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Relativistic models for the many-body system may have applications in nuclear astrophysics, as
neutron stars, and also in finite nuclei. In this paper we are interested in analyzing the importance
of neutrinos and its interactions within a dense nuclear matter through such a model. We calculate
the energy per particle for a many-body system using the mean-field approach, where the meson
fields are replaced by their expectation values . The model parameters can be adjusted to agree
with results for nuclear matter and astrophysical observations. We start with a Lagrangian density
including nucleons, mesons, electrons and neutrinos. After solving the corresponding equations,
we use the energy-momentum tensor to calculate the energy density and pressure, as well as
neutrino cross sections. Values for the coupling parameters in the model are taken from previous
work.
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1. Introduction

Relativistic mean-field models have become an standard approach to describe nuclear matter
at different density regimes. The model Lagrangian density where nucleons interact through the
exchange of scalar, vector and isovector mesons has been widely used for that purpose. Here,
our interest is turned to the behavior of the neutrinos inside the hadronic matter, composed by the
nucleons and mesons. In particular, we want to investigate the role of the weak force on the neutrino
distribution in that system. Effects of a nonzero temperature are considered in our investigation.
Only the weak neutral processes are included in our calculation, although the charged weak ones
can be incorporated in our results. Also, we obtain the mean-free path for the neutrinos and its
dependence with the hadronic density and temperature are presented. For the coupling parameters
of the model Lagrangian, we take the values from [5]. However, the extension to other model
parametrizations can be easily done and will be considered in a forthcoming paper.

2. The model Lagrangian

Considering that our matter consists of nucleons, neutrinos and intermediate bosons, we have
the following Lagrangian density ([1], [3]):

L = ψ̄

[
iγµ∂

µ −gvγ
0V0−

1
2
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]
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2

M2
ZZ2

0

−gν̄L
γ0

2
Z0νL + iν̄γµ∂

µ
ν (2.1)

where we already have made a mean-field approximation for the bosonic fields(MFT). The nucleon
field is ψ and its mass M. The neutrino field is ν and νL is for left-handed neutrinos. The neutral
scalar (φ0), neutral vector (V0) and vector-isovector (b0) mesons have masses and coupling con-
stants respectively given by ms and gs, mv and gv and mρ and gρ . The parameters κ and λ represent
higher order scalar meson self-interactions. Within the same approximation, the weak neutral bo-
son Z0 is also included in the MFT with the coupling constant g and mass MZ . The nucleon isospin
is τ3 = 1 for protons and τ3 = −1 for neutrons. Finally, for protons cV = (1− 4sen2(θw))/2 and
cA = 1.23/2 and for neutrons cV =−1/2 and cA =−1.23/2, where θW is the Weinberg angle.

From the above Lagrangian we get the mesonic field equations:

m2
s φ0 +

κ

2
φ

2
0 +

λ

6
φ

3
0 = gsρs, m2

vV0 = gvρB and m2
ρb0 =

1
2

gρρ3, (2.2)

where the scalar (ρs), baryonic (ρB) and isoscalar (ρ3) densities are the source terms for the corre-
sponding fields. For the neutral weak boson we get:

M2
ZZ0 =

g
4
[
(1−4sen2(θw))ρp−ρn

]
+

g
2

ρνL−
g
4
< ψ

†cAγ5ψ >, (2.3)

with ρp and ρn being the proton and neutron densities and ρνL is the left-handed neutrino density.
The last term in the above equation contributes very little (if nothing) to our mean-field approach
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and will be disregarded. The energy density and the pressure can be calculated using the energy-
momentum tensor, after solving the field equations. The energy density, in terms of the nucleon
effective mass M∗ = M−gsφ0, is:

ε = ∑
i=p,n

γ

(2π)3

∫
d3kE∗(ηki(T )+ η̄ki(T ))+

1
(2π)3
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1
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2
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1
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1
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κ

g3
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1
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λ

g4
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+
g
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g
4
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g
2
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The pressure is given by:
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24
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In these equations, ηk,i(T ) is the distribution function for particles and η̄k,i(T ) is the distribu-
tion function for antiparticles:

ηk,i(T ) = {exp[(Ei−µi)/KbT ]+1}−1, η̄k,i(T ) = {exp[(Ēi +µi)/KbT ]+1}−1, (2.6)

where Ei is the energy of a single particle and µi is the chemical potential.
For the nucleons:

EN = E∗+
g2

v

m2
v

ρB +
g2

ρ

4m2
ρ

τ3ρ3 +
g
2

cV Z0, ĒN = E∗− g2
v

m2
v

ρB−
g2

ρ

4m2
ρ

τ3ρ3−
g
2

cV Z0 (2.7)

and for the neutrinos:
Eν = k+

g
2

Z0, Ēν = k− g
2

Z0 (2.8)

where~k is the momentum, γ is the spin degeneracy (in this case γ = 2) and E∗ =
√

k2 +M∗2.
We have also included the electrons in the system as a relativistic free Fermi gas, with the

constraint of neutral total charge, ρp = ρe. The energy density and the pressure for the electrons
are:

εe =
γ

(2π)3

∫
d3k
√

k2 +m2
e(ηke(T )+ η̄ke(T )) (2.9)

Pe =
1
3

γ

(2π)3

∫
d3k

k2√
k2 +m2

e
(ηke(T )+ η̄ke(T )) (2.10)

with

ηke(T ) =
1

exp[(
√

k2 +m2
e−µe)/KbT ]+1

, η̄ke(T ) =
1

exp[(
√

k2 +m2
e +µe)/KbT ]+1

. (2.11)
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3. Neutrino mean-free path

The neutrino mean-free path λ , is given by:

λ =
(

σ

V

)−1
, (3.1)

where V is the volume and the differential cross section for a collision between two particles is:

dσ =
< |M |2 >

F
dQ (3.2)

where < |M |2 > is the average over initial spins and the sum over final spins of |M |2, M is the
scattering amplitude, F is the incident flux and dQ is the Lorentz invariant phase space factor of
the final state.

A complete outline of possible processes involving neutrino scattering or absorption is given
in [2]. Here we calculate just the elastic scattering cross section of a neutrino by a nucleon or by
another lepton. For the scattering 1 + 2 −→ 3 + 4, where 1 is the incoming neutrino, 3 is the
outgoing neutrino, 2 is the incoming nucleon (lepton) and 4 is the outgoing nucleon (lepton), we
have [3]:

F = |~v1−~v2| ·2E∗1 ·2E∗2 (3.3)

dQ = (2π)4
δ

4(P1 +P2−P3−P4)
1−η3(T )

2E∗3

d~p3

(2π)3
1−η4(T )

2E∗4

d~p4

(2π)3 (3.4)

< |M |2 >=
g4

2M4
Z

E∗1 E∗2 E∗3 E∗4{(cV + cA)
2(1− v2cos(θ12))(1− v4cos(θ34))

+(cV − cA)
2(1− v4cos(θ14))(1− v2cos(θ23))−

M∗2

E∗2 E∗4
(c2

V − c2
A)(1− cos(θ13))} (3.5)

where ηi(T ) is the distribution function to the particle i, vi = |~pi|/E∗i , Pi = (E∗i ,~pi) and cos(θi j) is
the angle between ~pi and ~p j. We need now to sum over all the momentum ~p2, so we multiply dσ

by V η2(T )d~p2/(2π)3. The total cross section is obtained by integrating dσ over all the momentum
~p1, ~p2 and ~p3:

σ

V
=
∫ d3 p2

(2π)3

∫ d3 p3

(2π)3

∫ d3 p4

(2π)3 (2π)4
δ

4(P1 +P2−P3−P4)
1

|~v1−~v2|
·

η2(T )(1−η3(T ))(1−η4(T ))
g4

32M4
Z
{(cV + cA)

2(1− v2cos(θ12))(1− v4cos(θ34))

+(cV − cA)
2(1− v4cos(θ14))(1− v2cos(θ23))−

M∗2

E∗2 E∗4
(c2

V − c2
A)(1− cos(θ13))}. (3.6)

We have calculated the above expression without any low velocity approximation, so in prin-
ciple our result is suitable for application to any baryonic density regime. In the case of a collision

with a electron, we just make the changes E∗i −→
√

p2
i +m2

e and M∗ −→ me. Besides, the proper
values for cV and cA should be used.
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4. Results and discussion

Figure 1 shows the energy per neutrino (εν/ρν ) versus the baryon density for different temper-
atures, where ρ0 = 0.16 f m−3 is the nuclear matter equilibrium density and εν is the contribution
of the neutrinos to the energy:

εν =
1

(2π)3

∫
d3kk(ηkν(T )+ η̄kν(T ))+

g
2

Z0ρνL. (4.1)
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Figure 1: Energy of the neutrinos per neutrino
for different temperatures

In figure 2 we see the total energy per nucleon (including the electrons), (ε + εe)/ρB−M,
as a function of the baryon density for different temperatures and the total pressure for different
temperatures is shown in figure 3.
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Figure 2: Total energy per nucleon
for different temperatures
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Figure 3: Total pressure for different temperatures
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Finally, figures 4, 5 and 6 show the neutrino mean-free path λ as a function of the baryon
density for three different temperatures respectively and choosing Eν = µν . The contribution of
each kind of particle to the neutrino mean-free path is shown, where λe, λp and λn are the individual
contributions due to electrons, protons and neutrons, respectively, and λS is the total mean-free path
for the neutrinos.
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1 0 0 0

1 0 0 0 0

1 0 0 0 0 0

λ 
(m

)

ρB / ρ0

 λ e
 λ p
 λ n
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k B T  =  1  M e V

Figure 4: Contribution of each type of particle
to the neutrino mean-free path for kBT = 1MeV
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Figure 5: Same as figure 4 for kBT = 5MeV
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 λ e
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Figure 6: Same as figure 4 for kBT = 30MeV

The results presented are all for Yl = (ρe +ρν)/(ρB) = 0.4, which is the appropriate value for
the beginning of the evolution of a nascent neutron star [4]. The solution of our field equations
are the obtained with the GM1 parametrization using the compressibility K = 300MeV and the
effective mass M∗/M = 0.70 as constraints [5].

The increase of the energy with the temperature is as expected, as seen in figures 1 and 2. On
the other hand, the mean-free path decreases with increasing temperature. This was also expected
because since with the increase of the temperature, the number of collisions increases.
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In practice, the inclusion of the neutral weak boson Z did not modify the energies of the nu-
cleons and neutrinos, i. e., the distribution function for each particle type has remained unchanged
compared to the case where no weak interactions are taken in to account. This result was expected
because the field of the weak boson Z, at the mean-field approach, is proportional to the inverse
square of its mass, which is of order 102GeV . In addition, the coupling constant for the weak boson
Z is an order of magnitude smaller than the meson coupling constants. What remains to be done
is to investigate if this behavior keeps the same if we go to higher density regimes, both for the
nucleons an for the leptons. This work is now underway and deserves further numerical efforts.

We intend now to include the charged weak bosons in our results, which can make a possible
realistic model to study neutron-rich stars. As a promising application, we also intend to solve the
relativistic TOV equation [5] for the star, within and without the weak interaction in the model.
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