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This work introduces a new treatment for the spallation reaction, which is the main mechanism for
neutron generation in ADS reactors. These reactions are conventionally described by two coupled
stages with different scales in time. First a rapid intranuclear cascade, followed by a slow particle
evaporation process in competition with the fission process. The cascade phase was described by
a time-dependent Multi-Collisional Monte Carlo (MCMC) numerical code, where many-particle
system evolves in time along the cascade. This work introduces, in the cascade phase, a baryon
effective mass, to better represent the effect of nuclear binding energy on the nucleon kinematics.
We discuss the implications of the inclusion of this baryon effective mass to the evaporation
phase, and to the particles production at the end of the whole reaction process. The diffusion of
neutrons was analytically solved by improving the treatment presented in a recent work [1], by
using two groups of energy. It is exhibited an analytical solution even using this more precise
approximation. We explicitly show the dependence of the rector power on the neutron source
current, and determines the power for different levels of subcritical operational regime of the
reactor.
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1. Introduction

The Accelerator-Driven System (ADS) is an innovative reactor with the aim of burning long
radioactive half-life waste. This device was proposed by Rubbia et al. [2], and is essentially com-
posed by a particle accelerator around 1 GeV nominal energy, which induces spallation reactions
in liquid lead target. This reaction generates neutrons to form the external source for a sub-critical
reactor, where the liquid lead works as the reactor coolant itself, circulating by natural convection.

Spallation reactions induced by protons have been well described as a two-step process. In
the first step, the incident proton transfers energy to the target nucleus, inducing an intranuclear
cascade process. At this stage, individual nucleons can be ejected, and mesons can be produced.
Particles escape from the nucleus carrying out part of the energy transferred by the incident proton.
The remaining energy is redistributed by elastic collisions leading to thermal equilibrium of a hot
excited nucleus. The subsequent step is the particle evaporation phase, where the cascade residual
nucleus de-excites by emitting particles in competition with the fission process. This last phase is
the most relevant to the production of neutrons. However, it is the cascade phase that determines
the excitation energy of the residual nucleus, the most relevant quantity to the development of the
evaporation phase. One of the main goals of this work is to investigate the role of the nucleon
effective mass to the excitation energy of the cascade residual nucleus.

In addition, we describe the neutron diffusion process in order to elucidate the effect of the
neutron source current on the reactor power for different levels of the reactor sub-criticality. We
decided to look for analytic solutions of the neutron diffusion equation, applying the two-energy
group diffusion treatment as an improvement to the recent calculation presented in Ref. [1]. The
use of an analytic approach has the main advantage of making transparent the influence of the
neutron source intensity on the study of the reactor sub-criticality level.

2. Spallation reaction description and cascade phase

The spallation reaction is the mechanism responsible for the neutron generation in ADS reac-
tors. We have implemented a Monte Carlo simulation of the reaction process, including two stages:
the intranuclear cascade phase and the particle evaporation phase in competition with the fission
process. The Multicollisional Monte Carlo (MCMC) code is used to perform the computational
simulation [3, 4].

In the intranuclear cascade, the proton beam interacts with a nucleon of the target nucleus
as the primary collision process. Then, successive uncorrelated binary nucleon-nucleon collisions
continue along the time. The time step is defined as the inter-collision time interval. After each
nucleon-nucleon collision, all (A+1)-nucleons in the system have their spatial coordinates updated
to re-calculate the next collision to be processed. The starting point for simulation consists in spec-
ifying the initial nuclear configuration of nucleons inside the target nucleus. The nuclear surface is
simulated by a sphere of radius R = r0A1/3 (with r0 = 1.18 fm), where A is the mass number of the
target nucleus, and initial position for nucleons are randomly generated via Monte Carlo, according
to a homogeneous density distribution [4 – 6]. The total baryon-baryon cross section is extracted
from experimental data presented in the literature [7 – 10]. Binary collisions are solved kinemat-
ically and the final state of the pair of particles is determined by relativistic energy-momentum
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conservation. Baryon-baryon inelastic collisions are also considered; thus pions, kaons and heavy
baryonic resonances can be generated along the system time evolution. Micro-processes regarded
in the calculation are shown in Table 1.

Table 1: Collisional processes considered in the MCMC description.

Interaction Description
B1B2→ B1B2 Baryon-baryon elastic collision
NN 
 N∆ Formation and recombination of the ∆-resonance
NN 
 NN∗ Formation and recombination of the N∗-resonance
∆ 
 Nπ ∆-resonance decay and pion absorption
N∗
 Nπ N∗-resonance decay and pion absorption

The Pauli Exclusion Principle was considered by examining the availability of the phase space
to the final state of the particles involved in the collision [11].

The cascade phase ends when the particle production and the particle emission processes
cease. However, it is still necessary to achieve the relaxation of the particles energy distribution,
when a thermal equilibrium is reached by the residual nucleus configuration. Then the evaporation
regime starts with excitation energy E∗ defined at the end of the cascade phase. A competition
between the chain of thermal emission of particles (protons, neutrons and alpha particles) and fis-
sion process is initiated, being the whole evaporation regime governed by relative probabilities of
different channels [12 – 21].

2.1 The evaporation phase

In this phase, a chain of thermal emission of particles is initiated in competition with the fission
process. The ratio between the decay width of k-th and of i-th emission channels is given by the
Weisskopf’s statistical model [12], as

Γk

Γi
=

γk

γi

E∗k
E∗i

ai

ak
exp
[
2
(√

akE∗k −
√

aiE∗i
)]

. (2.1)

The level density parameter for neutron emission is [13]

an = ã
{

1+[1− exp(−0.051E∗)]
∆M
E∗

}
, (2.2)

where ∆M (expressed in MeV) is the shell correction in the calculated nuclear mass taken from
[14], and

ã = 0.114A+0.098A2/3MeV−1.

Small corrections on E∗ due to pairing energy effects have been neglected in equation (2.2).
For all other particle emission processes this quantity is related to an by

ak = rkan, (2.3)

where rk is a dimensionless constant. For the k-th particle, γk = gkmk/(π
2h3), where h is the Planck

constant, gk is the number of spin states (gk = 2 for neutrons and protons; gk = 1 for α-particle)
and mk is the particle free rest mass.
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The excitation energy of the nucleus after the k-particle emission is

E
′∗ = E∗− Ēev

k , (2.4)

where

Ēev
k = (Sk +Vk)+2

√
E∗− (Sk +Vk)

an
(2.5)

is the average total energy removed from the nuclear system by the evaporation of k-particle ac-
cording to a Weisskopf distribution curve [15], for k = n, p or α and Vn = 0. The approximation
an = ap = aα (rp = rα = 1 in Eq. (2.3), as prescribed in Ref. [18]) was considered and Sn, Sp and
Sα are the separation energies for neutron, proton and alpha particle, respectively.

The Coulomb potential for protons is [16, 17]

Vp = C
Kp(Z−1)e2

r0(A−1)1/3 +Rp

and for alpha particle is

Vα = C
2Kα(Z−2)e2

r0(A−4)1/3 +Rα

,

where Kp = 0.70 and Kα = 0.83 are the Coulomb barrier penetrability for protons and alpha par-
ticles, respectively, Rp = 1.14 fm is the proton radius, Rα = 2.16 fm is the alpha particle radius,
r0 = 1.2 fm, and

C = 1− E∗

B

is the charged-particle Coulomb barrier correction due to nuclear temperature (B as the total nuclear
binding energy).

The relative fission probability (see ref. [21]) is obtained using the fission width from the liquid
drop model by Bohr and Wheeler [20], and the neutron emission width from Weisskopf theory [12].
The MCMC code determines, for each step of the evaporation phase, the nuclear fission, neutron,
proton, and alpha particle emission probabilities (F , N, P and A, respectively) by

F =
Γ f

Γn +Γp +Γα +Γ f
; (2.6)

N =
Γn

Γn +Γp +Γα +Γ f
; (2.7)

P =
Γp

Γn +Γp +Γα +Γ f
; (2.8)

A =
Γα

Γn +Γp +Γα +Γ f
. (2.9)

Finally, the evaporation chain is governed by relative branching ratios of Eqs. (2.6–2.9) via
Monte Carlo technique.
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2.2 The role of nucleon effective mass to the cascade phase

The initial effective mass of bound nucleons, m∗, is taken as a free parameter, covering the
typical values obtained by mean-field calculation [22, 23] to finite nuclei. During the time evolution
of the system, particles leaving the nuclear environment have effective mass value restored to the
free nucleon mass. To preserve the total energy and momentum conservation of the system, the
remaining bound nucleons must have their effective mass also changed as (m∗i → αm∗i ), with the
factor α determined by,

α =
E
(
E + εi

)
+

√[
E(E + εi

)]2− [E2− p2
i

][(
E + εi

)2−m2
0

]
E2− p2

i
, (2.10)

where m0 is the baryon free mass, εi =
√

p2
i +m∗2i is the energy of the i particle, pi is the cor-

responding momentum and E =
(
Σ jε j

)
, being the subscript i used for emitted particle and the

subscript j to bound particles. In Fig. 1, the time evolution of bound nucleons effective mass dur-
ing the cascade phase, starting with different initial values, is shown. The reaction is p+208Pb at 1
GeV incident energy.

The use of an effective mass varying in time implies different kinematic relations for suc-
cessive intranuclear collisions (see Fig. 1). It affects directly the energy transference leading to
different final excitation energy results for the cascade residual nucleus, as shown in Fig. 2.

The excitation energy and number of emitted particles are determined at the end of the rapid
and pre-equilibrium phase. These are the key values to start the evaporation phase. Consequently,
changes in the baryonic effective mass during cascade phase implies different evaporative chains
from the same hot nucleus. The emitted particle yield and the energy available for fission events are
directly dependent on the residual nucleus excitation energy. In Table 2, results of the neutron yield
of rapid and slow phases are presented. One can clearly observe the dominance of the evaporation
phase for the yield of neutrons in the whole reaction process.

Table 2: Average multiplicity of neutron, proton, pions and alpha (n, p, π and α , respectively) produced in
the cascade and evaporation phases. Different initial values of the effective mass, m∗ (in units of the nucleon
free mass, m0) were adopted. The average number of fission ( f ) of the residual hot nucleus in the evaporation
phase is also shown. The beam energy is 1 GeV incident on a Pb-208 target. The cascade average residual
nucleus excitation energy, E∗, is also presented.

m∗ = 0.6m0 m∗ = 0.7m0 m∗ = 0.8m0 m∗ = 0.9m0

(E∗ = 174.1 MeV) (E∗ = 189.9 MeV) (E∗ = 209.6 MeV) (E∗ = 238.9 MeV)
Casc Evap Total Casc Evap Total Casc Evap Total Casc Evap Total

n 0.73 7.04 7.76 0.74 8.17 8.92 0.75 8.36 9.11 0.70 7.76 8.46
p 1.36 0.08 1.44 1.35 0.10 1.45 1.32 0.07 1.39 1.23 0.09 1.32
π 0.12 — 0.12 0.13 — 0.13 0.15 — 0.15 0.15 — 0.15
α — 0.17 0.17 — 0.18 0.18 — 0.08 0.08 — 0.08 0.08
f — 0.88 0.88 — 0.88 0.88 — 0.84 0.84 — 0.80 0.80

Another important result (not shown) is the calculated particle spectra. We observe that cas-
cade phase produces high energy neutrons (Tn > 100 MeV), whereas the neutrons with moderated
energies (Tn ≈ 8 MeV) are originated from the evaporation phase.
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Figure 1: Time evolution of the effective mass along the cascade phase, showing the decreasing in the
effective mass due to particle emission.

Figure 2: Relation between the excitation energy of the cascade residual nucleus and the variation of nucle-
ons effective mass.

3. Neutron diffusion for spherical reactor core

The neutron diffusion process in the reactor core has been well described by the neutron trans-
port equation [24]. Using the analytic description for two-energy groups approximation, an exten-
sion of the calculation presented in Ref. [1], one can treat the diffusion problem in terms of the
following equations:

−D1∇
2
Φ1 +ΣR1Φ =

1
keff

(
ν1Σ f 1Φ1 +ν2Σ f 2Φ2

)
(3.1)
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and
−D2∇

2
Φ2 +Σa2Φ2 = ΣS12Φ1. (3.2)

for (0 < r ≤ R), where D1 and D2 are the diffusion coefficients of neutron of group-1 and group-
2, respectively; Φ1 = Φ1(r) and Φ2 = Φ2(r) are the corresponding neutron flux; ΣR1 = ΣS12 +

Σa1 is the macroscopic cross section of neutron removal, ΣS12 is the macroscopic cross section
of scattering from group-1 to group-2; Σa1 and Σa2 are the cross sections of neutron absorption
process for the corresponding neutron groups; Σ f 1 and Σ f 2 are the cross sections of induced fission
by neutrons of groups 1 and 2; ν1 and ν2 are the average number of produced neutrons in fission
induced by group-1 and group-2 neutrons.

In Eqs. 3.1 and 3.2 the criticality of the diffusion process is controlled by the keff parameter
defined as,

keff =
ν1Σ f 1 +(ν2Σ f 2ΣS12)/(Σa2 +D2µ2)

ΣR1 +D1π2/R2 (3.3)

This system of equations satisfies the following boundary conditions:

(i) Φ1(r = R̃) = 0; (iii) r = 0→ 4πr2~J1 = I0~ar; (3.4)

(ii) Φ2(r = R̃) = 0; (iv) r = 0→ 4πr2~J2 = 0; (3.5)

with I0 being the source flux. This flux is directly determined by the results of spallation reaction
mechanism as discussed in previous section.

The solution of the simultaneous linear differential equation (3.1 and 3.2) reads:

Φi =
I0

r
(c1i sin µr+ c2i cos µr+ c3i sinhλ r+ c4i coshλ r), (3.6)

in which the constants are obtained by the use of the boundary conditions in Eqs. 3.4 and 3.5 (for
i = 1,2 according to the energy group).

The reactor power was determined as,

P = I0

R∫
r=0

Σ f

[
W1ϕ1(r)+W2ϕ2(r)

]
4πr2dr (3.7)

where ϕi is the flux per source current intensity (see Fig. 3), and W1 and W2 are the effective energy
released in fast and thermal fission processes.

Neutron fluency can be determined by neutron multiplicities studied in the previous section,
and by using constants of a typical PWR (“Pressurizer Water Reactor”) sub-critical neutron flux
[24], which is shown in Fig. 3. It was observed that the reactor power is proportional to the intensity
of the source (as shown in Eq. 3.7). The response of the reactor in the sub-critical regime is more
significant for higher values of keff as shown in Fig. 4.
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Figure 3: Neutron flux of group-1 per source intensity as a function of distance to the source in part-(a).
Same result for group-2 neutron in part-(b). For different values of the effective factor of neutrons, keff =
0.6, 0.7, 0.8, 0.9, 0.95 and 0.98.

Figure 4: Effect of the source current intensity I0 (in neutrons/sec) on reactor power for different sub-
criticality levels.

4. Conclusions

In the study of the neutron source, we determined the importance of baryonic effective mass
to the particle yield, specially to the neutron multiplicity, which is a key element to calculate the
source current for the ADS nuclear reactor device. We have investigated the excitation energy of
the hot residual cascade nucleus. Results point out to a significant dependence of this excitation
energy on the effective mass of nucleons in cascade phase.

In the neutronic calculation of the sub-critical reactor, we have used a two-energy groups
approach to solve the neutron diffusion equation. This treatment allows to establish analytically a
direct relationship between power generation and neutron source current (Eq. 3.7), and also permits
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to easily analyze the reactor power for different levels of the reactor sub-criticality, as shown in Fig.
4.
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