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1. Introduction

1.1 Our goal

A successful quantization of the gravitational field does not complete the standard model of
fundamental interactions. All the standard matter fields need to be quantized in a compatible way.
In particular, the standard Fock space quantization is not available. In Loop Quantum Gravity [1, 2,
3, 4] a new diffeomorphism invariant framework for quantum matter field operators was introduced.
In particular, the scalar field is quantized according to the polymer quantization [5, 6, 7, 8, 9]. On
the other hand, more recent quantum models of matter interacting with the quantum geometry of
LQG seem not to need any specific quantization of a scalar field itself [10, 11, 12, 13, 14]. For
example, when the scalar constraint of General Relativity is solved classically, it swallows one
scalar field which effectively becomes a parameter labeling the observables. Therefore, this scalar
field is treated in a different way, than other fields. Another insight comes from the Loop Quantum
Cosmology. Within that framework, whereas the homogeneous gravitational degrees of freedom
are polymer quantized, the homogeneous scalar field is quantized in a standard Quantum Mechanics
fashion. Hence, the framework is inconsistent in the way the scalar field is quantized as opposed to
the gravitational field. A third example is the full LQG model of the massless scalar field coupled
to gravity [13]. The final formulation of the model is exact and precise, the Hilbert space and the
quantum physical hamiltonian are clearly defined modulo the issue of the self-adjoint extensions
which is not addressed. However, the derivation that leads to that result assumes the existence of a
suitable quantization of the scalar which is not used explicitly.

The goal of our current work is to show, that the polymer quantization of matter fields can be
used for coupling them with LQG. We demonstrate it on two known examples of massless scalar
field coupled to gravity: (i) a warming up example is the homogeneous isotropic model of Loop
Quantum Cosmology [15, 16], and (ii) the main example is the case with all the local degrees of
freedom of the full Loop Quantum Gravity [13].

1.2 The Polymer quantization

We recall here the Polymer quantization. Consider an n-dimensional real manifold Σ (a 3D
Cauchy surface in the case of GR), a real valued scalar field ϕ : Σ→ R, the canonically conjugate
momentum π , and the Poisson bracket

{ϕ(x),π(y)} = δ (x,y), {ϕ(x),ϕ(y)} = 0 = {π(x),π(y)}. (1.1)

Notice, that π is a density of weight 1, that is, upon a change of coordinates (xa) 7→ (x′a) it trans-
forms as a measure, that is

π(x)dnx = π(x′)dnx′. (1.2)

A Polymer variable representing π is defined for every open, finite U ⊂ Σ,

π(V ) =
∫

V
dnxπ(x). (1.3)

A Polymer variable Up representing ϕ is assigned to every function p : Σ→ R

x 7→ px
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of a finite support,
Up(ϕ) = ei∑x∈Σ pxϕ(x). (1.4)

In particular
Up=0(ϕ) = 1. (1.5)

Notice, that
supp p = {x1, ...,xn}, Up(ϕ) = ei(px1 ϕ(x1)+...+pxn ϕ(xn)) (1.6)

The Poisson bracket between the Polymer variables is

{Uπ ,π(V )} = i

(
∑
x∈V

px

)
Up, {Up,Up′} = 0 = {π(V ),π(V ′)}. (1.7)

The Polymer quantization consists in using the following vector space

{a1Up1 + ... +akUpk : aI ∈ C,k ∈ N} (1.8)

endowed with the following Hilbert product

( Up |Up′ ) = δp,p′ , (1.9)

where the Kronecker delta takes values 0 or 1. That is we introduce the Hilbert space

H := {a1Up1 + ... +akUpk : aI ∈ C,k ∈ N}. (1.10)

Considered as an element of H , the function Up will be denoted by

Up =: |p〉. (1.11)

The Polymer variables give rise to the Polymer operators

Ûp|p′〉 = |p+ p′〉, π̂(V )|p〉 = h̄

(
∑
x∈V

px

)
|p〉 (1.12)

Hence, the values px taken by the function p account to the spectrum of the π̂(V ) operators. For
this reason, in the quantum context we will modify the notation and write

π̂(V )|π〉 = h̄(∑
x∈Σ

πx)|π〉, Ûπ |π ′〉 = |π +π
′〉

denoting by π and π ′ functions of the finite support

x 7→ πx,π
′
x ∈ R.

The advantage of the polymer quantization is that the diffeomorphism of Σ act naturally as
unitary operators in the Hilbert space. This is what makes this quantization different from the
standard one.

3
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Remark Diffeomorphism invariant quantizations of the Polymer variables were studied in
[8, 9] and a class of inequivalent quantizations parametrized by a real parameter a was found:

π̂(V )|π〉 = h̄

(
∑
x∈V

πx + aE(V )

)
|π〉 (1.13)

where E(V ) is the Euler characteristics of V and Ûπ is the same as above, independently on the
value of a. However, nobody has ever used any of them for a 6= 0.

There is also a 1-degree of freedom “poor man” version of the Polymer quantization that can
be applied to mechanics. Consider a variable Φ ∈ R and the conjugate momentum Π, and the
Poisson bracket defined by

{Φ,Π} = 1 {Φ,Φ} = 0 = {Π,Π}.

The Polymer variables are Π itself, and for every p ∈ R,

Ũπ(Φ) := eipΦ. (1.14)

The Polymer quantum representation of those variables is defined in the seemingly usual way

Ûπψ(Φ) = Ũπ(Φ)ψ(Φ), Π̂ψ(Φ) =
h̄
i

d
dΦ

ψ(Φ), (1.15)

in an unusual Hilbert space, though

H̃ := {a1Ũπ1 + ... +akŨπk : aI ∈ C,k ∈ N,πI ∈ R} (1.16)

with the Hilbert product defined such that the Uπ functions are normalizable

( Ũπ | Ũπ ′ ) = δπ,π ′ . (1.17)

If we again denote
Ũπ =: |π〉, (1.18)

whenever it is considered an element of H̃ , then

ˆ̃Uπ |π ′〉 = |π +π
′〉, Π̂|π〉 = h̄π|π〉. (1.19)

Actually, even a polymer quantum mechanics was considered in the literature [17, 18, 19].
The polymer quantization Hilbert spaces H and, respectively, H̃ can be obtained by suitable

integrals. The poor man Hilbert product can be defined by the Bohr measure such that∫
�RBohr

dµBohr(Φ)eiπΦ = δ0,π

where �RBohr stands for the Bohr compactification of the line. With certain abuse of notation we
often write

H̃ = L2(
�RBohr).

In the scalar field case, the polymer Hilbert product is defined by the infinite tensor product of

the Bohr measures, that is the natural Haar measure defined on the group �RBohr
Σ of all the maps

Σ→�RBohr. So one can write
H = L2(

�RBohr
Σ).
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2. A doubly Polymer Quantization of LQC.

A homogeneous and isotropic spacetime coupled to a KG scalar field is described by two real
valued dynamical variables c,Φ, and their conjugate momenta pc,Π. The Poisson bracket {·, ·} is
defined by

{Φ,Π} = 1 = {c, pc}, (2.1)

whereas the remaining brackets vanish. The first variable, Φ, is the scalar field constant on the
homogeneous 3-manifold Σ. The canonically conjugate variable Π is defined by a suitable inte-
gral of the momentum π , also constant on Σ by the homogeneity assumption. The variable p is
proportional to the square of the scale of the universe (a2), and c to the rate of change in time (ȧ).

The constraints of General Relativity reduce to a single constraint, the Scalar Constraint - and
the Hamiltonian of the system - which for a massless scalar field takes the following form [20]

C± = Π ∓ h(c, pc), (2.2)

where h is by definition a positive definite expression (this is the reduction of the familiar -√
−2
√

detqCgr to the homogeneous isotropic gravitational fields).
According to the Wheeler de Witt quantization of this model (which was historically the first

available), the both degrees of freedom are quantized in the usual way, that is the Hilbert space of
the kinematical quantum states of the model is

L2(R)⊗L2(R).

The LQC quantization uses the holonomy variables of Loop Quantum Gravity restricted to the
homogeneous isotropic solutions. The consequence is that the gravitational degree of freedom c
ends up quantized in the Polymer way [22]. The scalar field, on the other hand, is quantized in
the usual way. Finally, the resulting Hilbert space of the kinematical quantum states of LQC is the
hybrid Hilbert space

L2(R)⊗L2(
�RBohr).

Those details were set in this way without deeper thinking, just because it works.
The goal of this section is to present a fully Polymer formulation of this LQC model in which

the both variables c and Φ are quantized in the Polymer way in the kinematical Hilbert space

Hkin = L2(
�RBohr)⊗L2(

�RBohr) =: Hmat⊗Hgr. (2.3)

Let Π̂ be the operator defined according to 1.19 in the first factor Hmat polymer Hilbert space
and let ĥ be a quantum operator defined by a quantization of the term h(x, p) in the second factor
Hgr Polymer Hilbert space. Specifically, one can think of the operator defined in [20], or one of
the wider class of operators considered in [21]. In fact, the operator is defined only in a suitable
subspace of

Hgr,h ⊂ Hgr,

because it involves square roots of other operators which are not positive definite, and only the
positive parts of their spectra are physical. What will be important in this section is that ĥ is self-
adjoint (it is also non-negative) in H̃gr,h. We will also have to reduce the full kinematical Hilbert

5
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space to
H̃kin,h = Hmat⊗Hgr,h.

The quantum constrain operator is

Ĉ± = Π̂⊗ id ∓ id⊗ ĥ.

The Hilbert space of the physical states is spanned by the two spaces

Hphys± = HĈ±=0

of the spectral decompositions of the operators Ĉ± corresponding to 0 in the spectrum of Ĉ+ (re-
spectively Ĉ−). As we will see below, that space consists of normalizable elements of (2.3).

The main device we use is an operator eiΦ̂⊗ĥ. Itself, an operator Φ̂ is not defined in the polymer
Hilbert space, but the definition of eiΦ̂⊗ĥ is quite natural if we use eigenvectors of the operator ĥ:
{ψl : l ∈ L}, where L is a label set. In Hkin we consider the simultaneous eigenvectors of id⊗ ĥ
and Π̂⊗ id, that is

{|π〉⊗ψl : π ∈ R, l ∈ L}.

Define
eiΦ̂⊗ĥ|π〉⊗ψl := eihlΦ̂⊗ id|π〉⊗ψl = |π +hl〉⊗ψl. (2.4)

This operator preserves the norm, and admits inverse, namely

e−iΦ̂⊗ĥ|π〉⊗ψl := e−ihlΦ̂⊗ id|π〉⊗ψl = |π−hl〉⊗ψl.

Therefore, it is a unitary operator in Hkin,h.
The next step in the derivation of the physical states, their Hilbert space, and the Dirac observ-

ables is to notice that
Ĉ± = Π̂ ∓ ĥ = e±iΦ̂⊗ĥ

Π̂e∓iΦ̂⊗ĥ.

For clarity, let us fix a sign in Ĉ± and consider first, say, Ĉ+. Indeed, it follows that the
spectral decomposition of Ĉ+ is obtained from the spectral decomposition of Π̂. In particular, the
Hilbert space corresponding to 0 in the spectrum of Ĉ+ is obtained from the Hilbert space of the
decomposition of Π̂⊗ id corresponding to 0 in the spectrum, that is

Hphys+ = eiΦ̂⊗ĥ (|0〉⊗Hgr,h
)
⊂ Hkin,h.

Secondly, it follows that

[Ô,Ĉ+] = 0 ⇔ [e−iΦ̂⊗ĥÔeiΦ̂⊗ĥ,Π̂⊗ id] = 0.

The general solution for a Dirac observable is a function of the following basic solutions

Ô+
L̂

= eiΦ̂⊗ĥid⊗ L̂e−iΦ̂⊗ĥ, or Ô = Π̂⊗ id.

The second option above, however, on Hphys+ reduces to

Π̂⊗ id = id⊗ ĥ = Ô+
ĥ
. (2.5)

6
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Next, we repeat the same construction for Ĉ−, derive Hphys,−, and the observables Ô−
L̂

.
The spaces H ±

phys correspond to the non-negative/non-positive eigenvalues of the scalar field
momentum Π̂. They span a subspace

Hphys ⊂ Hkin.

If ĥ is bounded from zero (for example for negative cosmological constant), then

Hphys = Hphys+ ⊕ Hphys−.

Otherwise, Hphys+∩Hphys− is the subspace of states |π = 0〉⊗|hl = 0〉. In both cases, the observ-
ables Ô+

L̂
and Ô−

L̂
are consistent on the overlap and give rise to observables defined on Hphys,

ÔL̂|Hphys,± = Ô±
L̂
. (2.6)

This result agrees with the known in the literature LQC model constructed by the hybrid quan-
tization, but it is quantized by applying consequently the Polymer quantization to the both matter
and gravity. This result generalizes in the obvious way to the homogeneous non-isotropic models,
because the Hilbert space of the scalar field is insensitive on that generalization.

3. The polymer quantization of LQG

We turn now to the main subject of this work, the scalar field coupled to the gravitational field.
This section should be read as a continuation of the lecture notes „From Classical To Quantum
Gravity: Introduction to Loop Quantum Gravity ” by Hanno Sahlmann and Kristina Giesel [23],
another part of the current proceedings.

The canonical field variables are defined on a 3-manifold Σ. They are the scalar field ϕ and its
momentum π introduced above in Section 1.2, and the Ashtekar-Barbero variables Ai

a and E j
b .

The kinematical Hilbert space for the quantum scalar field (1.8) will be denoted here by
Hkin,mat. The kinematical Hilbert space for the quantum gravitational field introduced in Sec-
tion 3.1 of [23] out of the cylindrical functions of the variable A (connection), will be denoted here
by Hkin,gr. The kinematical Hilbert space for the system is

Hkin = Hkin,mat⊗Hkin,gr, (3.1)

and its elements are functions
(ϕ,A) 7→ ψ(ϕ,A).

3.1 The Yang-Mills gauge transformations and the Gauss constraint

Classically, the theory is constrained by the first class constraints: the Gauss constraint, the
vector constraint and the scalar constraint.

The quantum Gauss constraint operator id⊗Ĝ (Λ), acts on the gravitational degrees of freedom
where the operator Ĝ (Λ) is defined for every Λ : Σ→ su(2) in Section 3.2.1 of [23]. The operator
induces the unitary group of the “Yang-Mills gauge transformations” acting in Hkin,gr,

ψ 7→ UG(a)ψ, UG(a)ψ(ϕ,A) = ψ(ϕ,a−1Aa+a−1da). (3.2)

7
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The space of solutions to the Gauss constraint in Hkin,gr was characterized at the end of Section
3.3.1 in [23] (and denoted by H G

kin). In the current paper, we will be denoting it by H G
kin,gr. The

space of the solutions to the quantum Gauss constraint in Hkin is

H G
kin = Hkin,mat⊗H G

kin,gr. (3.3)

This is a subspace of Hkin which consists of the elements invariant with respect to the Yang-Mills
gauge transformations. In terms of the generalized spin-networks, this subspace is the completion
of the span of the subspaces H

γ,~j,~l=0. There is an equivalent constructive definition of the solutions
called the group averaging. It consists in integration with respect to the gauge transformations

ψ 7→
∫

∏
x∈Σ

da(x)ψ(ϕ,a−1Aa+a−1da)

This kind of integral usually would be defined only “formally”. However, if A 7→ψ(ϕ,A) is a func-
tion cylindrical with respect to a graph γ embedded in Σ, then the Yang-Mills gauge transformations
act at the nodes n1, ...,nN of γ , in the sense that

ψ(ϕ,a−1Aa+a−1da) = f (ϕ,A,a(n1), ...,a(nN)).

Therefore,∫
∏
x∈Σ

da(x)ψ(ϕ,a−1Aa+a−1da) =
∫

da(n1)...da(nN)ψ(ϕ,a−1Aa+a−1da) (3.4)

is actually well defined. This definition of solutions to the Gauss constraint admits interesting
generalization to the vector constraint.

Before solving the quantum vector constraint, we decompose the Hilbert space suitably. To
every finite set of points

X = {x1, ...,xk} ⊂ Σ, (3.5)

there is naturally assigned a subspace spanned by the states |π〉 ∈Hkin,mat such that the support of
the function π : Σ→ R is exactly X

DX = Span( |π〉 ∈Hkin,mat : supp(π) = X ) . (3.6)

The polymer Hilbert space Hkin,mat is the completion of an orthonormal sum of those subspaces

Hkin,mat =
⊕

X⊂Σ : |X |<∞

DX . (3.7)

We will be precise about the domains of introduced maps, therefore we distinguish here explicitly
between the span or infinite direct sum and the completion thereof.

The Hilbert space H G
kin,gr of the gravitational degrees of freedom is also decomposed into

orthogonal subspaces labeled by admissible graphs embedded in Σ (see the end of Section 3.3.1 of
[23])

H G
kin,gr =

⊕
γ

D ′γ
G (3.8)

8
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where γ runs through the set of embedded graphs in Σ admissible in the sense, that do not contain
any 2-valent node that can be obtained splitting a single link and possibly reorienting the resulting
new links, and

D ′γ
G =

⊕
~j

H
γ,~j,~l=0 (3.9)

where each ~j is a coloring of the links by irreducible non-trivial representations of SU(2). The
labeling ~l, in general case, labels the nodes of γ by irreducible representations of SU(2), in this
case it is the trivial representation. The sum includes the empty graph /0. A cylindrical function
with respect to the empty graph is a constant function.

The two decompositions are combined into the decomposition of the total Hilbert space

H G
kin =

⊕
(X ,γ)

DX ⊗D ′γ
G . (3.10)

The uncompleted space
DG

kin :=
⊕
(X ,γ)

DX ⊗D ′γ
G,

will be an important domain in what follows.

3.2 Diffeomorphisms and the vector constraint

The diffeomorphisms of Σ act naturally in Hkin,

Diff 3 φ 7→U(φ) ∈U(Hkin), (3.11)

as the kinematical quantum states are functions of A and φ ,

U(φ)ψ(ϕ,A) = ψ(φ ∗ϕ,φ ∗A). (3.12)

The only diffeomorphism invariant element of Hkin is

ψ(ϕ,A) = const.

However, the analogous to (3.4) averaging with respect to the diffeomorphisms produces a larger
than 1-dimensional Hilbert space, containing also “non-normalizable” states. They become nor-
malizable with respect to a natural Hilbert product. The diffeomorphism averaging in the matter
free case is discussed in detail in [23]. Now we need to discuss it more closely in the case with the
scalar field.

For each of the subspaces DX ⊗D ′γ
G introduced above, denote by TDiffX ,γ the set of the

diffeomorphisms which act trivially in DX ⊗D ′γ
G. It is easy to see that TDiffX ,γ consists of diffeo-

morphisms φ such that

φ |X = id, and φ(`) = ` for every link ` of γ, (3.13)

where we recall that the links are oriented, and the orientation has to be preserved as well. We will
average with respect to the group of orbits

Diff/TDiffX ,γ . (3.14)

9
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Given ψ ∈DX ⊗D ′γ
G, what is averaged is the dual state 〈ψ|, that is the linear functional on H G

kin,

〈ψ| : ψ
′ 7→ (ψ|ψ ′)kin.

The averaging formula is simple:

DX ⊗D ′γ
G 3 ψ 7→ 〈ψ| 7→ 1

nX ,γ
∑

[φ ]∈Diff/TDiffX ,γ

〈U(φ)ψ| =: η(ψ), (3.15)

where the factor 1
nX ,γ

will be fixed below. The result of the averaging is a linear functional

[η(ψ)](ψ ′) =
1

nX ,γ
∑

[φ ]∈Diff/TDiffX ,γ

(
U(φ)ψ|ψ ′

)
kin .

Indeed, given ψ and ψ ′ the sum on the RHS contains only finite number of nonzero terms, therefore
the formula defines a linear functional η(ψ). This functional is invariant with respect to the action
of the diffeomorphisms in Hkin. The map η is defined for all the subspaces DX⊗D ′γ

G and extended
by the linearity to their orthogonal sum DG

kin. As in the matter free case [23], one can also consider
the subgroup DiffX ,γ of the diffemorphisms preserving the subspace DX ⊗D ′γ

G. It gives rise to the
symmetry group

GSX ,γ := DiffX ,γ/TDiffX ,γ (3.16)

which is finite. We fix the number nX ,γ in the definition of η to be

nX ,γ := |GSX ,γ | < ∞. (3.17)

The image of η will be denoted as follows

DG
Diff := η(DG

kin).

The new scalar product in DG
Diff is

(η(ψ) | η(ψ ′))Diff := [η(ψ)](ψ ′). (3.18)

This completes the construction of the Hilbert space of the solutions to the vector constraint

H G
Diff = η(DG

kin) . (3.19)

With this choice of nX ,γ , the map η projects ψ orthogonally onto the subspace of DX⊗D ′γ
G consist-

ing of the elements symmetric with respect to the symmetries of (X ,γ), and next unitarily embeds
in H G

Diff. More generally, for
ψI ∈DXI ⊗D ′γI

G, I = 1,2

the scalar product can be written in the following way

(η(ψ1) | η(ψ2))Diff = δ[X1,γ1],[X2,γ2](ψ1|PX2,γ2ψ2)kin, (3.20)

where: [X ,γ] is the class of pairs (X ′,γ ′) diffeomorphically equivalent to a given pair (X ,γ),
δ[X1,γ1],[X2,γ2] stands for the Kronecker delta, and

PX2,γ2 : DX2⊗D ′γ2
G→DX2⊗D ′γ2

G

10
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is the orthogonal projection onto the subspace of states symmetric with respect to the group GSX2,γ2 .
The space H G

Diff is our Hilbert space of solutions to the quantum Gauss and quantum diffeo-
morphisms constraints. On the other hand, each element of H G

Diff is a linear functional defined on
DG

kin,
H G

Diff ⊂
(
DG

kin
)∗

(3.21)

where the right hand side is the space of the linear functionals DG
kin → C. We still use that extra

structure intensively. In particular, an operator

Ô : DG
kin→DG

kin

will be pulled back to the dual operator

Ô∗ : DG
Diff→ (DG

kin)
∗.

3.3 The scalar constraint

In the Hilbert space H G
Diff of solutions of the quantum Gauss and vector constraint, we impose

the quantum scalar constraint
(π̂(x)∗ − ĥ(x))Ψ = 0. (3.22)

In [13, 23] it is argued that a general solution can be derived if one is able to introduce an operator

exp i
∫

d3xϕ̂(x)ĥ(x) : H G
Diff→H G

Diff

of suitable, but quite natural, properties. We will define now such an operator in the very space
H G

Diff and see that it does have the desired properties.

3.3.1 Extra structure needed for ĥ(x)

To deal with the operator (distribution) ĥ(x) we will need more structure. For each graph γ its
set of nodes will be denoted by γ0. For every of the subspaces DX ⊗D ′γ

G (modulo the diffeomor-
phisms) it is convenient to consider the subgroup

DiffX∪γ0

of Diff set by the diffeomorphisms which act as identity on the set X as well as on the set γ0 of the
nodes of γ . We repeat the construction of the averaging for the diffeomorphisms DiffX∪γ0 ,

DX ⊗D ′γ
G 3 ψ 7→ η̃(ψ) =

1
ñX ,γ

∑
[φ ]∈DiffX∪γ0/TDiffX ,γ

〈U(φ)ψ| (3.23)

where the number ñX ,γ will be fixed later to be consistent with another map η̌ introduced below.
For example, if ψ ∈DX ⊗D ′γ

G is a simple tensor product

ψ = 〈π|⊗ fγ

then,

η̃(ψ) =
〈π|
ñX ,γ
⊗ ∑

[φ ]∈DiffX∪γ0/TDiffX ,γ

〈U(φ) fγ |. (3.24)

11
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Given a finite set Y ⊂ Σ, we consider all the spaces DX ⊗Dγ such that

X ∪ γ
0 = Y,

combine them into the space ⊕
(X ,γ)

DX ⊗D ′γ
G,

and combine the maps η̃ to a linear map

η̃ :
⊕
(X ,γ)

DX ⊗D ′γ
G →

(
D ′Gkin

)∗
,

and endow the image of this map

DG
DiffY := η̃

⊕
(X ,γ)

DX ⊗D ′γ
G

 ,

with a scalar product
(η̃(ψ1)| ˜η(ψ2))DiffY := [η̃(ψ1)](ψ2).

In this way we obtain the Hilbert space

H G
DiffY = DG

DiffY ,

that is needed to deal with the ĥ(x) operator.
The original averaging map η for ψ ∈DX ⊗DG

γ can be written as averaged η̃ ,

η(ψ) =
1
|Y |! ∑

[φ ]∈Diff/DiffY

U(φ)∗η̃(ψ),

where the choice of the normalization factor as the number of the elements of the symmetry group
of the set Y is the condition that fixes the number ñX ,γ of (3.23) uniquely. The map η̃(ψ) 7→ η(ψ)

extends by the continuity to

H G
DiffY → H G

Diff, η̌(Ψ̃) =
1
|Y |! ∑

[φ ]∈Diff/DiffY

U(φ)∗Ψ̃. (3.25)

The factor |Y |! ensures, that for every Ψ̃I , I = 1,2 invariant with respect to all DiffY ,

(η̌(Ψ̃I)|η̌(Ψ̃J))Diff = (Ψ̃I|Ψ̃J)DiffY .

Before we apply this structure to the operator ĥ(x), let us use it to characterize the action of
the operator π̂(x)∗ defined by the duality on the diffeomorphism invariant states, elements of the
space DG

diff ⊂ (DG
kin)
∗. It will be convenient to introduce for each y ∈ Σ, an operator π̂y defined in

(a suitable domain of) Hkin,mat by π̂(x),

π̂(x) = ∑
y∈Σ

δ (x,y)π̂y, π̂y|π〉 = πy|π〉 , (3.26)

12
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(recall that given |π〉, the function y 7→ πy is not zero only for a finite set of points y). This defini-
tion passes by the duality to the (bra) states corresponding to the (ket) states |π〉 via 〈π|(|π ′〉) :=
(π|π ′)kin,

π̂
∗
y 〈π| = πy〈π|. (3.27)

Next, increasing the level of complexity, consider the action of the operator π̂∗y in each of the spaces
DG

DiffY . To begin with
y /∈ Y ⇒ π̂

∗
y |DG

DiffY
= 0.

The elements η̃(〈π|⊗ fγ) are eigenvectors,

π̂
∗
y η̃(〈π|⊗ fγ) = πyη̃(〈π|⊗ fγ).

Finally, to write the action of p̂i∗y in H G
Diff, given

Ψ̃ ∈ DG
DiffY

, and η̌(Ψ̃) ∈ H G
Diff

we have
π̂
∗
y η̌(Ψ̃) =

1
|Y |! ∑

y′∈Y
∑
[φy′ ]

π̂
∗
y U(φy′)

∗
ψ̃ =

1
|Y |! ∑

y′∈Y
∑
[φy′ ]

U(φy′)
∗
π̂
∗
y′ψ̃ (3.28)

where for every y′ ∈ Y , [φy′ ] runs through the subset of Diff/DiffY such that

φy′(y) = y′.

For
Ψ̃ = 〈π|⊗ f̃ ,

we have
π̂
∗
y η̌(〈π|⊗ f̃ ) =

1
|Y |! ∑

y′∈Y
πy′ ∑

[φy′ ]

U(φy′)
∗〈π|⊗ f̃ .

The result of the action is not any longer an element of H G
diff, however the operator π̂y is well

defined in the domain DG
diff ⊂H G

diff in the following sense

π̂y : DG
diff → (DG

kin)
∗ . (3.29)

Now, we are in the position to write down the action of the operator ĥ(x) apparent in the
quantum scalar constraint. It is not defined directly in Hkin,gr, however it is defined in the spaces
H G

DiffY . Actually, it is introduced in the opposite order [13, 23] than the calculation of the action of
π̂(x) was performed above.

First, in each of the spaces H G
DiffY and for every y∈ Σ the operator ĥy is defined as a self-adjoint

operator. The operator is identically zero unless y ∈ Y ,

y /∈ Y ⇒ ĥy|H G
DiffY

= 0.

By the linearity, ĥy is extended to the span

Span
(
H G

DiffY : Y ⊂ Σ, |Y |< ∞
)
⊂
(
DG

kin
)∗
. (3.30)

13



P
o
S
(
Q
G
Q
G
S
 
2
0
1
1
)
0
2
5

LQG dynamics in terms of the polymer quantization Jerzy Lewandowski

For different points the operators commute,

y 6= y′ ⇒ [ĥy,hy′ ] = 0. (3.31)

The map y 7→ ĥy is diffeomorphism invariant in the sense that for every diffeomorphism
φ ∈Diff and its (dual) action U(φ)∗ in the subset (3.30) of (DG

kin)
∗ we have

ĥφ−1(y)U(φ)∗ = U(φ)∗ĥy.

The action of ĥy is H G
Diff is defined by the analogy to (3.28), that is given

Ψ̃ ∈ DG
DiffY

, and η̌(Ψ̃) ∈ H G
Diff

we have
ĥyη̌(Ψ̃) =

1
|Y |! ∑

y′∈Y
∑
[φy′ ]

ĥyU(φy′)
∗
ψ̃ =

1
|Y |! ∑

y′∈Y
∑
[φy′ ]

U(φy′)
∗ĥy′ψ̃

where the notation is the same as in (3.28)

3.3.2 The exp(
∫

d3xϕ̂(x)ĥ(x)) operator

We can turn now, to the introduction of an operator exp(i
∫

d3xϕ̂(x)ĥ(x)). For every of the
spaces H G

DiffY there is a basis of simultaneous eigenvectors of the operators ĥy and π̂y, y ∈ Σ. We
choose a one, and denote its elements by 〈π|⊗ 〈h,α| where

h : y 7→ hy, π : y 7→ πy

are functions of finite supports such that

ĥy〈π|⊗ 〈h,α| = hy〈π|⊗ 〈h,α|, π̂y〈π|⊗ 〈h,α| = πy〈π|⊗ 〈h,α| (3.32)

and α is an extra label. We define (compare with (2.4))

ei
∫

d3xϕ̂(x)ĥ(x)〈π|⊗ 〈h,α| = 〈π +h|⊗ 〈h,α|.

That defines an operator in each of the spaces HDiffY and in the span which is the direct (orthogonal)
sum (3.30)

This operator is unitary, (
ei
∫

d3xϕ̂(x)ĥ(x)
)†

= e−i
∫

d3xϕ̂(x)ĥ(x), (3.33)

where the right hand side is defined by

e−i
∫

d3xϕ̂(x)ĥ(x)〈π|⊗ 〈h,α| = 〈π−h|⊗ 〈h,α|.

The operator is diffeomorphisms invariant,

U(φ)∗ei
∫

d3x ˆϕ(x)ĥ(x) = ei
∫

d3x ˆϕ(x)ĥ(x)U(φ)∗. (3.34)
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Finally, to define this operator in H G
Diff, for every Ψ̃ ∈HDiffY and the corresponding η̌(Ψ̃) ∈

H G
Diff we write

ei
∫

d3xϕ̂(x)ĥ(x)
η̌(Ψ̃) :=

1
|Y | ∑

[φ ]∈Diff/DiffY

ei
∫

d3xϕ̂(x)ĥ(x)U(φ)∗Ψ̃. (3.35)

Indeed, we can always do it, but is the right hand side again an element of the Hilbert space H G
Diff?

The answer is affirmative due to the diffeomorphism invariance, namely, it follows that

ei
∫

d3xϕ̂(x)ĥ(x)
η̌(Ψ̃) = η̌(ei

∫
d3xϕ̂(x)ĥ(x)

Ψ̃) ∈ H G
Diff. (3.36)

The extension by the linearity and continuity provides a unitary operator

ei
∫

d3xϕ̂(x)ĥ(x) : H G
Diff→H G

Diff

for which the property (3.33) still holds.
Now, it is not hard to check, that our operator (3.36) does satisfy the desired property, namely

for every Ψ ∈H G
Diff,

e−i
∫

d3xϕ̂(x)ĥ(x) (
π̂(y)− ĥ(y)

)
ei
∫

d3xϕ̂(x)ĥ(x)
Ψ = π̂(y)Ψ ∈

(
DG

Diff
)∗
. (3.37)

3.3.3 Solutions, Dirac observables, dynamics

The quantum scalar constraint

(π̂(x)− ĥ(x))Ψ = 0 (3.38)

is equivalent to
π̂(x)e−i

∫
d3xϕ̂(x)ĥ(x)

Ψ = 0.

Moreover, the condition on the Dirac observable

[π̂(x)− ĥ(x),Ô] = 0

is equivalent to
[π̂(x), e−i

∫
d3xϕ̂(x)ĥ(x)Ôei

∫
d3xϕ̂(x)ĥ(x)] = 0 .

In H G
Diff, solutions to the equation

π̂(x)Ψ′ = 0

set the subspace given by

η

(
|0〉⊗

⊕
γ

D ′γ
G

)
= H G

Diff,gr,

that is the subspace of states independent of ϕ . Hence, solutions to the quantum scalar (and the
Gauss) constraint are

H G
Diff 3Ψ = ei

∫
d3xϕ̂(x)ĥ(x)

Ψ
′, Ψ

′ ∈H G
Diff,gr. (3.39)
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Denote the subspace they set by
Hphys ⊂ H G

Diff. (3.40)

A Dirac observable is every operator

ei
∫

d3xϕ̂(x)ĥ(x)L̂e−i
∫

d3xϕ̂(x)ĥ(x), (3.41)

defined in Hphys by an operator L̂ defined in H G
Diff,gr. Another observable can be defined from the

operators π̂(x), for example ∫
d3xπ̂(x)

however,
π̂(x)|Hphys = ĥ(x)|Hphys

and ĥ(x) is defined in H G
Diff,gr. Our map (3.36) can be generalized to a family of maps correspond-

ing to the transformation φ 7→ φ + τ , τ ∈ R. For every τ the transformation should amount to a
transformation

ei
∫

d3xτ ĥ(x) : H G
Diff→H G

Diff, (3.42)

where the operator has to be defined. To define the operator exp(i
∫

d3xτ ĥ(x)) we repeat the con-
struction that lead us to the operator exp(i

∫
d3xϕ̂ ĥ(x)), with the starting point

ei
∫

d3xτ ĥ(x)〈π|⊗ 〈h,X ,γ0,α| = ei∑x hx〈π|⊗ 〈h,X ,γ0,α|.

As expected, the operator preserves the space of solutions

ei
∫

d3xτ ĥ(x) (Hphys
)
= Hphys

and defines therein the dynamics.

4. Summary and seeds of a new idea

The first conclusion is that a quantization of the scalar field whose existence and suitable
properties were assumed in [13] exists, and an example is the polymer quantization. Furthermore,
it is shown explicitly, that as argued in [13], the theory is equivalent to the quantum theory in the
Hilbert space H G

Diff,gr of diffeomorphism invariant states of the gravitational degrees of freedom
only, with the dynamics defined by the physical Hamiltonian

ĥphys =
∫

d3xĥ(x), (4.1)

where ĥ(x) is a quantization of the classical solution for π(x)

π(x) = h(x)

following from the constraints. In this way, the current work completes the derivation of the model
already formulated in [13]. Technically, we have implemented in detail the diffeomorphism aver-
aging for loop quantum gravity states of geometry coupled with the polymer states of scalar field
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and discussed the general structure of the operators emerging in the scalar constraints. Mathemat-
ically, the physically relevant part of the Hilbert space H G

Diff is contained in the so called habitat
space introduced in [24]. This is a new application of the habitat framework which may be useful
for various technical questions.

Secondly, it turns out, that in the framework of the polymer quantization of the scalar field,
the Hilbert space Hphys of the physical states, solutions to the quantum constraints, is a subspace
of the Hilbert space of solutions to the diffeomorphism constraint,

Hphys ⊂H G
Diff.

Therefore, more structure is at our disposal, than only the physical states themselves. This advan-
tage is not only estetic. It also gives a clue for quite promising development of the theory. We
explain this below.

The classical constraints for the massless field coupled to gravity are

C(x) =Cgr(x) + 1
2

π2(x)√
q(x)

+ 1
2 qab(x)φ,a(x)φ,b(x)

√
q(x), (4.2)

Ca(x) = Cgr
a (x) + π(x)φ,a(x). (4.3)

where qab is the 3-metric tensor induced on a 3-slice of spacetime Cgr is the gravitational field part
of the scalar constraint, and Cgr

a is the gravitational part of the vector constraint.
The scalar constraint C(x) can be replaced by C′(x) (deparametrized scalar constraint):

C′(x) = π2(x)−h2(x), (4.4)

h± :=

√
−√qCgr +/−√q

√
(Cgr)2−qabCgr

a Cgr
b . (4.5)

The sign ± in h± is + in the part of the phase space at which

π
2 ≥ φ,aφ,bqab detq, (4.6)

for example in the neighborhood of the homogeneous solutions.
The sign ± in h± is −, on the other hand, in the part of the phase space at which

π
2 ≤ φ,aφ,bqab detq. (4.7)

Each of the cases (4.6,4.7) consists of two in cases,

π(x) = +h±(x), or π(x) = −h±(x). (4.8)

A natural first goal [13], was to restrict the quantization to the case (4.6) and positive π ,
and quantize the theory for the part of the phase space which contains expanding homogeneous
solutions. Now, the formulation of the current paper allows an attempt to unify the theory to the
both cases (4.6) and (4.7) the both cases (4.8). Indeed, we can accommodate in the Hilbert space
H G

Diff simultaneously quantum solutions to each of the cases. To this end, one has to implement
the construction presented in the current paper for each of the following 4 cases

ĥ(x) = ĥ+(x),−ĥ+(x), ĥ−(x),−ĥ−(x).
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The result will be four subspaces

Hphys++, Hphys−+, Hphys+−, Hphys−− ⊂ H G
Diff.

They span the total space of solutions

Hphys = Span(Hphys++, Hphys−+, Hphys+−, Hphys−−) ⊂ H G
Diff.

The space is endowed with the evolution induced by the transformation

ϕ 7→ ϕ + τ.

Whether this is it, or more input is needed is an open question. In any case. certainly, this frame-
work takes us beyond the state of art.
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