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1. Introduction

Nuclear reactions determine the nucleosynthesis in stars, and produce theenergy released to
compensate their gravitational contraction [1, 2, 3, 4, 5]. Stellar models arein general based on
large reaction networks, involving many reaction rates. In the Big Bang nucleosynthesis, only
a few reactions are important, producing elements up toA = 8. In stellar nucleosynthesis, the
reaction networks depend on the physical conditions of the star (mass, temperature, density, etc.).
At low temperatures, the stellar evolution is mainly determined by the pp chain and by the CNO
cycle. Both processes convert hydrogen in Helium. Advanced stages of stellar evolution involve He
burning, followed by reactions involving heavier elements. At high temperature, neutron capture
(sandp processes), as well as explosive burning determine the star evolution [6, 7].

The calculation of the reaction rates relies on the cross sections. There are in general two main
problems in nuclear astrophysics: (i) the stellar energies being much smaller than the Coulomb
barrier, the relevant cross sections between charged particles are toosmall to be measured in the
laboratory; (ii) explosive burning involves short-live nuclei which, even if they can be produced
with modern technologies, are available with weak intensities only. Consequently a theoretical
support is necessary, either to extrapolate the cross sections down to astrophysical energies, or to
predict unknown cross sections.

The important processes in nuclear astrophysics are essentially capturereactions (where a
nucleon or anα particle fuses with an heavier nucleus by the electromagnetic interaction), and
transfer reactions (where the projectile and the target exchange nucleons). Typical examples are
the 12C(α ,γ)16O and13C(α ,n)16O reactions, respectively. In both processes, a distinction should
be made between non-resonant reactions, where the cross section does not present maxima, and
resonant reactions, where the reaction rate is mainly determined by the properties of one (or more)
resonance. This large variety of different situations is one of the difficulties of nuclear astrophysics,
since no systematics can be used. Particularly in low-mass nuclei, each reaction presents its own
specificities, and must be treated individually [8].

Theoretical models used in nuclear astrophysics can be roughly classified in three categories
[8, 9]:
(i) Models involving adjustable parameters, such as theR-matrix method [10, 11]; parameters are
fitted to the available experimental data and the cross sections are extrapolated down to astrophysi-
cal energies. These fitting procedures of course require the knowledge of data, which are sometimes
too scarce for a reliable extrapolation.
(ii) “Non fitting" models, where the cross sections are determined from the wavefunctions of the
system. The potential model [12], the Distorted Wave Born Approximation (DWBA) [13], and mi-
croscopic models [14, 15] are, in principle, independent of experimental data. More realistically,
these models depend on some physical parameters, such as a nucleus-nucleus or a nucleon-nucleon
interaction which can be reasonably determined from experiment only. Themicroscopic Generator
Coordinate Method (GCM) provides a “basic" description of aA-nucleon system, since the whole
information is obtained from a nucleon-nucleon interaction. Since this interaction is nearly the
same for all light nuclei, the predictive power of the GCM is important.
(iii ) Models(i) and(ii) can be used for low level-density nuclei only. This condition is fulfilled
in most of the reactions involving light nuclei (A ≤ 20). However when the level density near
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threshold is large (i.e. more than a few levels per MeV), statistical models, using averaged opti-
cal transmission coefficients, are in general more suitable [16, 17]. In some specific applications,
shell-model theories can provide the gamma widths of relevant states [18].

Our goal here is to discuss the importance of nuclear reactions in astrophysics. We essentially
focus on reaction cross sections, and on resonance properties. In Section 2, we present the general
definitions of cross sections and reaction rates. A clear distinction is made between resonant and
non-resonant reactions. Section 3 is devoted to a brief description of various models used in low-
energy nuclear physics. In particular theR-matrix method (extrapolation) and cluster models are
briefly reviewed. Recent examples are presented in Section 4, and concluding remarks in Section
5.

2. Cross sections and reaction rates

2.1 Cross sections

Reactions relevant in nuclear astrophysics are essentially transfer andradiative capture reac-
tions [8]. They arise from the nuclear and electromagnetic interactions, respectively. As a conse-
quence, transfer cross sections are much larger than capture cross sections, which are negligible
unless the transfer channel is closed. For the sake of completeness, letus mention that two elec-
troweak reactions also play a role [19]:p(p,e+ν)d is the first stage of hydrogen burning, and
3He(p,e+ν)4He produces high-energy neutrinos. Both reactions arise from the weak interaction,
and therefore present tiny cross sections at stellar energies, inaccessible in current experiments.

Let us first discuss capture cross sections. A radiative transition is an electromagnetic process
where two colliding nuclei at energyE fuse to a final state(Jf π f ) of the unified nucleus at energy
Ef . The capture cross section is given, in the first-order perturbation theory, by a matrix element
of the electromagnetic Hamiltonian. This operator is expanded in electric (σ = E) and magnetic
(σ =M) multipole operatorsM σ

λ µ . The cross section between nuclei with spinsI1 andI2, integrated
over all photon directions, then reads

σc(E,Jf π f ) =
2Jf +1

(2I1+1)(2I2+1) ∑
σλJi Iℓi

1
2ℓi +1

8π(λ +1)
h̄λ (2λ +1)!!2k2λ+1

γ

×|< ΨJf π f ||M σ
λ ||ΨJiπi

ℓi I
(E)> |2, (2.1)

wherekγ = (E−Ef )/h̄c is the photon wave number andΨJiπi
ℓi I

(E) is a partial wave of a unit-flux
scattering wave function [8]. The wave function of the final bound state isdenoted asΨJf π f . In
practice, owing to the electromagnetic selection rules and to the low energies, only a few terms
contribute.

The transfer cross section from an initial channeli to a final channelf is derived from the
collision (or scattering) matrixUJπ as

σt(E, i → f ) =
π
k2 ∑

Jπ

2J+1
(2I1+1)(2I2+1) ∑

ℓℓ′II ′
|UJπ

iℓI , f ℓ′I ′(E)|
2, (2.2)

wherek is the wave number of the relative motion, and(ℓI) are the orbital momentum and the
channel spin, respectively. These definitions are common to all models. Inthe following we will
be more specific and consider various theoretical approaches.
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As stellar energies are much lower than the Coulomb barrier, the cross sections strongly de-
pend on energy. The fast energy dependence of the cross section at sub-Coulomb energies is partly
removed in theS-factor, defined as

S(E) = σ(E)Eexp(2πη), (2.3)

where η = Z1Z2e2/h̄v is the Sommerfeld parameter. For non-resonant reactions, theS-factor
smoothly depends on energy and contains the nuclear information on the reaction. Whereas the
cross section varies by several orders of magnitude in the experimental energy range, theS factor
weakly depends on energy.

2.2 Reaction rates

The main nuclear inputs in stellar models are the reaction rates< σv>, wherev is the relative
velocity between the colliding nuclei [2]. Production and destruction of nuclear species are given
by a set of coupled differential equations involving the reaction rates, and providing abundances of
each element at given time and temperature. The reaction rate is known to be strongly dependent
on the presence or absence of resonances. In both situations, analytical approximations can be
derived.

Let us consider a reaction between two nuclei with massesA1mN andA2mN and chargesZ1e
andZ2e (we express here the masses in units of the nuclear massmN). The reaction rate at temper-
atureT is defined as [1, 2]

NA < σv> = NA

(

8
πµmN(kBT)3

)
1
2
∫

σ(E)E exp(−E/kBT)dE, (2.4)

where we assume that the star can be considered as a perfect gas following the Maxwell-Boltzmann
distribution. In Eq. (2.4),NA is the Avogadro number,µ = A1A2/(A1+A2) is the dimensionless
reduced mass, andkB is the Boltzmann constant. At sub-coulomb energies the astrophysicalS
factor is almost constant, and the energy dependence of the cross section varies as

σ(E)∼ exp(−2πη)/E. (2.5)

Using (2.5), the integrand of (2.4) can be approximated by a Gaussian shape [1, 2] with a
maximum at the Gamow peak. The energy and width of the peak are given by

E0 =

[

π
e2

h̄c
Z1Z2kBT(µmNc2/2)1/2

]2/3

≈ 0.122µ1/3(Z1Z2T9)
2/3 MeV, (2.6)

∆E0 = 4(E0kBT/3)
1
2 ≈ 0.237(Z2

1Z2
2µ)1/6T5/6

9 MeV, (2.7)

whereT9 is the temperature expressed in 109K. The Gamow energy defines the energy range where
the cross section needs to be known to derive the reaction rate. Resonance properties must also be
available in this energy range. In most cases, this energy is much lower thanthe Coulomb barrier
VB which means that the cross sections drop to very low values. The width∆E0 is small at low
energies, and in low-mass nuclei. However, at high temperatures, typicalof explosive burning,∆E0

becomes quite large. In that case, properties of many resonances should be known. Table 1 gives
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Table 1: Typical Gamow-peak energies and widths.VB is the energy of the Coulomb barrier.

Reaction T9 E0 (MeV) ∆E0 (MeV) VB (MeV) σ(E0)/σ(VB)

d+p 0.015 0.006 0.007 0.70 7.0×10−3

3He+3He 0.015 0.021 0.012 1.4 1.1×10−11

α+12C 0.2 0.31 0.17 3.2 4.9×10−11

12C+12C 1 2.41 1.05 8.1 2.3×10−11

some typical values. The ratioσ(E0)/σ(VB) has been obtained by assuming a constantS-factor;
it shows how fast the cross section decreases from the Coulomb barrierdown to astrophysical
energies.

Rigorously the reaction rate should be calculated numerically by using experimental or theo-
retical cross sections. However, the analytical approach provides a more intuitive understanding of
the physics, and is still widely used. Let us start with non-resonant reactions, where theS-factor
weakly depends on energy. In this case, the integral (2.4) can be replaced by an accurate analytical
approximation. A Taylor expansion nearE0 provides

exp(−2πη −E/kBT)≈ exp(−3E0/kBT)exp

(

−

(

E−E0

∆E0/2

)2
)

. (2.8)

Assuming a linear variation ofS(E) in the Gamow peak [2], the reaction rate is then given by

NA < σv> ≈ NA

(

32E0

3µmN(kBT)3

)
1
2

exp

(

−
3E0

kBT

) (

1+
5kBT
36E0

)

S(E0+
5
6

kBT), (2.9)

which presents a fast variation with temperature, owing to the exponential term.
For resonant reactions in partial waveJR at energyER, the cross section is assumed to have a

Breit-Wigner form, valid nearE = ER,

σ(E)≈
π
k2

2JR+1
(2I1+1)(2I2+1)

Γ1(E)Γ2(E)
(E−ER)2+Γ(E)2/4

, (2.10)

whereΓ1 and Γ2 are the partial widths in the entrance and exit channels (Γ = Γ1 + Γ2). This
definition is common to capture and to transfer reactions. In the former case,Γ2 is theγ width of
the resonance, while in the latter case, it corresponds to a particle width. For resonant reactions, the
general definition (2.4) is of course still valid. However, one has to account for the fast variation of
S(E) near the resonance energy. Since a numerical approach is difficult for narrow resonances, we
present an analytical method, widely used in nuclear astrophysics.

A careful analysis of integrand (2.4) shows that it always presents twomaxima [8]: at the
resonance energy, and at the Gamow energy. The peak at the resonance energy does not depend
on temperature. The second peak, corresponding to the Gamow energy,moves according to the
temperature. From these considerations, and except in the temperature range where both peaks
overlap, the resonant reaction rate can be split in two terms

NA < σv>≈ NA < σv>R +NA < σv>T , (2.11)

5
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whereNA < σv>R corresponds to the maximum atE = ER. For a narrow resonance, we have

NA < σv>R= NA

(

2π
µmNkBT

)
3
2

h̄2ωγ exp

(

−
ER

kBT

)

, (2.12)

where the resonance strengthωγ is defined by

ωγ =
2JR+1

(2I1+1)(2I2+1)
Γ1Γ2

Γ1+Γ2
, (2.13)

(Γ1,Γ2) being the partial widths atE = ER. In capture reactions, theγ width is in general much
lower than the particle width. The resonance strength is then proportional tothe smaller partial
width Γ2 = Γγ . The second maximum of integrand (2.11) yields the so-called "tail resonance" term
NA <σv>T . Its analytical expression is identical to the non-resonant rate (2.9) with aBreit-Wigner
expression forS(E).

3. Theoretical models

3.1 Introduction

As mentioned before, reaction models are essential in nuclear astrophysics. Many models have
been used to describe low-energy reactions. Here we give a brief overview of various approaches,
commonly used in nuclear astrophysics.

3.2 Microscopic cluster theories

Microscopic models are based on fundamental principles of quantum mechanics, such as the
treatment of all nucleons, with exact antisymmetrization of the wave functions.Neglecting three-
body forces, the Hamiltonian of aA-nucleon system is written as

H =
A

∑
i=1

Ti +
A

∑
i< j=1

Vi j , (3.1)

whereTi is the kinetic energy andVi j a nucleon-nucleon interaction [14].

The Schrödinger equation associated with this Hamiltonian can not be solved exactly when
A > 3. For very light systems(A ∼ 4− 5) efficient methods [20] exist, even for continuum
states [21]. However most reactions relevant in nuclear astrophysics involve heavier nuclei es-
sentially with nucleon orα projectiles. Recent developments ofab initio models (see for example
Refs. [22, 23, 24]) are quite successful for spectroscopic properties of low-lying states. These mod-
els make use of realistic interactions, including three-body forces, and fitted on many properties
of the nucleon-nucleon system. Recent works succeeded in computing the3He(α ,γ)7Be [23] and
2H(d,γ)4He [25] cross sections from realistic interactions. However, a consistent description of
bound and scattering states of anA-body problem remains a very difficult task [21], in particular
for transfer reactions.

In cluster models, it is assumed that the nucleons are grouped in clusters [14, 26]. We present
here the specific application to two-cluster systems. The internal wave functions of the clusters are

6
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denoted asφ Iiπiνi
i (ξi), whereIi andπi are the spin and parity of clusteri, andξi represents a set of

their internal coordinates. A channel function is defined as

ϕJMπ
ℓI (Ωρ ,ξ1,ξ2) =

[

Yℓ(Ωρ)⊗ [φ I1π1
1 (ξ1)⊗φ I2π2

2 (ξ2)]
I
]JM

, (3.2)

where different quantum numbers show up: the channel spinI , the relative angular momentumℓ,
the total spinJ and the total parityπ = π1π2(−)ℓ.

The total wave function of theA-nucleon system is written as

ΨJMπ = ∑
αℓI

ΨJMπ
αℓI

= ∑
αℓI

A gJπ
αℓI (ρ) ϕJMπ

αℓI (Ωρ ,ξ1,ξ2), (3.3)

which corresponds to the Resonating Group (RGM) definition [27, 28, 26]. Index α refers to dif-
ferent two-cluster arrangements, andA is the antisymetrization operator. In most applications, the
internal cluster wave functionsφ Iiπiνi

i are defined in the shell model. Accordingly, the nucleon-
nucleon interaction must be adapted to this choice, which leads to effective forces, such as the
Volkov [29] or the Minnesota [30] interactions. The relative wave functionsgJπ

αℓI (ρ) are to be de-
termined from the Schrödinger equation, which is transformed into a integro-differential equation
involving a non-local potential [28]. In most applications, this relative function is expanded over
Gaussian functions [14, 26], which corresponds to the Generator Coordinate Method (GCM). The
wave function (3.3) is rewritten as

ΨJMπ
αℓI =

∫

f Jπ
αℓI (R)Φ

JMπ
αℓI (R), (3.4)

whereΦJMπ
αℓI (R) is a projected Slater determinant, andf Jπ

αℓI (R) the generator function, which must
be determined. The GCM is equivalent to the RGM, but is better adapted to numerical calculations,
as it makes uses of projected Slater determinants (see Ref. [14, 26] for detail).

The main advantage of cluster models with respect to other microscopic theories is their ability
to deal with reactions, as well as with nuclear spectroscopy. The first applications were done for
reactions involving light nuclei, such as d,3He orα particles [31, 32]. More recently, much work
has been devoted to the improvement of the internal wave functions: multicluster descriptions [33],
large-basis shell model extensions [34], or monopolar distortion [35].

As mentioned before, the RGM radial wave functions are expanded overa Gaussian basis. The
GCM is well adapted to numerical calculations, and to a systematic approach, but the Gaussian
behaviour is not physical at large distances, and must be corrected. We use the MicroscopicR-
matrix Method (MRM) [36, 11] which is a direct extension of the standardR-matrix technique [10],
based on the existence of two regions: the internal region (with channel radiusa), where the nuclear
force and the nucleus-nucleus antisymmetrization are important, and the external region where they
can be neglected. In the external region, the Gaussian behaviour of theRGM radial function is
replaced by Coulomb functions. Matching the internal and external components provide, either the
collision matrix for scattering states, or the binding energy for bound states.

7
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3.3 The potential model

Solving the Schrödinger equation associated with the Hamiltonian (3.1) is in general a difficult
problem, which does not have an exact solution when the nucleon number islarger than three. The
potential model is fairly simple to use, and has been applied to many reactions in low-energy
nuclear physics [37, 12, 38, 39, 40]. The basic assumptions of the potential model are:(i) the
nucleon-nucleon interaction is replaced by a nucleus-nucleus forceV(ρ), which depends on the
relative coordinateρ only; (ii) the wave functions of the unified nucleus can be described by a
cluster structure withA1+A2 nucleons; (iii ) the internal structure of the nuclei does not play any
role. Since we are dealing with low energies, the potential is in general real.The extension to
higher energies, which requires complex potentials to simulate absorption channels, is known as
the optical model. A generalization to coupled-channel problems is also possible, but seldom used
in nuclear astrophysics.

The radial functiongJπ
ℓJ (ρ) for bound and scattering states is deduced from the equation

(

−
h̄2

2µmN

( d2

dr2 −
ℓ(ℓ+1)

r2

)

+V(ρ)
)

gJπ
ℓJ (ρ) = E gJπ

ℓJ (ρ), (3.5)

whereE is the relative energy (E > 0 for scattering states andE < 0 for bound states). Let us
notice that the potential may depend onℓ andJ. In nuclear physics, the nucleus-nucleus potential
involves a Coulomb termVC(ρ) and a nuclear termVN(ρ). According to the application, the choice
of the nuclear contribution is guided by experimental constraints. In radiative-capture calculations
it is crucial to reproduce the final-state energy. If phase shifts are available, they can be used to
determine the initial potential.

In this simple model, the capture cross section (2.1) is deduced from integralsinvolving scat-
tering functionsgJiπi

ℓi I
(ρ) at energyE, and bound-state wave functionsg

Jf π f

ℓ f I
(ρ). For an electric

multipole of orderλ it is given by

σc(E,Jf π f ) = 8π
e2

h̄vk2

[

Z1

(

A2

A

)λ
+Z2

(

−A1

A

)λ
]2

k2λ+1
γ

(λ +1)(2λ +1)
λ [(2λ +1)!! ]2

(3.6)

× ∑
Ji ,I ,ℓi

(2ℓ f +1)(2Jf +1)(2Ji +1)
(2I1+1)(2I2+1)

< ℓ f 0λ0|ℓi0>2

×

{

Ji ℓi I
ℓ f Jf λ

}2
(

∫ ∞

0
gJiπi
ℓi I

(ρ)ρλ g
Jf π f

ℓ f I
(ρ)dρ

)2

. (3.7)

In this definition, the amplitude of the scattering state is

gJiπi
ℓi I

(ρ) −→
ρ→∞

Fℓi (kρ)cosδ Jiπi
ℓi I

+Gℓi (kρ)sinδ Jiπi
ℓi I

, (3.8)

whereFℓ(x) andGℓ(x) are the Coulomb functions, andδ Jiπi
ℓi I

the phase shift. The bound-state wave
function is normalized to unity and tends to

g
Jf π f

ℓ f I
(ρ) −→

ρ→∞
C

Jf π f

ℓ f I
W−η f ,ℓ f+1/2(2kf ρ), (3.9)

whereW(x) is the Whittaker function, andkf andη f the wave number and Sommerfeld parameter
of the bound state. In Eq. (3.9),C

Jf π f

ℓ f I
is the Asymptotic Normalization Constant (ANC). It plays a

8



P
o
S
(
X
X
X
I
V
 
B
W
N
P
)
0
0
8

Theoretical models in nuclear astrophysics Pierre Descouvemont

crucial role for transitions to weakly bound states [41]. In this situation, theexponential decrease
of the bound-state wave function is very slow, and the main contribution to the integral in (3.7)
arises from large distances. Consequently the cross section is essentiallydetermined by the ANC.
A typical example is the7Be(p,γ)8B reaction [42], where the final8B ground state is bound by 137
keV only.

3.4 The phenomenologicalR-matrix method

The R-matrix method is well known in atomic and nuclear physics [11]. The basis ideais
to divide the space in two regions: the internal region (with radiusa), where the nuclear force is
important, and the external region, where the interaction between the nucleiis governed by the
Coulomb force only. Although theR-matrix parameters do depend on the channel radiusa, the
sensitivity of the cross section with respect to its choice is quite weak. In theR-matrix method, the
energy dependence of the cross sections is obtained from Coulomb functions, as expected from the
Schrödinger equation.

The physics of the internal region is determined by a numberN of poles, which are character-
ized by energyEλ and reduced widthsγλ i . In a multichannel problem, theR-matrix at energyE is
defined as

Ri f (E) =
N

∑
λ=1

γλ iγλ f

Eλ −E
, (3.10)

which must be given for each partial waveJ (not written for the sake of clarity). Indicesi and f
refer to the initial and final channels. The pole properties are associatedwith the physical energy
and width of resonances, but not strictly equal. This is known as the difference between “formal"
and “observed" parameters, deduced from experiment. In a generalcase, involving more than
one pole, the link between those two sets is not straightforward (see Refs.[43, 44] for a general
formulation of this problem). The collision matrix, and therefore the cross sections, are directly
determined from theRmatrices in the different partial waves (see Refs. [10, 11]).

The method can be applied in two ways: (i) in thecalculable R-matrix, parametersEλ , γλ i

andγλ f are obtained from a variational calculation; (ii) in thephenomenological R-matrix variant,
these quantities are fitted to experiment. The calculableR-matrix method is used, for example in
microscopic calculations (see section 3.2). Variational methods are widely used in physics; they
rely on the choice of square-integrable basis functions, which tend to zero at large distances. The
correct Coulomb behaviour can be restored by using these basis functions in the internal region,
and the asymptotic behaviour (3.8) in the external region (see Ref. [11] for a review and recent
applications). In general this method is quite efficient in scattering problems:coupled-channel
theories, three-body problems, microscopic calculations, etc. Many applications exist in atomic
and in nuclear physics.

Although the origin of the phenomenological variant is identical, its application issomewhat
different. In nuclear astrophysics the main goal of theR-matrix method [10] is to parameterize some
experimentally known quantities, such as cross sections or phase shifts, with a small number of
parameters, which are then used to extrapolate the cross section down to astrophysical energies. A
well known example is the12C(α ,γ)16O reaction, which has been studied by many groups. In spite
of impressive experimental efforts, the lowest experimental energies are around 0.8 MeV, whereas
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the Gamow peak (at the typical He-burning temperatureT9 = 0.2) is E0 ≈ 0.3 MeV. At these
subcoulomb energies, the cross sections drop by several orders of magnitude, and extrapolation
techniques are necessary. We refer to Refs. [45] for recent works on this topic.

TheR-matrix method can be applied to transfer as well as to capture reactions. It isusually
used to investigate resonant reactions but is also suited to describe non-resonant processes [46].
In the latter case, the non-resonant behavior is simulated by a high-energy pole, referred to as the
background contribution, which makes theR-matrix nearly energy independent.

4. Specific examples

4.1 R-matrix parameterizations of the 12C(α ,γ)16O E2 cross section

The12C(α ,γ)16O reaction plays a major role in nuclear astrophysics [47], as it determines the
12C/16O ratio after helium burning. In the nuclear physics point of view, the12C(α ,γ)16O cross
section is very difficult for several reasons. The Gamow energy (≈ 300 keV at the typical He-
burning temperatureT = 2×108 K) is much lower than the Coulomb barrier, and the cross section
cannot be measured at stellar energies [2]. TheE1 multipolarity, although forbidden at the long
wavelength limit inN = Z nuclei, does not vanish owing to isospin impurities, and to the presence
of a 1− broad resonance near 2.5 MeV. A further specificity of the12C(α ,γ)16O cross section is
the presence, in both multipolarities, of a subthreshold state (1−

1 at Ec.m. = −45 keV forE1, and
2+1 at Ec.m. = −245 keV forE2) whose effect is dominant at stellar energies, but less important
in the experimental range. In addition, these states interfere with higher energy resonances (1−2 at
Ec.m. = 2.4 MeV for E1, 2+2 atEc.m. = 2.68 MeV forE2), and interference patterns show up in the
S-factor.

The importance of theE2 component in the12C(α ,γ)16O cross section was first pointed out
by Dyer and Barnes [48] in 1974. However, disentangling theE1 andE2 multipolarities requires
high-precision data and, in particular, angular distributions. According tomost recent estimates
[49], the E1 andE2 multipolarities are of similar amplitude in the capture cross section. The
goal of the present work [45] is to investigate theE2 multipolarity in a standardR-matrix analysis
involving the latest experimental data.

Definition (3.10) of theR-matrix is used for elastic scattering. For the capture cross section,
the gamma width of each pole is introduced, and theR-matrix theory is extended to electromagnetic
transitions [11]. As usual for thed-wave phase shift we useN = 4 poles, associated with the16O
states at−0.245 (2+1 ,λ = 1), 2.68 (2+2 ,λ = 2) and 4.36 MeV (2+3 ,λ = 3), complemented by a
background term (λ = 4). Several properties of these states are well known experimentally, and
are fixed in theR-matrix fits. We fit thed-wave phase shifts and the E2 capture data for various
values ofE4.

TheE2 S-factors are presented in Fig. 1 for different background energies. The experimental
data sets have a limited overlap between each other, which leads to rather highχ2 (≈ 3). This prob-
lem is well known, and arises from the experimental difficulties associated with the12C(α ,γ)16O
reaction. Fig. 1 shows that for smallE4 values theS factor strongly varies. Although theχ2 values
are weakly affected,E4 < 7 MeV should probably be discarded. Accordingly, only an upper limit
can be obtained for the extrapolatedS factor∼ 190 keV-b.
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Figure 1: 12C(α,γ)16O E2 Sfactors obtained byR-matrix fits for different background energiesE4 (labels).
Experimental data are as in Ref. [45].

From theR-matrix fits we conclude that current phase-shift and capture data alonecannot
provide an extrapolatedS factor with a low uncertainty. This conclusion is similar to that drawn
for the E1 multipolarity, but the16N β -decay data provide a strong constraint on the fit. For the
E2 component, we have used the 2+

1 ANC provided by the GCM as additional constraint (see
Ref. [45]). This value is in good agreement with available data and, owing tothe α+12C cluster
structure, is expected to be reliable in a cluster model. This external data wasshown to strongly
reduce the uncertainties on theR-matrix fits. TheSfactor determined in this way (SE2(300 keV) =
42±2 keV-b) is slightly lower than a microscopic cluster calculation (50 keV-b) [45], but should
be more reliable as all properties of the 2+ resonances are taken from experiment.

4.2 Application of microscopic cluster models to7Be(p,γ)8B

As an example of microscopic cluster models we choose the7Be(p,γ)8B S-factor, which plays
a crucial role in the solar-neutrino problem [50]. Many direct as well asindirect measurements have
been performed in order to reduce the uncertainties on theS-factor at zero energy (see Ref. [51]
for an overview). As a high precision is required forS(0), the extrapolation down to astrophysical
energies should be done very carefully. Current experiments are performed in a limited energy
range, which requires the use of a theoretical model to deriveS(0). The reliability of the model can
be tested in the energy range where data exist, which provides some "confidence level" on the ex-
trapolation. In most experiments, a microscopic cluster model [33] (hereafter referred to as DB94)
is used for the extrapolation. This model takes account of the7Be deformation, of inelastic and
rearrangement channels, and has been tested with spectroscopic properties of8B and8Li, as well
as with the7Li(n,γ)8Li mirror cross section. An update of the calculation has been performed more
recently [52]. The theoreticalS-factors obtained with two different nucleon-nucleon interactions
(MN and V2) are shown in Figure 2.

As discussed in DB94, a cluster model provides an upper bound of the capture cross section.
The "exact"8B wave function should contain many other configurations (other arrangements, 4
clusters, 5 clusters, etc.). Accordingly, the capture cross section which, up to the electromagnetic
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operator, is nothing but the overlap between the initial7Be+p and final8B wave functions, is in
general overestimated by a cluster model. This overestimation factor decreases as the model is
improved.

0

20
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ac
to

r 
(e
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 b

)

Hammache et al. Hass et al.

Strieder at al. Baby et al.

Junghans et al. Schumann et al.

Davids et al.

7Be(p,γ)8B MN

V2

Figure 2: 7Be(p,γ)8B S factor with two nucleon-nucleon interactions (V2 and MN, solid lines from [52]).
The results of DB94 are shown as a dashed line. See Ref. [52] for references to the data.

The E2 transition between the 2+ ground state and the first excited 1+ state in the mirror
8Li nucleus is an interesting issue, and indirectly related to the7Be(p,γ)8B reaction. About 20
years ago, the quadrupole (E2) excitation of8Li was measured using a radioactive beam [53, 54],
and unexpectedly largeB(E2) values were obtained (B(E2,2+ → 1+) = 30±15e2.fm4 and 55±
15e2.fm4). These large values cannot be explained by a microscopic three-cluster model [55] which
provides much smallerB(E2) (2.1e2.fm4), although it nicely reproduces many other properties of
8Li and of similar light nuclei. This discrepancy raises a very challenging question for nuclear
physicists: if confirmed the very largeB(E2) obtained in [53, 54] would question the precision of
most nuclear models. Obviously a remeasurement of the Coulomb excitation of8Li with modern
techniques is desirable.

4.3 Ab-initio calculation of the 2H(d,γ)4He, 2H(d, p)3H and 2H(d,n)3He cross sections

The knowledge of the reaction cross sections at astrophysical energies is of great interest not
only for establishing imprints of the properties of nuclei in the universe butalso for understanding
an interplay between the structure and reactions of these nuclei based ona nucleon-nucleon (NN)
interaction. Aside from the astrophysical interest, the2H(d,γ)4He capture reaction is extremely
important from the nuclear physics viewpoint because its cross section atlow energies (below 0.3
MeV) is expected to be dominated byD-wave components in theα particle. Hence it should be
very sensitive to the tensor force in theNN interaction [56, 15, 57].

We have recently applied a multi-channel microscopic cluster model to study thephase shifts
of the p+3He [58] andd+ d, p+3H, n+3He [59] systems. The model combines the stochastic
variational method (SVM) [60, 61] with the microscopicR-matrix theory [11]. For the2H, 3H and
3He nuclei, we use combinations of Gaussian functions to solve the Schrödinger equation for the
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cluster intrinsic Hamiltonian [25]. The relative function between the clusters isalso expanded in a
Gaussian basis. Matrix elements of the Hamiltonian can be obtained analytically [59].
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Figure 3: The astrophysicalS-factor of 2H(d, γ)4He reaction. Results calculated with the realistic (AV8′,
G3RS) and the effective (MN) potentials are compared to experiment (see Ref. [62]).

For the two-bodyNN interactionVi j we use two different realistic potentials, AV8′ [63] and
G3RS [64], that consist of central, tensor, and spin-orbit components. The latter potential is softer
than the former and gives slightly smallerD-state probabilities ind, 3H, andα [65]. It is crucial
to reproduce thed+d, p+3H, andn+3He two-body thresholds for comparing calculatedS-factors
to experiment. These thresholds are fairly well reproduced by the AV8′ and G3RS realistic inter-
actions. However, they can be still improved by including a phenomenological three-body force
taken from Ref. [66]. Because our main aim is to clarify the role of the tensor force, it is useful to
compare results obtained with the realistic interactions with that of an effectiveNN interaction that
contains no tensor force. Using such effective interaction is reasonable because onlys-shell nuclei
participate to the reactions. We adopt the MN central potential [30] with a standard value for the
admixture parameteru= 1. More detail can be found in Ref. [25].

Figure 3 displays the calculated astrophysicalS-factor for the2H(d,γ)4He reaction. Results
with both AV8′ (solid line) and G3RS (dashed line) potentials reproduce very well the experimental
data, especially its flat behavior at low energies (typical of an initials wave), whereas the MN
potential (dotted curve) shows a rapidly decreasing pattern asEcm decreases.

To clarify the energy-dependence of theS-factor, we studied the contributions of the three
incomingdd channels to theS-factor: 5S2, 1D2, and5D2 (we use the spectroscopic notation2I+1ℓJ).
Without tensor interaction theα particle only contains anI = 0 component and transitions from
the initial 5S2 and5D2 partial waves (I = 2) are therefore forbidden. With the realistic interactions,
including a tensor component, the first two channels give similar contributionsdown to about 0.3
MeV. Below that energy, the5S2 channel overwhelms the1D2 channel, yielding the flat behavior,
whereas above that energy the1D2 channel contributes more than the5S2 channel. TheE2 transition
in the case of MN potential occurs through the path (iii), and the corresponding S-factor (dotted
curve in Fig. 3) is quite similar to the1D2 contribution of the realistic interactions. The energy-
dependence of theS-factor, obviously different between the realistic and effective interactions, is
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attributed to the role played by the tensor force. Without the tensor force, we cannot reproduce the
2H(d,γ)4He astrophysicalS-factor below 0.3 MeV.
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Figure 4: 2H(d, p)3H and2H(d,n)3He astrophysicalS-factors calculated with the realistic (AV8′, G3RS)
and the effective (MN) potentials. See Ref. [62] for the experimental data.

Similar conclusions can be drawn for the2H(d, p)3H and2H(d,n)3He transfer reactions at low
energies. TheSfactors are presented in Fig. 4. They mainly occur from the transitions of thed+d
5S2 channel to theD-wave continuum ofp+3H or n+3He, which is also due to the tensor force.
Without the tensor force, these cross sections cannot be reproduced.

5. Conclusion

Nuclear astrophysics is a broad field, where many nuclear inputs are necessary. In particular,
charged-particle cross sections are quite important, and difficult to measure, owing to the low
energies and cross sections. Cluster models are well adapted to these reactions, since in the low-
mass region, the number of open channels is fairly small. The assumption of a cluster structure is
in general realistic and allows to find approximate solutions of thenA-body Schrödinger equation.
Many applications have been performed so far in nuclear astrophysics.One of the future challenges
for these models is the use of more realistic nucleon-nucleon interactions, and their extension to
higher mass systems.

In this work, we were only concerned with reactions, without discussing other aspects, such
as masses, beta decays, etc. In general, charged-particle induced reactions occur at energies much
lower than the Coulomb barrier, and the corresponding cross sections are therefore extremely small.
An other characteristic is that there is almost no systematics. In the low-mass region, each reaction
presents its own peculiarities and difficulties, in the theoretical as well as in theexperimental view-
points. Nevertheless some hierarchy can be established among reactions of astrophysical interest.
Transfer reactions, arising from the nuclear interaction, present cross sections larger than capture
cross sections which have an electromagnetic origin. In addition, the resonant or non-resonant
nature of a reaction also affects the cross section.

We have discussed different theoretical models often used in nuclear astrophysics. The poten-
tial model and theR-matrix method are widely applied in this field; they are fairly simple and well
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adapted to low-energy reactions. On the other hand microscopic cluster models have a stronger
predictive power, since the only rely on a nucleon-nucleon interaction, and on the assumption of a
cluster structure for the nucleus.

A very impressive amount of work has been devoted to nuclear astrophysics in the last decades.
Although most reactions involving light nuclei are sufficiently known, some reactions, such as
12C(α ,γ)16O still require much effort to reach the accuracy needed for stellar models. In the
nucleosynthesis of heavy elements (s process,p process), further problems arise from the level
densities and the cross sections should be determined from statistical models.A better knowledge
of these cross sections represents a challenge for the future.
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