapping one onto the other. More precisely, the requirement that

ge
|zt(e),e〉√
〈zt(e),e|zt(e),e〉

=
|zs(e),e]√
〈zs(e),e|zs(e),e〉

, ge
|zt(e),e]√
〈zt(e),e|zt(e),e〉

= −
|zs(e),e〉√
〈zs(e),e|zs(e),e〉

, ge ∈ SU(2),

i.e., that ge map the (normalized) source spinor to the dual of the target spinor4, uniquely
fixes the value of ge to:

ge ≡
|zs(e),e]〈zt(e),e| − |zs(e),e〉[zt(e),e|√
〈zs(e),e|zs(e),e〉〈zt(e),e|zt(e),e〉

. (5.1)

The group elements ge(zs(e),e,zt(e),e) ∈ SU(2) commute with the matching conditions,
ensuring that the energy of the oscillators on the edge e is the same at both vertices s(e)
and t(e). However, they are obviously not invariant under SU(2) transformations. As we
know from loop quantum gravity, in order to construct SU(2)-invariant observables, we
need to consider the trace of holonomies around closed loops, i.e., the oriented product of
group elements ge along closed loops L on the graph:

GL ≡
−→
∏
e∈L

ge.

For the sake of simplicity, let us assume that all the edges of the loop are oriented the same
way, so we can number the edges e1, e2, ..en with v1 = t(en) = s(e1), v2 = t(e1) = s(e2), etc
(see figure 1). Then, we can explicitly write the holonomy GL in terms of the spinors:

Tr GL = Trg(e1) . . . g(en) = Tr
∏i
(
|zvi ,ei ]〈zvi+1,ei | − |zvi ,ei〉[zvi+1,ei |

)

∏i

√
〈zvi ,ei |zvi ,ei〉〈zvi+1,ei |zvi+1,ei〉

.

4Mapping the source spinor to the dual of the target spinor responds to the geometric requirement that
they both describe faces of elementary polyhedra with outward pointing area vectors, given the opposite
orientation of the source and target local reference frames.
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FIG. 2: The loop L = {e1, e2, .., en} on the graph Γ.

where actually only one of the four terms is selected for each set of {ri}. To simplify the notations, we call M{ri}
L

each term for a fixed set {ri}:

M{ri}
L ≡

∏

i

ri−1riQ̄
i
i,i−1 + (1 − ri−1)riM

i
i−1,i + ri−1(1− ri)M

i
i,i−1 + (1− ri−1)(1 − ri)Q

i
i,i−1 (75)

=
∏

i

〈ςri−1zvi,ei−1 | ς1−rizvi,ei〉.

Each of these quantities are still SU(2)-invariant observables and are also invariant under the U(1)E transformations
generated by the matching conditions. So there are genuine observables on the space of spin networks.

After having expressed the holonomy observable in terms of the spinors and M,Q, Q̄ matrices at the classical level,
our purpose is to promote it to a quantum operator and express the holonomy operator acting on spin network states
in terms of the U(N)-operators E,F, F †. In order to achieve this, looking at the vertex v and the pair of edges e, f ,
we simply have to quantize the matrix elements as:

Mv
ef → Ev

ef , (76)

Qv
ef → F v

ef
†,

Q̄v
ef → F v

ef .

Therefore the quantization of the holonomy observable is obvious apart from the factors at the denominator. First,
we notice that the norm 〈zv,e|zv,e〉 for each edge e attached to v is simply the matrix element Mv

ee giving the total
energy on the leg e for the intertwiner living at v. The natural quantization of these terms is thus Ev

ee. However, we
need to take the inverse square-root of these operators and they do have a 0 eigenvalue. We must also face possible
ordering ambiguities because all the E and F and F † operators do not commute. In order to decide which ordering
is right, we draw inspiration from the direct calculation of the holonomy operator for the 2-vertex graph done in [7]
and conjecture the following expression:

Conjecture 2. We can express the holonomy operator around a closed loop L (assuming that all the edges are oriented
the same way) acting on spin network states as:

T̂r GL =
∑

ri=0,1

(−1)
∑

i riE M̂{ri}
L E , (77)

with the operators

E ≡ 1∏
i

√
Eei + 1

and

M̂{ri}
L ≡

∏

i

ri−1riF
i
i,i−1 + (1− ri−1)riE

i
i−1,i + ri−1(1− ri)E

i
i,i−1 + (1− ri−1)(1 − ri)F

i
i,i−1

† .

Figure 1: The loop L = {e1, e2, .., en} on the graph Γ.

Or, if instead of factorizing this expression by edges, we group the terms by vertices,
we obtain:

Tr GL = ∑
ri=0,1

(−1)∑i ri
∏i〈ςri−1 zvi ,ei−1 |ς1−ri zvi ,ei〉

∏i

√
〈zvi ,ei−1 |zvi ,ei−1〉〈zvi ,ei |zvi ,ei〉

,

where the ςri records whether we have the term |zvi ,ei ]〈zvi+1,ei | or |zvi ,ei〉[zvi+1,ei | on the edge
ei, with ri = 0,1 (recall that ς is the anti-unitary map sending a spinor |z〉 to each dual |z]).

Depending on the specific values of the ri parameters, the scalar products at the nu-
merators are given by the matrix elements of Mi or Qi at the vertex i. Since these matrices
are by definition SU(2)-invariant (they commute with the closure conditions), this is a con-
sistency check, a posteriori, that the holonomy Tr GL correctly provides a SU(2)-invariant
observable.

Taking into account the various possibilities for the signs (−1)ri , we can write the
holonomy

Tr GL = ∑
ri=0,1

(−1)∑i ri
M{ri}
L

∏i

√
〈zvi ,ei |zvi+1,ei〉

, (5.2)

where the objectsM{ri}
L correspond to each term with a fixed set {ri}:

M{ri}
L ≡∏

i
ri−1riQ̄i

i,i−1 + (1− ri−1)ri Mi
i−1,i + ri−1(1− ri)Mi

i,i−1 + (1− ri−1)(1− ri)Qi
i,i−1

= ∏
i
〈ςri−1 zvi ,ei−1 |ς1−ri zvi ,ei〉.

Using these ingredients, we are going to write an action principle for this formalism.
For this, we have to keep in mind the graph structure, with intertwiners at the vertices,
glued together along edges. The phase space therefore consists of spinors zv,e (where e
are edges attached to the vertex v, i.e., such that v = s(e) or v = t(e)) which we constrain

11



P
o
S
(
Q
G
Q
G
S
 
2
0
1
1
)
0
2
4

U(N) and holomorphic methods for LQG and Spin Foams

by the closure conditions ~Cv at each vertex v and the matching conditions on each edge e.
The corresponding action thus reads:

SΓ
0 [zv,e] =

∫
dt ∑

v
∑

e|v∈∂e
(−i〈zv,e|∂tzv,e〉+ 〈zv,e|Λv|zv,e〉)+ ∑

e
ρe

(
〈zs(e),e|zs(e),e〉−〈zt(e),e|zt(e),e〉

)
,

where the 2× 2 Lagrange multipliers Λv, satisfying Tr Λv = 0, impose the closure con-
straints and the Lagrange multipliers ρe ∈ R impose the matching conditions. All the
constraints are first class, they generate SU(2) transformations at each vertex and U(1)
transformations on each edge e.

Analogously, this system can be parameterized in terms of Nv × Nv unitary matrices
Uv and the parameters λv. The matrix elements Uv

e f refer to pairs of edges e, f attached to
the vertex v. As mentioned before, the closure constraints are automatically encoded in
the requirement of unitarity for Uv. It remains, then, to impose the matching conditions
Ms(e)

ee −Mt(e)
ee = 0 on each edge e (the matrices Mv = λv Uv∆(Uv)−1 being functions of both

λv and Uv). So in this case, the action reads:

SΓ
0 [λv,Uv] =

∫
dt ∑

v

(
−i λvTr Uv∆∂tUv† − TrΘv (UvUv† − I)

)
+ ∑

e
ρe(Ms(e)

ee −Mt(e)
ee ),

where the ρe impose the matching conditions while the Nv × Nv matrices Θv are the La-
grange multipliers for the unitarity of the matrices Uv.

This free action describes the classical kinematics of spin networks on the graph Γ.
We can now add interaction terms to this action. Such interaction terms should be built
with generalized holonomy observables M{ri}

L , thus trivially satisfying the closure and
matching conditions. A proposal for a classical action for spin networks with non-trivial
dynamics was made in [6]:

SΓ
γ
{ri}
L

= SΓ
0 +

∫
dt ∑
L,{ri}

γ
{ri}
L M

{ri}
L ,

where the γ
{ri}
L are the coupling constants giving the relative weight of each generalized

holonomy in the full Hamiltonian. This action was then applied in particular to a specific
model based on a 2-vertex graph. We refer the reader to the original reference [6] and the
more recent paper [10] for a detailed discussion on the analysis of the dynamics encoded
by this Hamiltonian and its possible physical interpretation.

6. Spinor representation and Holomorphic methods in LQG

There is an interesting twist in the utility of this spinorial framework for LQG [3].
These methods are extremely powerful in order to understand the geometrical inter-
pretation of the spin network states. The single-edge Hilbert space in LQG is given by
He := L2(SU(2),dg), i.e., the space of square integrable functions over the group SU(2).
This Hilbert space can be obtained as the quantization of a cotangent bundle over SU(2)
acting as the classical phase space (T∗SU(2)≈ SU(2)× su(2)). At this point, instead of the

12
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usual coordinatization of this classical phase space given by (g, X) –a group and a Lie al-
gebra element respectively–, a pair of C2-spinors (|z〉, |z̃〉) recovering the classical physics
in T∗SU(2) can be employed.

As we have already seen before it is possible to obtain the SU(2) group elements
associated to such a pair of spinors. We are going to review that discussion simplifying
the notation and taking a slightly different choice of mapping between the spinors and the
group element and its inverse5. We start with spinors |z〉 and |z̃〉, living at the source and
the target vertices of a given edge, then we can write the corresponding SU(2)-element
and its inverse as follows:

g(z, z̃) =
|z〉[z̃| − |z]〈z̃|
‖z‖‖z̃‖ ,

g−1(z, z̃) =
−|z̃〉[z|+ |z̃]〈z|
‖z‖‖z̃‖ .

It is straightforward to show that, under a local SU(2)-transformation h ∈ SU(2) in the
defining representation of the group, g(z, z̃) transforms as the holonomy of a SU(2)-
connection:

g(z, z̃) 7−→ h1g(z, z̃)h−1
2 .

Moreover, each spinor is mapped to R3 (up to a phase) yielding area vectors correspond-
ing (once the closure constraints are imposed) to the different faces of an elementary poly-
hedron. In this sense, the Hilbert space for a graph with E edges can be regarded as the
space of glued polyhedra covering a piecewise flat manifold (this is ensured by the im-
position of the proper matching conditions). Following this line of thought, it is easy to
show that the su(2)-elements X(z) := ~X(z) ·~σ and X̃(z̃) := ~̃X(z̃) ·~σ, associated with the
normals to the glued faces of two polyhedra, are related through the expression:

X̃ = g−1Xg.

On the other hand, we can endow the space C2×C2 with a symplectic structure given
by

{z̄i,zj} = iδj
i = { ¯̃zi, z̃j} ,

thus obtaining a proper phase space. This phase space has to be equipped with a con-
straint forcing the two spinors to have the same length (matching condition). This con-
straint is given by ‖z2‖− ‖z̃2‖ and it can be noticed that it generates U(1) transformations.
Nevertheless, the group and Lie-algebra elements are invariant under these transforma-
tions by construction. The interesting point here is that, using this symmetry, one can
arrive to the cotangent bundle of SU(2) by means of a U(1)-gauge reduction:

C2 ×C2 \ {〈z|z〉 = 0, 〈z̃|z̃〉 = 0}//U(1) ' T∗SU(2) \ {|X| = 0} ,

5In order to remain faithful to the paper by Livine and Tambornino [3], we adopt in this section the
notation and the choice of the Poisson bracket structure adopted by them. The only difference with respect
the one presented in section 4 is a sign in the Poisson bracket, thus switching from an antiholomorphic to a
holomorphic prescription.
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where // denotes a double quotient (see [3] for details). This space has indeed the correct
symplectic structure –that arises in terms of g and X– written in terms of spinors. In this
sense, given an edge of a graph, one can either assign it a pair (g, X) or a pair of spinors
(|z〉, |z̃〉). This way, the degrees of freedom are shifted from the edge to its vertices.

Once we are convinced that this correspondence between spinors and the SU(2)-
group and algebra elements works, we can also find the expression of the Haar measure
dg in terms of spinors. The result is really simple, the Haar measure being just the product
of two normalized Gaussian measures

∫

SU(2)
f (g) dg =

∫

C2×C2
f (g(z, z̃)) dµ(z)dµ(z̃),

with the test-function f (g(z, z̃)) understood as a function of spinors according to (5.1). In
order to arrive to this result one has to be careful with the redundancies introduced by
the spinors (8 degrees of freedom instead of the 3 in a group element g) which means that
one has to make use of a twisted rotation (as defined in [3]) in order to implement a SU(2)-
transformation leaving the group element invariant. Taking this into account the former
relation can be proven by computing the scalar product between two representation ma-
trices of SU(2) in terms of spinors. We refer the interested reader to the original paper for
more details (an alternative proof can be also found in [11]).

The procedure presented here provides an alternative quantization for T∗SU(2), where
the Hilbert space for an edge e, Hspin

e is obtained after an appropriate gauge-reduction,
implementing the proper matching conditions on that edge, of the Bargmann space of
holomorphic square-integrable functions on both spinors. This is, in some sense, an op-
posite way of thinking with respect to the usual picture, where the group and Lie algebra
elements are taken as the fundamental variables. Here, the spinorial variables are consid-
ered as fundamental and the group and Lie algebra elements arise as composite objects.
We can also build ladder operators in terms of spinors and derive the standard holonomy
and flux-operators of the theory.

We are considering two quantizations of the same classical phase space, resulting
from the use of two different polarizations, and we arrive at the usual LQG Hilbert space
He with the standard variables or toHspin

e in terms of spinors. The relevant question then
is, are those Hilbert spaces unitarily equivalent? The answer is in the affirmative. Indeed,
one can construct a unitary map between those Hilbert spaces

T :He→Hspin
e

employing a method based on a modification of the Segal-Bargmann transform. This
map sends SU(2) representation matrices to holomorphic functions in (|z〉, |z̃〉) and it
can be regarded as the restriction to the holomorphic part of the group element written
in terms of spinors (see [3] for details). Furthermore, this map can be straightforwardly
generalized to an arbitrary graph and can be shown to be compatible with the inductive
limit construction used to define the Hilbert space of the continuum theory. Therefore,
there is a strong formal consistency for this reformulation of LQG, which captures the
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same physics while opening new ways to tackle the open problems in the theory, such as
the lack of a well defined semiclassical limit or the geometric interpretation of the spin
networks states.

7. Conclusions

We have reviewed here the U(N) and spinorial framework for LQG. This new point
of view has become a very useful tool to deal with certain fundamental problems in LQG.
In particular, it was interesting for the study of a simple model (the 2-vertex model) with
a pair of nodes and an arbitrary number of links [5, 6, 12]. In these papers, a plausible
dynamics was proposed for this system (at the quantum and classical level) and some
striking mathematical analogies with loop quantum cosmology were explored. Also, us-
ing this framework, it was possible to study semiclassical states [4] and the simplicity
constraints [9].

Let us revisit the main points presented in this review:

• Making use of the Schwinger representation, it is possible to write SU(2) invariant
operators acting on the Hilbert space of intertwiners in LQG [1].

• A key point for the U(N) construction is that the LQG Hilbert space of intertwiners
with N-legs and fixed total area J carries an irreducible U(N) representation [2].

• One can show that the full space of N-leg intertwiners is endowed with a Fock space
structure, with annihilation and creation operators given by the operators Fij and F†

ij .

• We have presented a classical framework based on spinors whose quantization (us-
ing holomorphic methods) leads back to the U(N) framework for the Hilbert space
of intertwiners in LQG [6].

• An action principle for the spinor phase space has been described. Then, using
the relation given in [8] between spinors and SU(2) group elements, an expression
for the holonomy operators was built. Taking advantage of these SU(2) and U(1)
invariant operators, it was possible to give a generic interaction term (whose quan-
tization is direct) for this framework.

• Finally, we gave a glimpse of the formal and rigorous construction of the spinor rep-
resentation and holomorphic quantization techniques for the whole LQG kinemati-
cal Hilbert space, as it was developed by Livine and Tambornino [3]. There, it was
shown that although the choice of the spinors as fundamental variables of the the-
ory implies a different choice of polarization (and in general different polarizations
lead to inequivalent quantizations), in this case it is possible to construct explicitly a
unitary map T between the usual LQG Hilbert space and the one derived in terms
of the spinors.

Both the U(N) framework and the spinor representation are promising ways to deal
with the most important open problems within LQG, namely, the semiclassical states and
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the dynamics. They may also become useful computational tools to calculate physical
quantities within the theory, such as correlation functions. Besides, this new point of view
may be useful in the context of group field theory. The possibility of having Feynman am-
plitudes expressed as integrals over spinor variables or the study of the renormalization
properties of group field theories are interesting problems where the spinor representa-
tion can play a crucial role.

To conclude, we would like to remark that this framework certainly constitutes a
viewpoint that opens new ways of research, both in loop quantum gravity and in group
field theory and spin foams, that are worth exploring.
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