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1. Introduction

Due to the non-linear structure of quantum chromodynamics (QCD), most analytical tech-
niques for QCD rely on perturbation theory. For very high energies, asymptotic freedom ensures
a small coupling constant, that allows one to use perturbative methods to obtain physical ampli-
tudes. In opposition, for low energies, QCD is strongly coupled and therefore the perturbative
expansion is meaningless. This explains why is so difficult to find analytical tools to analyze the
low-energy sector of QCD. Furthermore, important properties of the strong interaction associated
with the infrared (IR) physics such as confinement, mass gap and linear Regge trajectories remains
unexplained by applying analytical methods to QCD.

Nowadays, different techniques have been developed to study non-perturbative aspects of
QCD. Examples of such methods are QCD sum rules[1], Dyson-Schwinger equations[2] and lattice
QCD[3], that requires massive numerical computations.

A remarkable contribution was done by Juan Maldacena in 1998 [4]. He proposed an exact
map between a supersymmetric gauge theory, N = 4 SYM theory, in 4D flat space and Type IIB
string field theory in 10D space-time AdS5×S5. The most interesting fact of this duality is that the
strong-coupling regime of large-N gauge theories can be approximated by weakly coupled classical
gravities, and vice-versa. Thus, one could use weak-coupling perturbative methods in one theory to
investigate the strongly coupled dual theory. As QCD is a gauge theory, we can say that this duality
gives some hope for a better understanding of the non-perturbative regime of strong interactions[5].

The basic difficulty to use this method to analyze strong-force physics lies on the fact that the
gauge theory within the AdS/CFT duality is very different from QCD. In short, N=4 SYM theory
has a conformal symmetry, whereas QCD breaks this symmetry at low energies and also the N=4
SYM theory is supersymmetric, whereas QCD does not have this symmetry.

Consequently, one should modify the AdS geometry to build a realistic gravity dual of QCD.
Here, we are interested in discussing some attempts to construct gravity duals of QCD-like theo-
ries. In particular we focus on a phenomenological approach to describe QCD-like theories using
5D holographic models. The main idea is to use several QCD properties as input to build dual
models. We review the Hard Wall model[6], Soft Wall model[7] and the Dynamical AdS/QCD
model[8]. We also present the mass spectrum for Scalar Mesons and Higher Spins Mesons within
the Dynamical AdS/QCD model.

2. Dynamical AdS/QCD model

The first application of AdS/CFT concepts to QCD was done by Polchinski and Strassler[6].
They introduce an IR cut-off in the AdS5 space-time[9, 10] . It can be implemented by placing
boundary conditions on the wave functions of the fields propagating in a slice of AdS5 space-time.
However, in contrast to the observed approximate linear Regge behavior[11], the hard-wall predic-
tions for the squared masses of light-flavor hadrons depend quadratically on the radial excitation.

Linear Regge trajectories for high Spin Mesons were implemented in Ref. [7]. In this model an
inert dilaton field is introduced in the AdS5 metric background. However the vacuum expectation
value (vev) of the Wilson loop in this model does not exhibit the area-law behavior that a linearly
confining static quark-antiquark potential would generate. This is because the vev of the Wilson
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loop in AdS/CFT is determined by the area of the dual string world sheet in the five-dimensional
spacetime[12], i.e. it depends exclusively on the background geometry. Since the latter remains ex-
act AdS5 (and thus conformal) in this Soft-Wall model, the Wilson loop vev shows a non-confining
perimeter law. A second, common shortcoming of a Soft-Wall background is that it is not solution
of the 5D Einstein equations, i.e. it has no dynamics.

The main goal of the Dynamical AdS/QCD model that we have proposed in Ref.[8] is to
overcome these two drawbacks of the AdS/QCD models. This model remove both difficulties by
deriving a rather minimal AdS/QCD background which implements both the area law, i.e. linear
confinement, dynamically and asymptotically linear Regge trajectories, consistent with the avail-
able data[13]. The model is composed by a scalar field (dilaton) propagating in a deformed AdS5

metric. We write the metric as

ds2 = e−2A(z)
(

ηµ̂ ν̂dxµ̂dxν̂ −dz2
)

, (2.1)

where ηµ̂ ν̂ = (1,−1,−1,−1), xµ̂ = {x1,x2,x3,x4} is the four-dimensional coordinates and z is the
holographic coordinate. We look for solutions of Einstein-equations coupled to a dilaton field that
reproduces some features of QCD. In the following we present our results.

3. Higher Spins Mesons

The spin S string modes of the massive tensor fields φM1...MS (in axial gauge) in the dilaton-
gravity background can be rewritten in terms of reduced amplitudes ψn,S which satisfy a Sturm-
Liouville equation: [

−∂
2
z +VS(z)

]
ψn,S = m2

n,Sψn,S, (3.1)

where the spin-dependent string-mode potential is VS(z) = B′2(z)
4 − B′′(z)

2 , B = (2S−1)A+Φ.

The gauge/gravity dictionary identifies the eigenvalues m2
n,S with the squared meson mass of

the boundary gauge theory. For Higher Spins Mesons, we found the following solution of Einstein
equations

A(z) = log(zΛQCD)+
1+
√

3
2S +

√
3−1

(zΛQCD)2

1+ e(1−zΛQCD) , (3.2)

that reproduces the linear Regge trajectories. The associated dilaton field and potential are obtained
by solving Einstein equations numerically. We thus obtain a complete solution of the Einstein-
dilaton equations. For the particular case of the metric (3.2), we can obtain numerically the behavior
of the dilaton potential V (φ) presented in figure 1.

A good analytical approximation to the spectrum for ΛQCD = 0.3 GeV is (in units of GeV)

m2
n,S '

1
10

(11n+9S +2) , (n≥ 1) (3.3)

which implements the approximate universality of the linear trajectory slopes for light flavors ex-
plicit.
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Figure 1: Dilaton potential for ΛQCD = 0.3 GeV.

4. Scalar Mesons

We assume the same universal form of the metric, as given by

A(z) = log(zΛQCD)+
(ξ zΛQCD)2

1+ e(1−ξ zΛQCD)
, (4.1)

to describe the f0 and pion families with a single parameter ξ .

• Scalar Sector

For the f0 family we found ξ = 0.58 from the fit (see figure 2).
Comparing to the vector sector, the slope of the Regge trajectory for the scalar excitations is

reduced (see figure 2) (ξ < 1). This means that in our model the size of the f0(600) should be
larger than the size of other light mesons. In particular, scalar mesons were also analyzed in ([14]
and [15]).
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Figure 2: Regge trajectory for f0 from the Dynamical AdS/QCD model[16] with ΛQCD = 0.3 GeV (dashed
line). Experimental data from [13].

• Pseudoscalar Sector

The first striking point is the slope of about 1 GeV2 for the pion Regge trajectory, with a value
twice that found for the scalars. This suggests that the scaling factor of the holographic coordinate
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for the pseudoscalars should be changed with respect to that of the f0 family. A scaling factor
of ξ = 0.76 makes the IR effective potential of the pion the same as the one found for higher
spin mesons[8]. By allowing a fine-tuning variation of about 15% to fit the actual data, we found
ξ = 0.88. The almost vanishing pion mass is implemented by rescaling the fifth dimensional mass
according to M2

5 →M2
5 −λ z2 (see [17]), where λ is uniquely determined as λ = 2.19GeV2[18].
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Figure 3: Regge trajectory for pion from the Dynamical AdS/QCD model[16] with ΛQCD = 0.3 GeV
(dashed line). Experimental data from [13].

We suggest that the f0’s partial decay width into ππ can be calculated from the overlap integral
of the normalized string amplitudes (Sturm-Liouville form) in the holographic coordinate dual to
the scalars (ψn) and pion (ψπ) states,

hn = λ Λ
− 3

2
QCD

∫
∞

0
dz ψ

2
π(z)ψn(z). (4.2)

We have introduced the parameter λ in the transition amplitude considering that it gives the
natural scale for the coupling between the pion and a scalar, as has been obtained through the pion
mass shift. Through dimensional analysis, one has to consider that the coupling has the dimension
of
√

mass and therefore a factor of ΛQCD must be introduced to provide the correct dimension. We

find that λ Λ
− 3

2
QCD = 13 [GeV]

1
2 , for ΛQCD = 0.3 GeV, giving the results shown in table 1.

Table 1: Two-pion decay width and masses for the f0 family. Experimental values from PDG[13]. (†Mixing
angle of 20o.)

Meson Mexp(GeV) Mth(GeV) Γ
exp
ππ (MeV) Γth

ππ (MeV)

f0(600) 0.4 - 1.2 0.86 600 - 1000 602
f0(980) 0.98 ± 0.01 1.10 ∼ 15 - 80 47†

f0(1370) 1.2 - 1.5 1.32 ∼ 41 - 141 159
f0(1500) 1.505 ± 0.006 1.52 38 ± 3 42
f0(1710) 1.720 ± 0.006 1.70 ∼ 0 - 6 6
f0(2020) 1.992 ± 0.016 1.88 — 0.0
f0(2100) 2.103 ± 0.008 2.04 — 1.4
f0(2200) 2.189 ± 0.013 2.19 — 2.8
f0(2330) 2.29 - 2.35 2.33 — 3.2
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The overlap integral is the dual representation of the transition amplitude S→PP and therefore
the decay width is given by Γn

ππ = 1
8π
|hn|2 pπ

m2
n

, where pπ is the pion momentum in the meson rest
frame.

5. Conclusions and Perspectives

To summarize, we discuss a Dynamical AdS/QCD model, solution of the five-dimensional
Einstein-dilaton equations, which provides linear Regge trajectories for Scalar and Higher Spin
Mesons. The method used in its derivation applies to essentially all asymptotically AdS5 (and
hence UV conformal) spacetimes with a Poincaré-invariant boundary.

The vacuum properties of the boundary gauge theory, including quark confinement, are dy-
namically encoded in this solution without the need for additional background fields. In particular,
our background generates a confining area law for the Wilson loop (in contrast to the soft-wall
model). We also calculated the f0’s partial decay width into ππ with good agreement to experi-
mental data. The next challenge is to describe Baryons[17] within this Dynamical model.
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