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I present an independent-particle shell-model formalism for the calculation of the primary proton

asymmetry of nonmesonic weak hypernuclear decay in terms ofrelative-space transition ampli-

tudes. In previous work the asymmetry has been usually defined in terms of the single-proton

angular distribution, having in mind the measurement of this quantity by single-proton detec-

tion, as done in the older experiments. More recently one strives for better determinations of

this quantity through proton-neutron coincidence measurements, which are expected to suffer

less contamination from rescattering inside the nuclear medium. Therefore I start here from a

definition of the asymmetry based on the angular distribution of a proton in coincidence with a

neutron in back-to-back kinematics. The two calculated quantities are not identical, but should

have similar numerical values due to the fact that the opening-angle distribution for the primary

nucleons is strongly peaked at this momentum orientation.
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Shell model formalism for the proton asymmetry in the nonmesonic weak decay Alfredo P. Galeão

1. Introduction

The free decay of aΛ hyperon occurs almost exclusively through the mesonic mode,Λ → πN,
but inside hypernuclei a new channel opens up and rapidly dominates thedecay forA ≥ 5. This
is the nonmesonic mode,ΛN → nN, whose large momentum transfers (≈ 400 MeV/c) are enough
to overcome the Pauli blocking. At present, this decay mode is the only way available to probe
the strangeness-changing weak interaction between hadrons. To this end, the existing experimental
data of greatest theoretical interest are the full (single-nucleon induced) nonmesonic decay rate,Γ =

Γn+Γp = Γ(Λn→ nn)+Γ(Λp→ np), and then/p branching ratio,Γn/Γp, of several hypernuclei,
and the vector proton asymmetry,AV , in the decay of polarized s- and p- shell hypernuclei. These
are not raw data, however, since it is necessary to disentangle from themeasurements the effect
of rescattering of the primary nucleons inside the nuclear medium due to finalstate interactions.
To help in this task there have recently become available some good quality single-nucleon and
two-nucleon-coincidence spectra and opening angle distributions of the decay products of a few
light hypernuclei. For a review and updates on nonmesonic hypernuclear decay, see Refs. [1, 2, 3],
and, for experimental determinations of the proton asymmetry, see Refs. [4, 5, 6].

Most of the theoretical work on nonmesonic decay constructs the transitionpotential by means
of one-meson-exchange models with coupling constants fixed through unitary symmetry argu-
ments, as explained, for instance, in Ref. [7]. All such calculations, including those by the present
author and collaborators [8, 9, 10], reproduce quite well the full nonmesonic decay rate, but, until
recently, seemed to strongly disagree with the experimental values for the other two observables. In
the last few years, however, progress in both the theoretical and the experimental sides has solved
this discrepancy for the branching ratio. But the question is not yet quite settled for the proton
asymmetry.

2. Back-to-back proton asymmetry

The rate for the proton-induced (Λp → np) nonmesonic decay of a hypernucleus in state
|νI JI MI 〉 with the emission of a neutron and a proton having momenta and third components
of spin and isospin (pn, sn, tn ≡ −1/2) and (pp, sp, tp ≡ +1/2), respectively, and leaving be-
hind a residual nucleus in state|νFJFMF〉 is given by Fermi’s golden rule (̄h = c = 1) asdΓp =

2π d3pn
(2π)3

d3pp

(2π)3 δ (E.C.) |〈pnsntn ppsptp νFJFMF |V|νI JI MI 〉|2, whereδ (E.C.) is the energy-conserving
delta function andV is the transition potential. An incoherent mixture having vector polarization
P along the direction̂n is described by the density matrix [11]ρI = 1

2JI +1

[

1I +
3

JI +1PJI · n̂
]

.

Then, taking the trace ofρI dΓp and summing/integrating over the free final states/variables, one
gets for the angular distribution of the emitted proton in coincidence with a neutron in back-to-back
kinematics (̂pn = −p̂p) in the decay of this incoherent but polarized initial state

Ipn(p̂p) =
1

2JI +1

[

∑
MI

σ(π;νI JI MI )+
3

JI +1
P p̂p · n̂∑

MI

MI σ(π;νI JI MI )

]

, (2.1)

where the back-to-back strengths are given by

σ(π;νI JI MI ) =
2π

(4π)4 ∑
νF JF

∫

d f̃νF JF ∑
snspMF

|〈p̃nsntn p̃psptp νFJFMF |V|νI JI MI 〉|2 . (2.2)
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We have introduced the compact notation
∫

d f̃νF JF . . . =

(

2
π

)2∫

p2
pdpp

∫

p2
ndpn δ

(

p2
n

2M
+

p2
p

2M
+

(pp− pn)
2

2MR
−∆νF JF

)

. . . (2.3)

where M is the nucleon mass, MR is that of the residual nucleus, and∆νF JF is the liberated energy.
The matrix element in (2.2) must be computed in the proton helicity frame, where thez-axis points
along the proton momentum. Therefore,p̃p = pp ez andp̃n = −pn ez.

The back-to-back vector proton asymmetry,AV , for this decay is operationally defined by

P AV =
Ipn(p̂p= n̂))− Ipn(p̂p=−n̂))

Ipn(p̂p= n̂))+ Ipn(p̂p=−n̂))
, (2.4)

leading, through (2.1), to the following theoretical expression

AV =
3

JI +1

∑
MI

MI σ(π;νI JI MI )

∑
MI

σ(π;νI JI MI )
. (2.5)

It is convenient to split the transition potential into its parity-conserving (PC) and a parity-
violating (PV) parts, i.e., to writeV = VPC +VPV , whereVPC is invariant under space inversion,
while VPV changes sign. Then, assuming thatV is time-reversal invariant, one gets

∑
MI

∑
snspMF

|〈p̃nsntn p̃psptp νFJFMF |V|νI JI MI 〉|2 =

1
2 ∑

MI

∑
SMSMF

(

∣

∣∑
T

(−)T〈p̃P̃SMST0νFJFMF |VPC|νI JI MI 〉
∣

∣

2

+
∣

∣∑
T

(−)T〈p̃P̃SMST0νFJFMF |VPV|νI JI MI 〉
∣

∣

2
)

, (2.6)

∑
MI

MI ∑
snspMF

|〈p̃nsntn p̃psptp νFJFMF |V|νI JI MI 〉|2 =

ℜ∑
MI

MI ∑
SMSMF

[(

∑
T

(−)T〈p̃P̃SMST0νFJFMF |VPC|νI JI MI 〉
)

×
(

∑
T ′

(−)T ′〈p̃P̃SMST ′0νFJFMF |VPV|νI JI MI 〉
)∗ ]

. (2.7)

On the right hand sides, we have performed the change of basis|p̃nsntn p̃psptp〉 → |p̃P̃SMST0〉,
whereS andT are the total spin and isospin, respectively,p̃ ≡ 1

2(p̃p− p̃n) = 1
2(pp + pn)ez, P̃ ≡

p̃p + p̃n = (pp− pn)ez and we have noticed that〈 1
2tn

1
2tp |TMT 〉 = 1√

2
(δT1−δT0)δMT 0 .

3. Shell-model formalism

From what we have shown in Ref. [12] and fromYlm(±ez) = (±)l
√

2l+1
4π δm0, it follows that

〈p̃P̃SMST0 νFJFMF |V|νI JI MI 〉 =
4π√

2JI +1 ∑
lL

i−L i−l sign(pp− pn)
L[Ll ]1/2

×∑
JK

〈JFMF JMS|JI MI 〉C(JLKlSMS)

× ∑
nl̄ S̄N

〈νI JI ||
(

a†
Λa†

tp

)

nl̄ S̄KNLJ
||νFJF〉∗( P̃L|NL)M (p̃lSK T0;nl̄ S̄KΛtp) . (3.1)
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HereC(JLKlSMS) = 〈KMSL0|JMS〉〈 l0SMS|KMS〉,

M (p̃lSK T0;nl̄ S̄KΛtp) =
1√
2

[

1− (−)l+S+T
]

((p̃l S)K T0|V|(nl̄ S̄)K Λtp) (3.2)

are the relative-space transition matrix elements (Jastrow-like correlation functions are implied),
and we have introduced the generalized spectroscopic amplitudes

〈νI JI ||
(

a†
Λ a†

tp

)

nl̄ S̄KNLJ
||νFJF〉∗ =

(nl̄ S̄K NLJ|nΛlΛ jΛ nplp jpJ) 〈νI JI ||
(

a†
nΛlΛ jΛΛ a†

nplp jptp

)

J
||νFJF〉∗ , (3.3)

where the second factor is a standard spectroscopic amplitude and the first one is a recoupled
Moshinsky coefficient, i.e.,

(nl̄ S̄K NLJ|nΛlΛ jΛ nplp jpJ) =

∑
λ

[λ S̄KL]1/2











l̄ L λ
S̄ 0 S̄
K L J











[ jΛ jpλ S̄]1/2











lΛ
1
2 jΛ

lp
1
2 jp

λ S̄ J











(nl̄ NL λ |nΛlΛ nplp λ ) . (3.4)

The last factor above is the usual Moshinsky coefficient [13]1 and we are using the notation
[ab. . .] = (2a+ 1)(2b+ 1) . . .. (Notice that, for the simple version of the shell model we are
adopting,2 the appropriate values ofnΛlΛ jΛ andnplp jp in Eq. (3.3) are dictated byνF and νI .)

Finally ( P̃L|NL) =
∫ ∞

0 R2 jL(P̃R) RNL

(

b/
√

2, R
)

dR, whereb is the oscillator size parameter, is
the center-of-mass radial overlap, for which explicit expressions areavailable [8, 14].

To compute the quantities (2.6) and (2.7), we will need the intermediate summations
{

SUM(2.6)

SUM(2.7)

}

= ∑
MS

C(JLKlSMS)C(J′L′K′l ′SMS)

×
{

∑MF MI
〈JFMFJMS|JI MI 〉〈JFMFJ′MS|JI MI 〉

∑MF MI
MI 〈JFMF JMS|JI MI 〉〈JFMF J′MS|JI MI 〉

}

. (3.5)

Well known identities [15] lead to

SUM(2.6) = δJJ′ δ (JF ,J,JI )

[

JI

J

]

∑
MS

C(JLKlSMS)C(JL′K′l ′SMS) (3.6)

and

SUM(2.7) = (−)JI +JF [JI ]
3/2
√

JI (JI +1)

{

1 J J′

JF JI JI

}

×∑
MS

(−)MS

(

1 J J′

0 −MS MS

)

C(JLKlSMS)C(J′L′K′l ′SMS) , (3.7)

1With its phase adapted to our convention for the relative coordinate as explained in Ref [8].
2Namely, an independent-particle harmonic-oscillator shell model [8, 14]. However the formalism can be easily

extended to more sophisticated versions of the shell-model through an expansion in the harmonic-oscillator basis.

4



P
o
S
(
X
X
X
I
V
 
B
W
N
P
)
1
1
9

Shell model formalism for the proton asymmetry in the nonmesonic weak decay Alfredo P. Galeão

where[a/b] = (2a+1)/(2b+1). Then, from Eqs. (2.2), (2.6), (2.7), (3.1), and (3.5), we arrive at










∑MI
σ(π;νI JI MI )

∑MI
MI σ(π;νI JI MI )











=
1

8π[JI ]
ℜ ∑

νF JF

∫

d f̃νF JF

×∑
S

∑
TT′

∑
ll ′

i−l+l ′ [ll ′]1/2 δ ((−)T ,(−)l+S+1)δ ((−)T ′
,(−)l ′+S+1)

× ∑
KK′

∑
LL′

δ ((−)L,(−)L′
) i−L+L′

[LL′]1/2∑
JJ′











SUM(2.6)

SUM(2.7)











∑
nl̄ S̄

∑
n′ l̄ ′S̄′

δ ((−)l̄ ,(−)l̄ ′)

×∑
N

〈νI JI ||
(

a†
Λ a†

tp

)

nl̄ S̄KNLJ
||νFJF〉∗ ( P̃L|NL)

×∑
N′
〈νI JI ||

(

a†
Λ a†

tp

)

n′ l̄ ′S̄′K′N′L′J′
||νFJF〉( P̃L′ |N′L′ )∗

×











δTT′ δ ((−)l ,(−)l ′)

(δTT′ −1)δ ((−)l ,(−)l ′+1)











×



















[M PC(p̃lSK T0;nl̄ S̄KΛtp)M
PC(p̃l′SK′ T ′0;n′ l̄ ′S̄′K′ Λtp)

∗

+ M PV(p̃lSK T0;nl̄ S̄KΛtp)M
PV(p̃l′SK′ T ′0;n′ l̄ ′S̄′K′ Λtp)

∗ ]

M PC(p̃lSK T0;nl̄ S̄KΛtp)M
PV(p̃l′SK′ T ′0;n′ l̄ ′S̄′K′ Λtp)

∗



















, (3.8)

where we have explicitly indicated, through Kronecker deltasδ (a,b) ≡ δab, the restrictions im-
posed on the summations by several selection rules. This allows us to write

∑
MI

σ(π;νI JI MI ) =
1

8π[JI ]
ℜ ∑

νF JF

∫

d f̃νF JF ∑
S

∑
TT′

δTT′ ∑
ll ′

δ ((−)l ,(−)l ′)

×δ ((−)T ,(−)l+S+1)δ ((−)T ′
,(−)l ′+S+1) ∑

KK′
∑
nl̄ S̄

∑
n′ l̄ ′S̄′

δ ((−)l̄ ,(−)l̄ ′)

×
[

CPCPC
νF JF

(lSK T,nl̄ S̄; l ′K′T ′,n′ l̄ ′S̄′; P̃)

×M
PC(p̃lSK T0;nl̄ S̄KΛtp)M

PC(p̃l′SK′ T ′0;n′ l̄ ′S̄′K′ Λtp)
∗

+ CPV PV
νF JF

(lSK T,nl̄ S̄; l ′K′T ′,n′ l̄ ′S̄′; P̃)

× M
PV(p̃lSK T0;nl̄ S̄KΛtp)M

PV(p̃l′SK′ T ′0;n′ l̄ ′S̄′K′ Λtp)
∗ ] (3.9)

and

∑
MI

MI σ(π;νI JI MI ) =
1

8π[JI ]
ℜ ∑

νF JF

∫

d f̃νF JF ∑
S

∑
TT′

(δTT′ −1) ∑
ll ′

δ ((−)l ,(−)l ′+1)

×δ ((−)T ,(−)l+S+1)δ ((−)T ′
,(−)l ′+S+1) ∑

KK′
∑
nl̄ S̄

∑
n′ l̄ ′S̄′

δ ((−)l̄ ,(−)l̄ ′)

×CPCPV
νF JF

(lSK T,nl̄ S̄; l ′K′T ′,n′ l̄ ′S̄′; P̃)

×M
PC(p̃lSK T0;nl̄ S̄KΛtp)M

PV(p̃l′SK′ T ′0;n′ l̄ ′S̄′K′ Λtp)
∗ (3.10)

The expressions for the coefficientsCPCPC
νF JF

, CPV PV
νF JF

andCPCPV
νF JF

can be obtained by comparison with
Eq. (3.8).
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4. Summary

The vector proton asymmetry,AV , or equivalently the intrinsic asymmetry parameter [11],

aΛ =







AV for JI = JC +1/2

−JI +1
JI

AV for JI = JC−1/2,
(4.1)

whereJC is the spin of the hypernuclear core, thus defined in order to subdue its dependence
on the hypernuclear spin, is an important observable of nonmesonic weakdecay. Being related
to interference terms between parity-conserving and parity-violating transition amplitudes, it not
only contains further information when compared to the transition rate and the neutron-to-proton
branching ratio, but also has a greater power to discriminate between different models of hypernu-
clear nonmesonic decay. Discrepancies between its measured and calculated values still remain.

It seems appropriate, therefore, to develop a general formalism for its theoretical computation
within a shell-model approach. This we have done in the present contribution. The general expres-
sions are rather involved, but they can certainly be simplified by adopting suitable approximations,
such as limiting the initial state to ans-wave, as illustrated, for instance, in Ref. [10]. This, however,
has been left for a future development.
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055209.

[15] A. R. Edmonds,Angular Momentum in Quantum Mechanics, 2nd ed., 3rd printing, Princeton Univ.
Press, 1974.

6


