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1. Introduction

The need for precise predictions for many-particle proezess the Large Hadron Collider
stimulated a series of recent theoretical developmentstwiad to the completion of various multi-
particle next-to-leading-order (NLO) calculations [1}1By using tensor-integral reduction and
Feynman diagrams, it became possible to handle multigamrocesses with high efficiency and
numerical stability [1, 2]. Alternatively, new reduction$ on-shell type which avoid tensor inte-
grals and reduce all process-dependent aspects of onesddoylations to a leading order (LO)
problem were introduced [18—-20]. While the tensor-redurcipproach leads to the fastest numer-
ical codes [1, 2], at present its large-scale applicabiitimited by the occurrence of very large
algebraic expressions. In contrast, the higher flexibiityhe current OPP-based codes [21-23]
comes at the price of a lower CPU efficiency.

Here we report on a new one-loop algorithm [24] that naturatlapts to tensor integral and
OPP reduction and maximises speed and flexibility in a walydbas not depend on the employed
reduction. This method is based on the recursive consbructi so calledopen loopswhich are
related to tensor-integral representations of one-loomf@n diagrams. A recursive algorithm
based on tensor integrals was first introduced in the framewba one-loop Dyson-Schwinger
recursion [25].

2. The open loopsalgorithm

Leading-order transition amplitudesg( and virtual NLO correction® M are handled as sums
of tree and one-loop Feynman diagrams,

M= ZM("), OM = ch(d). (2.1)

The corresponding scattering probability densitiésand virtual one-loop corrections)V are

W= Z M2, W= 2Re(M*OM). (2.2)
hel,col

hel,col

The sums run over colour and helicity states of each ext@andicle. Colour sums are performed
at zero cost by exploiting théactorisation of individual diagrams into colour factoré® and
colour-stripped amplitudes

M@ = cld) gd) M@ =g 4@, (2.3)

Four-gluon vertices are split into three contributions fdrich the factorisation property holds.
After algebraic reduction of the colour factors to a staddzasis{C; }, all colour sums are encoded
in the matrixi; = 5 -0/C{"C;, which is computed only once per process (see [26] for dgtail
Colour-stripped tree diagram4(® are computed by a numerical algorithm that recursively
merges sub-trees. We call a sub-tree a subdiagram obtajnadting a tree. Sub-tree amplitudes
are complex n-tuples® (i), wheref is the spinor or Lorentz index of the cut line. The label
represents the topology, momentum and particle conteiteoftib-tree. Sub-trees are recursively
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merged by connecting their cut lines to vertices and prajoasia

we(i) =—(i) % . (2.4)

The sub-treeg, j andk involve off-shell momenta, but in contrast to off-shell @nts they repre-
sent individual topologies. Cut lines are marked by dots, external lines are not depicted. For
brevity, quartic vertices are not shown explicitly, butithaclusion is straightforward. In terms of
n-tuples, the recursion step reads
ﬁ .. V(i
p?— ¢ +ie

wherexfé /(p? —m? + i) describes a vertex connecting, k, and a propagator attacheditdhe
recursion starts with the external lines of a tree, i. e. tagenMfunctions of the scattering particles,
and terminates when the sub-trees which are needed to lufeleadiagrams have been generated.
The algorithm is based on numerical routines that impleraéintave functions, propagators and
vertices. These building blocks depend only on the thezakethodel and are easily obtained from
its Feynman rules. This approach is similar to the tree é@lgarimplemented in MD GRAPH [27].
Its strength lies in the efficiency of colour sums and theesystticrecycling of sub-treeappearing
in different diagrams.

Let us now consider one-loop amplitudes. A colour-strippgubint loop diagram is an or-
dered set oh sub-treesZ, = {i1,...,in}, connected by loop propagators:

(2.6)

The denominator®; = (q+ p;)2 — m2 +ie depend on the loop momentugn external momenta
pi, and internal masseas,. All other contributions from loop propagators, verticaad external
sub-trees are summarised in the numerator, which is a paligh®f degreeR < n in the loop

momentum,

R
N(Zn;q) = Z)J\/’,llm,lr (Zn) ... gt (2.7)

Momentum-shift ambiguities are eliminated by settimg= 0. This singles out thBq propagator,
and the loop momentuipflowing through this propagator is marked by an arrow in (2®}radi-
tional one-loop calculations, the coefficiedts, ., are explicitly constructed from the Feynman
rules, and the amplitude (2.6) is expressed as a linear catidon

R
SAY = 3 Ny (Tn) T (2.8)
r=
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of tensor integrals

Th1 e _ agt...g
nr

. 29
DoD;1...Dn-1 (2:9)

These latter are subsequently reducedntpoint scalar integral3mo with m= 1,2,3,4, which
originate from (2.9) by cancelling the numerator and attleas4 denominator®;. Alternatively,
the OPP method [18] avoids tensor integrals through a daeahection between the numerator
N (Zn;q) and the scalar-integral representation of the amplitude.thi& end, the numerator is
expressed as a polynomial in the denominarsThe scalar-integral coefficients are determined
by evaluating\V'(Z,;q) at loop momenta that satisfy multiple-cut conditions of tyd® = D; =
.. =0.

In this framework, the numerator can be computed with teselltechniques. Let us consider

the cut loopthat results from (2.6) by cutting tHgy propagator and removing denominators,

NE (Zn;q) =:@ = @ . (2.10)

The indicesa andf3 are associated with the arrows that mark the ends of thersytdind the trace
of the cut loop corresponds to the numeratafZ,; q). As depicted in (2.10)-point cut loops can
be constructed by recursively merging lower-point cut bbapd sub-trees. More explicitly,

NE (Tni ) = XE (Znin, Tn-1) N (Zn-1:0) W (i), (2.11)

where Xfé andw? are the same vertices and sub-trees that enter the treéthagorlt is thus
possible, within the OPP framework, to reduce the caloutatif scalar-integral coefficients to a
tree-level problem. Highly automatic tree generators canpigraded to loop generators [21, 22],
thereby reducing the human power needed for NLO calculstigrorders of magnitude. However,
when applied to non-trivial processes, this approach cgunime massive computing resources.
The reason is that OPP reduction requires repeated ewalsaif V' (Zy; q) for a large number of
momentaq.

This is related to the nature of loop calculations, whicturezs the knowledge of the numer-
ators adunctionsof the loop momentung;. It is thus natural to handle the building blocks of the
recursion (2.11) as functions qf Accordingly, the cut loop (2.10) is expressed as a polyabmi

NE (Zn; ) Z)/\/’u1 wea(Zn) gt gt (2.12)

in the loop momentuny. This representation is called apen loop In renormalisable gauge
theories, splitting th& tensor in (2.11) into a constant and a linear part,

B
Xb=Yh+a" 20, (2.13)

leads to recursion relations fofpoint open loops in terms of lower-point open loops and sabs:

Nul a(Zn) = [ 5 Mi..iia o(Tn-1)+ 28 N e (Tn-1) | WO (in). (2.14)

Ha;y0

4
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The number of coefficients grows with the polynomial degreleich corresponds to the tensorial
rank r. However, symmetrising open-loop tensorial indigas.. u. keeps the number of com-
ponents well under control [25]. Once the coefficients arewkm multiple evaluations of the
polynomial (2.7) can be performed at a negligible CPU ca8}.[Zhis strongly boosts OPP reduc-
tion. Moreover, the same coefficients can be used for a téntagral representation of the loop
amplitude (2.8). Open loops can thus be interfaced with BRP and tensor-integral reduction in
a natural way.

The efficiency of the open-loop recursion is further incegaly means of relations that arise
from pinching loop propagators Let us consider the parent-point) and child (n — 1)-point)
diagrams in Fig. 1, where the child results from pinching e, propagator of the parent. It

= e e

Figure1: Parent (left) and child (right) open loops which share th@mn substructuré, _».

is evident that the parent can be constructedrdmycling the Z,,_, part of the child. But this
requires that parent and child are cut as in Fig. 1. To thisredrder the external subtrees using a
functioniy — S(ix) that fulfills S(ix) > 0; S(ik) # S(iy) if ik andij contain different external legs;
S(ik® i) > max{S(ix),S(i1)} whereix @i is the merged sub-tree resulting fragmandi;. The
position and direction of the cut are determined by selgatntiguous sub-trees andiy, with

Sl >Sliy) ¥ k>1,  S(in) > S(ia). (2.15)

This guarantees that parent and child diagrams are cut aiyid,Fso that each parent can be
constructed from th&,_, part of a previously computed child.

The possibility ofhighly efficient helicity sumis another key feature of open loops. Unpo-
larised transition probabilities require multiple evdlaas of the polarised amplitudes (2.6). The
number of helicity configurations grows exponentially wiitle particle multiplicity, and the result-
ing CPU cost can be very large. This can be avoided by expipitie decomposition (2.8) into
helicity-dependent coefficients),, ,, and helicity-independent tensor integrals. The CPU expen-
sive evaluation of tensor integrals (2.9) is performed amige, and helicity sums—when restricted
to the coefficients—become very fast. More explicitly, thatribution of (2.8) to the unpolarised
transition probability is handled as a linear combination

R
SW@ = Rez)awffj?“ T (2.16)
r=

with helicity- and colour-summed coefficients

S 4 = 2; (ZM*C(‘”> Nty (Zn). (2.17)
e Cco

The unpolarised representation (2.16) can be reduced ltar sttgrals with any method, including
OPP. Within the OPP framework, the reduction is performedthyting from the unpolarised nu-
merator functiordW@ (Z;q) = 5, 5WL‘1’A)NMq“1 ...g*; in this way open loops lead to extremely
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fast helicity sums as compared to traditional tree genesatdhe OPP reduction is further im-
proved by combining sets of loop diagrams with identicabl@oopagators but different external
sub-trees.

3. Implementation and Benchmarks

We realised a fully automatic generator of QCD correctioms$Standard-Model processes.
Diagrams are generated witle FNARTS [29]; sub-tree and open-loop topologies are processed by
a MATHEMATICA program, which concatenates them in a recursive way, redcmeur factors,
and returns BRTRAN90 code. Generalising the setup to other theories than QQCiersly a
matter of implementing the corresponding additional eediand propagators. The reduction to
scalar integrals is performed in terms of tensor integraty alternatively, with the OPP method.
For tensor integrals we useoCLIER, a private library by A. Denner and S. Dittmaier, which
implements the scalar integrals of Ref. [30] and reductiethods that avoid instabilities from
spurious singularities [31]. The library calculates thefioients of a covariant decomposition
of the tensor integrals and uses them to construct explingdr components. OPP reduction is
performed with @TTooOLS [32] and, alternatively, with SmURAI [33]. Ultraviolet and infrared
divergences are dimensionally regularised. While loopod@nators are consistently treated in
D = 4— 2¢ dimensions, the moment# and the coefficientd/y, ., in (2.7)—(2.9) are handled in
D = 4. TheirD — 4 dimensional contributions, which yield so-callegirational terms, are restored
via process-independent counterterms [34] using the &eergtor.

The correctness of the construction of open loops is verbied consistency check against
our generator for tree amplitudes. By fixing the momenturrhefdut propagator in the loop and
attaching external wave functios§ andéeyg to the open loop we obtain pseudo-tree amplitudes

P=¢gf (Nﬁl...ur;a qul---qur) &2- (3.1)

Agreement between the amplituffeand the value which is computed independently by evaluating
the same diagram with a tree generator confirms the consistpfementation of the routines for
the numerical construction and evaluation of open loopsedkas the organisation of the recursion
and recycling procedures. The loop matrix element is futloee checked by comparing tensor-
integral versus OPP reductions, and observing cancellafit/VV and IR divergencies.

To assess flexibility and performance of the method, we densd the 2 2, 3,4 reactions
ut— WTW~ +ng, ud — W+g+ng, ut tt+ng, and gg— tt+ ng, withn = 0,1,2 gluons. This
covers all non-trivial processes of the Les Houches pyidist [35]. The open-loop approach leads
to compact codes and fast code generation. For instanceergsaced to Ref. [2]—the numerical
code for gg— WW~bb becomes two orders of magnitude smaller, and its genartitie goes
down from more than 1 week to 4 minutes. Also the CPU speed ef dpops, when compared
against the high performance of Refs. [1, 2], reveals a éurttnprovement. The CPU cost of
one-loop scattering probabilities is plotted versus theimer of diagrams in Fig. A€ft). Sums
over colours and helicities are always included. For W besamd top quarks, assuming decays
into massless left-handed fermions, we include a singlieityel For the 12 considered processes,
involving O(10) to O(10%) diagrams, the CPU cost scales almost linearly with the nurobe
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Figure 2: left: CPU cost of colour and helicity summed one-loop probab#iti)V versus number of
diagrams. Runtimes per phase space point, with tensagradtér;) and OPP reduction with @ TooLs
(topp), Oon a single Intel i5-750 core compiled with ifort 10.l4ght: Fractions of the CPU timg, needed
for the calculation of scalar integrals (Sl), tensor reduc{TR) and for the coefficientd/, .., (coeffs).

diagrams. This unexpected feature indicates that theaseref tensorial rank does not represent
an additional penalty at large particle multiplicity. Wignsor-integral reduction (upper frame), the
runtime per phase-space point is typically below 1 ms fes 2 processes; for the most involved
2 — 4 process it never exceeds one second. The ratio of timinigénel with GTTooLs and
tensor integrals (lower frame) shows that, when combined @pen loops, OPP reduction permits
to achieve similarly high speed. While always slightly lowtbe relative OPP efficiency seems to
improve with particle multiplicity. This holds also forAamMURAI.

To study the CPU utilisation in the tensor integral reduttigproach in more detail we mea-
sured the times needed for the calculation of the scalagral® the tensor reduction and the
coefficients separately The results are shown in Fig. Bght). We observe that for low particle
multiplicity the time needed for the scalar integrals doatés. For higher multiplicities the relative
cost for the reduction of tensor integrals to scalar intisgaad for the calculation of the coefficients
increases. Typically for a 2> 4 process the coefficients require around 50% of the CPU tBtik.
the total runtime is fairly close to the CPU cost of the scaéegrals which represents a lower
bound for both methods, tensor integrals and OPP redudiwhjs independent of the algorithm
employed for the amplitude construction.

4. Summary

We implemented the open loops algorithm and combined it vatisor integral and OPP
reduction to obtain a fully flexible generator for one-loam@itudes. With its excellent CPU
speed the method has the potential to handle multi-pagicdeesses with up t6(10°) diagrams.
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