Shell model formalism for the vector proton asymmetry in the nonmesonic weak hypernuclear decay

Alfredo P. Galeão*
Instituto de Física Teórica, UNESP, Universidade Estadual Paulista - SP
E-mail: galeao@ift.unesp.br

I present an independent-particle shell-model formalism for the calculation of the primary proton asymmetry of nonmesonic weak hypernuclear decay in terms of relative-space transition amplitudes. In previous work the asymmetry has been usually defined in terms of the single-proton angular distribution, having in mind the measurement of this quantity by single-proton detection, as done in the older experiments. More recently one strives for better determinations of this quantity through proton-neutron coincidence measurements, which are expected to suffer less contamination from rescattering inside the nuclear medium. Therefore I start here from a definition of the asymmetry based on the angular distribution of a proton in coincidence with a neutron in back-to-back kinematics. The two calculated quantities are not identical, but should have similar numerical values due to the fact that the opening-angle distribution for the primary nucleons is strongly peaked at this momentum orientation.

PACS: 21.80.+a, 13.30.Eg, 13.75.Ev

XXXIV edition of the Brazilian Workshop on Nuclear Physics
5-10 June 2011
Foz de Iguaçu, Parana state, Brasil

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/
1. Introduction

The free decay of a Λ hyperon occurs almost exclusively through the mesonic mode, \(\Lambda \rightarrow \pi N \), but inside hypernuclei a new channel opens up and rapidly dominates the decay for \(A \geq 5 \). This is the nonmesonic mode, \(\Lambda N \rightarrow nN \), whose large momentum transfers (\(\approx 400 \text{ MeV}/c \)) are enough to overcome the Pauli blocking. At present, this decay mode is the only way available to probe the strangeness-changing weak interaction between hadrons. To this end, the existing experimental data of greatest theoretical interest are the full (single-nucleon induced) nonmesonic decay rate, \(\Gamma = \Gamma_n + \Gamma_p = \Gamma(\Lambda n \rightarrow nn) + \Gamma(\Lambda p \rightarrow np) \), and the \(n/p \) branching ratio, \(\Gamma_n/\Gamma_p \), of several hypernuclei, and the vector proton asymmetry, \(A_V \), in the decay of polarized s- and p- shell hypernuclei. These are not raw data, however, since it is necessary to disentangle from the measurements the effect of rescattering of the primary nucleons inside the nuclear medium due to final state interactions. To help in this task there have recently become available some good quality single-nucleon and two-nucleon-coincidence spectra and opening angle distributions of the decay products of a few light hypernuclei. For a review and updates on nonmesonic hypernuclear decay, see Refs. [1, 2, 3], and, for experimental determinations of the proton asymmetry, see Refs. [4, 5, 6].

Most of the theoretical work on nonmesonic decay constructs the transition potential by means of one-meson-exchange models with coupling constants fixed through unitary symmetry arguments, as explained, for instance, in Ref. [1]. All such calculations, including those by the present author and collaborators [8, 9, 10], reproduce quite well the full nonmesonic decay rate, but, until recently, seemed to strongly disagree with the experimental values for the other two observables. In the last few years, however, progress in both the theoretical and the experimental sides has solved this discrepancy for the branching ratio. But the question is not yet quite settled for the proton asymmetry.

2. Back-to-back proton asymmetry

The rate for the proton-induced (\(\Lambda p \rightarrow np \)) nonmesonic decay of a hypernucleus in state |\(\nu_I J M_I \rangle \) with the emission of a neutron and a proton having momenta and third components of spin and isospin (\(p_n, s_n, t_n \equiv -1/2 \)) and (\(p_p, s_p, t_p \equiv +1/2 \)), respectively, and leaving behind a residual nucleus in state |\(\nu_F J F M_F \rangle \) is given by Fermi’s golden rule (\(\hbar = c = 1 \)) as \(d\Gamma_p = 2\pi^2 d^3 p_n d^3 p_p \delta(\text{E.C.}) \frac{\sigma(\pi; \nu_I J M_I)}{\sigma(\pi; \nu_F J F M_F)} |\langle \nu_n s_n t_n p_n s_p t_p J F M_F | V | \nu_I J M_I \rangle|^2 \), where \(\delta(\text{E.C.}) \) is the energy-conserving delta function and \(V \) is the transition potential. An incoherent mixture having vector polarization \(\mathcal{P} \) along the direction \(\hat{n} \) is described by the density matrix |\[\]\rangle \mathcal{P} I \equiv \frac{1}{\sqrt{I+1}} \left[I + \frac{3}{I+1} \mathcal{P} J I \cdot \hat{n} \right]. \)

Then, taking the trace of \(\mathcal{P} I d\Gamma_p \) and summing/integrating over the free final states/variables, one gets for the angular distribution of the emitted proton in coincidence with a neutron in back-to-back kinematics (\(\hat{p}_n = -\hat{p}_p \)) in the decay of this incoherent but polarized initial state \[I_{nn}(\hat{p}_p) = \frac{1}{2J+1} \left[\sum_M \sigma(\pi; \nu_I J M_I) + \frac{3}{J+1} \mathcal{P} \hat{p}_p \cdot \hat{n} \sum_M \sigma(\pi; \nu_I J M_I) \right] , \quad (2.1) \]

where the back-to-back strengths are given by \[\sigma(\pi; \nu_I J M_I) = \frac{2\pi}{(4\pi)^4} \sum_{\nu_F J_F} \sum_{M_F} |\langle \nu_n s_n t_n p_n s_p t_p J F M_F | V | \nu_I J M_I \rangle|^2 . \quad (2.2) \]
We have introduced the compact notation

$$
\int d^3 \tilde{f}_{N,F} \ldots = \left(\frac{2}{\pi} \right)^2 \int p^2 d p \int p^2 d p_n \delta \left(\frac{p^2}{2M} + \frac{p_n^2}{2M_R} + (p_p - p_n)^2 - \Delta_{N,F} \right) \ldots
$$

(2.3)

where M is the nucleon mass, M_R is that of the residual nucleus, and $\Delta_{N,F}$ is the liberated energy. The matrix element in (2.2) must be computed in the proton helicity frame, where the z-axis points along the proton momentum. Therefore, $\hat{p}_p = p_p \hat{e}_z$ and $\hat{p}_n = -p_n \hat{e}_z$.

The back-to-back vector proton asymmetry, A_V, for this decay is operationally defined by

$$
\mathcal{P} A_V = \frac{I_{pu}(\hat{p}_p = \hat{n}) - I_{pu}(\hat{p}_p = -\hat{n})}{I_{pu}(\hat{p}_p = \hat{n}) + I_{pu}(\hat{p}_p = -\hat{n})},
$$

(2.4)

leading, through (2.1), to the following theoretical expression

$$
A_V = \frac{3}{J_l + 1} \sum_{M_l} M_l \sigma(\pi; J_l M_l).
$$

(2.5)

It is convenient to split the transition potential into its parity-conserving (PC) and a parity-violating (PV) parts, i.e., to write $V = V^{PC} + V^{PV}$, where V^{PC} is invariant under space inversion, while V^{PV} changes sign. Then, assuming that V is time-reversal invariant, one gets

$$
\sum_{M_l} \sum_{s_n s_p M_F} \left| \langle \hat{p}_n s_n t_n \hat{p}_p s_p t_p V_F J_F M_F | V | J_l M_l \rangle \right|^2 =
$$

$$
\frac{1}{2} \sum_{M_F} \sum_{S M_S M_F} \left(\left| \langle T \hat{p} \hat{P} S M_S T0 V_F J_F M_F | V^{PC} | J_l M_l \rangle \right|^2 + \left| \langle T \hat{p} \hat{P} S M_S T0 V_F J_F M_F | V^{PV} | J_l M_l \rangle \right|^2 \right),
$$

(2.6)

$$
\sum_{M_l} M_l \sum_{s_n s_p M_F} \left| \langle \hat{p}_n s_n t_n \hat{p}_p s_p t_p V_F J_F M_F | V | J_l M_l \rangle \right|^2 =
$$

$$
\sum_{M_F} \sum_{S M_S M_F} \left[\left(\sum_{T} \langle T \hat{p} \hat{P} S M_S T0 V_F J_F M_F | V^{PC} | J_l M_l \rangle \right)^* \right] \left(\sum_{T} \langle T \hat{p} \hat{P} S M_S T0 V_F J_F M_F | V^{PV} | J_l M_l \rangle \right),
$$

(2.7)

On the right-hand sides, we have performed the change of basis $| \hat{p}_n s_n t_n \hat{p}_p s_p t_p \rangle \rightarrow | \hat{p} \hat{P} S M_S T0 \rangle$, where S and T are the total spin and isospin, respectively. $\hat{p} = \frac{1}{2} (\hat{p}_p - \hat{p}_n) = \frac{1}{2} (p_p + p_n) \hat{e}_z$, $\hat{P} = \hat{p}_p + \hat{p}_n = (p_p - p_n) \hat{e}_z$ and we have noticed that $\langle \frac{1}{2} \hat{t}_n \frac{1}{2} \hat{t}_p | T M_T \rangle = \frac{1}{\sqrt{2}} (\delta_{T1} - \delta_{T0}) \delta_{M_T 0}$.

3. Shell-model formalism

From what we have shown in Ref. [12] and from $Y_{lm}(\pm \hat{e}_z) = (\pm) \sqrt{2l+1 \over 4\pi} \delta_{hm0}$, it follows that

$$
\langle \hat{p} \hat{P} S M_S T0 V_F J_F M_F | V | J_l M_l \rangle = \frac{4\pi}{\sqrt{2J_l + 1}} \sum_{iL} i^{-L} i^{-i} \text{sign}(p_p - p_n) |L|^{1/2}
$$

$$
\times \sum_{J_K} \langle J_F M_F J_M S | J_l M_l \rangle C(JLKISMS)
$$

$$
\times \sum_{n \bar{S} \bar{N}} \langle \bar{S} | ||V_F J_F| |\bar{N} \bar{L} | \rangle (\hat{p} \hat{S} K T0; n \bar{S} \bar{K} \Lambda T p). \tag{3.1}
$$
Here $C(JLKI SM S) = \langle KM S L0 | J M S \rangle \langle J0 SM S | KM S \rangle$,

$$\mathcal{M}(\bar{p}lSK T0; n\bar{S}K \Lambda t_p) = \frac{1}{\sqrt{2}} \left[1 - (-)^{l + S + T} \right] \langle \bar{p}lSK | T0 | V | n\bar{S}K \Lambda t_p \rangle \quad (3.2)$$

are the relative-space transition matrix elements (Jastrow-like correlation functions are implied), and we have introduced the generalized spectroscopic amplitudes

$$\langle \nu l J | (a^+_\lambda a^+_{\nu p})_{n\bar{S}KNLJ} | \nu F J F \rangle^* = \langle n\bar{S}KNLJ | n\Lambda l j_{\lambda} n p_{\lambda} j_{p} J | \nu l J | (a^+_\lambda a^+_{\nu p})_{n\bar{S}KNLJ} | \nu F J F \rangle^* ; \quad (3.3)$$

where the second factor is a standard spectroscopic amplitude and the first one is a recoupled Moshinsky coefficient, i.e.,

$$\langle n\bar{S}KNLJ | n\Lambda l j_{\lambda} n p_{\lambda} j_{p} J \rangle = \sum_{\ell}[\ell\bar{SK}L]^{1/2} \left\{ \begin{array}{ccc} \bar{I} & \bar{L} & \lambda \\ S & 0 & S \\ K & L & J \end{array} \right\} \left[j_{\lambda} j_{\mu} \lambda \bar{S} J \right]^{1/2} \left\{ \begin{array}{ccc} I_{\lambda} & 1 & j_{\lambda} \\ I_{\mu} & 1/2 & j_{\mu} \\ \lambda & \bar{S} & J \end{array} \right\} \langle n\bar{S} KNLJ | n\Lambda l j_{\lambda} n p_{\lambda} j_{p} \rangle \quad (3.4)$$

The last factor above is the usual Moshinsky coefficient \(^{13}\) and we are using the notation \([ab...]=(2a+1)(2b+1)...\). (Notice that, for the simple version of the shell model we are adopting,\(^2\) the appropriate values of $n\Lambda l j_{\lambda}$ and $n p_{\lambda} j_{p}$ in Eq. (3.3) are dictated by νF and νl.)

Finally, $(\bar{P}L | NL) = \int_{0}^{\infty} R^{2} J_{L}(\bar{P}R) R_{NL}(b/\sqrt{2}, R) \ dR$, where b is the oscillator size parameter, is the center-of-mass radial overlap, for which explicit expressions are available \([8,14]\).

To compute the quantities (2.6) and (2.7), we will need the intermediate summations

$$\left\{ \begin{array}{c} \text{SUM (2.6)} \\ \text{SUM (2.7)} \end{array} \right\} = \sum_{M_{S}} C(JLKI SM S) C(J' L' K' l' SM S) \times \left\{ \begin{array}{c} \sum_{M_{F} M_{I}} \langle J_{F} M_{F} J M_{S} | J_{I} M_{I} \rangle \langle J_{F} M_{F} J M_{S} | J_{I} M_{I} \rangle \\ \sum_{M_{F} M_{I}} \langle J' F M' J' M' S | J' I M' \rangle \langle J' F M' J' M' S | J' I M' \rangle \end{array} \right\} \quad (3.5)$$

Well known identities \([15]\) lead to

$$\text{SUM (2.6)} = \delta_{JF} \delta(J_{F}, J_{I}) \left[\frac{J_{I}}{J} \right] \sum_{M_{S}} C(JLKI SM S) C(J' L' K' l' SM S) \quad (3.6)$$

and

$$\text{SUM (2.7)} = (-)^{h} J_{F} | J_{I} |^{3/2} \sqrt{J_{I}(J_{I} + 1)} \left\{ \begin{array}{ccc} 1 & J & J' \\ J_{F} & J_{I} & J_{I} \end{array} \right\} \times \sum_{M_{S}} (-)^{M_{S}} \left[\begin{array}{ccc} 1 & J & J' \\ 0 & -M_{S} & M_{S} \end{array} \right] C(JLKI SM S) C(J' L' K' l' SM S) , \quad (3.7)$$
where \([a/b] = (2a + 1)/(2b + 1)\). Then, from Eqs. (2.2), (2.6), (2.7), (3.1), and (3.5), we arrive at

\[
\begin{align*}
\left\{ \sum_{M_i} \sigma(\pi; \nu I J M_i) \right\} &= \frac{1}{8\pi |J_i|} \mathcal{R} \sum_{\nu J_f} \int d\tilde{f}_{\nu J_f} \\
&\times \sum_{S} \sum_{T T'} \sum_{L L'} \sum_{l l'} \delta((-)^T, (-)^{l+S+1}) \delta((-)^{T'}, (-)^{l'+S'+1}) \\
&\times \sum_{k, k'} \sum_{n S K} \sum_{n' S' K'} \sum_{n S K} \sum_{n' S' K'} \delta((-)^{k}, (-)^{k'}) \\
&\times \left[\mathcal{M}^{PC}(\tilde{p}lS K T 0; n\bar{T} S K \Lambda_T p), \mathcal{M}^{PV}(\tilde{p}lS K' T' 0; n\bar{T} S' K' \Lambda_T p)^* \right] \\
&+ \left[\mathcal{M}^{PC}(\tilde{p}lS K' T 0; n\bar{T} S' K \Lambda_T p), \mathcal{M}^{PV}(\tilde{p}lS K T' 0; n\bar{T} S K' \Lambda_T p)^* \right] \\
&+ \mathcal{M}^{PV}(\tilde{p}lS K T 0; n\bar{T} S K \Lambda_T p), \mathcal{M}^{PV}(\tilde{p}lS K' T' 0; n\bar{T} S' K' \Lambda_T p)^* \right] \quad (3.8)
\end{align*}
\]

where we have explicitly indicated, through Kronecker deltas \(\delta(a, b) = \delta_{ab}\), the restrictions imposed on the summations by several selection rules. This allows us to write

\[
\begin{align*}
\sum_{M_i} \sigma(\pi; \nu I J M_i) &= \frac{1}{8\pi |J_i|} \mathcal{R} \sum_{\nu J_f} \int d\tilde{f}_{\nu J_f} \\
&\times \sum_{S} \sum_{T T'} \sum_{L L'} \sum_{l l'} \delta((-)^T, (-)^{l+S+1}) \delta((-)^{T'}, (-)^{l'+S'+1}) \\
&\times \left[C_{PC}^{PV}(IS K T, n\bar{T} S K \Lambda_T p), C_{PV}^{PV}(IS K' T 0; n\bar{T} S K \Lambda_T p)^* \right] \\
&+ \left[C_{PC}^{PV}(IS K' T 0; n\bar{T} S K \Lambda_T p), C_{PV}^{PV}(IS K T, n\bar{T} S K \Lambda_T p)^* \right] \\
&+ \mathcal{M}^{PV}(\tilde{p}lS K T 0; n\bar{T} S K \Lambda_T p), \mathcal{M}^{PV}(\tilde{p}lS K' T' 0; n\bar{T} S' K' \Lambda_T p)^* \right) \quad (3.9)
\end{align*}
\]

and

\[
\begin{align*}
\sum_{M_i} M_i \sigma(\pi; \nu I J M_i) &= \frac{1}{8\pi |J_i|} \mathcal{R} \sum_{\nu J_f} \int d\tilde{f}_{\nu J_f} \\
&\times \sum_{S} \sum_{T T'} \sum_{L L'} \sum_{l l'} \delta((-)^T, (-)^{l+S+1}) \delta((-)^{T'}, (-)^{l'+S'+1}) \\
&\times \left[C_{PC}^{PV}(IS K T, n\bar{T} S K \Lambda_T p), C_{PV}^{PV}(IS K' T 0; n\bar{T} S K \Lambda_T p)^* \right] \\
&+ \left[C_{PC}^{PV}(IS K' T 0; n\bar{T} S K \Lambda_T p), C_{PV}^{PV}(IS K T, n\bar{T} S K \Lambda_T p)^* \right] \\
&+ \mathcal{M}^{PC}(\tilde{p}lS K T 0; n\bar{T} S K \Lambda_T p), \mathcal{M}^{PV}(\tilde{p}lS K' T' 0; n\bar{T} S' K' \Lambda_T p)^* \right) \quad (3.10)
\end{align*}
\]

The expressions for the coefficients \(C_{PC}^{PV}, C_{PV}^{PV}\) and \(C_{PC}^{PV}\) can be obtained by comparison with Eq. (3.3).
4. Summary

The vector proton asymmetry, \(A_V \), or equivalently the intrinsic asymmetry parameter \([11]\),

\[
a_\Lambda = \begin{cases}
A_V & \text{for } J_I = J_C + 1/2 \\
-J_I + 1 \over J_I A_V & \text{for } J_I = J_C - 1/2,
\end{cases}
\] (4.1)

where \(J_C \) is the spin of the hypernuclear core, thus defined in order to subdue its dependence on the hypernuclear spin, is an important observable of nonmesonic weak decay. Being related to interference terms between parity-conserving and parity-violating transition amplitudes, it not only contains further information when compared to the transition rate and the neutron-to-proton branching ratio, but also has a greater power to discriminate between different models of hypernuclear nonmesonic decay. Discrepancies between its measured and calculated values still remain.

It seems appropriate, therefore, to develop a general formalism for its theoretical computation within a shell-model approach. This we have done in the present contribution. The general expressions are rather involved, but they can certainly be simplified by adopting suitable approximations, such as limiting the initial state to an \(s \)-wave, as illustrated, for instance, in Ref. \([10]\). This, however, has been left for a future development.

References

