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1. Introduction

The need for precise predictions for many-particle processes at the Large Hadron Collider
stimulated a series of recent theoretical developments which led to the completion of various multi-
particle next-to-leading-order (NLO) calculations [1–17]. By using tensor-integral reduction and
Feynman diagrams, it became possible to handle multi-particle processes with high efficiency and
numerical stability [1, 2]. Alternatively, new reductionsof on-shell type which avoid tensor inte-
grals and reduce all process-dependent aspects of one-loopcalculations to a leading order (LO)
problem were introduced [18–20]. While the tensor-reduction approach leads to the fastest numer-
ical codes [1, 2], at present its large-scale applicabilityis limited by the occurrence of very large
algebraic expressions. In contrast, the higher flexibilityof the current OPP-based codes [21–23]
comes at the price of a lower CPU efficiency.

Here we report on a new one-loop algorithm [24] that naturally adapts to tensor integral and
OPP reduction and maximises speed and flexibility in a way that does not depend on the employed
reduction. This method is based on the recursive construction of so calledopen loops, which are
related to tensor-integral representations of one-loop Feynman diagrams. A recursive algorithm
based on tensor integrals was first introduced in the framework of a one-loop Dyson-Schwinger
recursion [25].

2. The open loops algorithm

Leading-order transition amplitudesM and virtual NLO correctionsδM are handled as sums
of tree and one-loop Feynman diagrams,

M= ∑
d

M(d), δM= ∑
d

δM(d). (2.1)

The corresponding scattering probability densitiesW and virtual one-loop correctionsδW are

W = ∑
hel,col

|M|2, δW = ∑
hel,col

2Re(M∗δM) . (2.2)

The sums run over colour and helicity states of each externalparticle. Colour sums are performed
at zero cost by exploiting thefactorisation of individual diagrams into colour factorsC(d) and
colour-stripped amplitudes

M(d) = C(d)A(d), δM(d) = C(d)δA(d). (2.3)

Four-gluon vertices are split into three contributions forwhich the factorisation property holds.
After algebraic reduction of the colour factors to a standard basis{Ci}, all colour sums are encoded
in the matrixKi j = ∑colC

∗
i C j , which is computed only once per process (see [26] for details).

Colour-stripped tree diagramsA(d) are computed by a numerical algorithm that recursively
merges sub-trees. We call a sub-tree a subdiagram obtained by cutting a tree. Sub-tree amplitudes
are complex n-tupleswβ (i), whereβ is the spinor or Lorentz index of the cut line. The labeli
represents the topology, momentum and particle content of the sub-tree. Sub-trees are recursively
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merged by connecting their cut lines to vertices and propagators:

wβ (i) = i =

k

j

. (2.4)

The sub-treesi, j andk involve off-shell momenta, but in contrast to off-shell currents they repre-
sent individual topologies. Cut lines are marked by dots, and external lines are not depicted. For
brevity, quartic vertices are not shown explicitly, but their inclusion is straightforward. In terms of
n-tuples, the recursion step reads

wβ (i) =
Xβ

γδ (i, j,k) wγ( j) wδ (k)

p2
i −m2

i + iε
, (2.5)

whereXβ
γδ/(p

2
i −m2

i + iε) describes a vertex connectingi, j, k, and a propagator attached toi. The
recursion starts with the external lines of a tree, i. e. the wave functions of the scattering particles,
and terminates when the sub-trees which are needed to build all tree diagrams have been generated.
The algorithm is based on numerical routines that implementall wave functions, propagators and
vertices. These building blocks depend only on the theoretical model and are easily obtained from
its Feynman rules. This approach is similar to the tree algorithm implemented in MADGRAPH [27].
Its strength lies in the efficiency of colour sums and the systematicrecycling of sub-treesappearing
in different diagrams.

Let us now consider one-loop amplitudes. A colour-strippedn-point loop diagram is an or-
dered set ofn sub-trees,In = {i1, . . . , in}, connected by loop propagators:

δA(d) =
∫

dDqN (In;q)
D0D1 . . .Dn−1

=

n−1

0

1

in−1in

i2i1

. (2.6)

The denominatorsDi = (q+ pi)
2 −m2

i + iε depend on the loop momentumq, external momenta
pi , and internal massesmi. All other contributions from loop propagators, vertices,and external
sub-trees are summarised in the numerator, which is a polynomial of degreeR≤ n in the loop
momentum,

N (In;q) =
R

∑
r=0

Nµ1...µr (In) qµ1 . . .qµr . (2.7)

Momentum-shift ambiguities are eliminated by settingp0 = 0. This singles out theD0 propagator,
and the loop momentumq flowing through this propagator is marked by an arrow in (2.6). In tradi-
tional one-loop calculations, the coefficientsNµ1...µr are explicitly constructed from the Feynman
rules, and the amplitude (2.6) is expressed as a linear combination

δA(d) =
R

∑
r=0

Nµ1...µr (In) Tµ1...µr
n,r (2.8)
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of tensor integrals

Tµ1...µr
n,r =

∫

dDq qµ1 . . .qµr

D0D1 . . .Dn−1
. (2.9)

These latter are subsequently reduced tom-point scalar integralsTm,0 with m= 1,2,3,4, which
originate from (2.9) by cancelling the numerator and at least n−4 denominatorsDi. Alternatively,
the OPP method [18] avoids tensor integrals through a directconnection between the numerator
N (In;q) and the scalar-integral representation of the amplitude. To this end, the numerator is
expressed as a polynomial in the denominatorsDi . The scalar-integral coefficients are determined
by evaluatingN (In;q) at loop momentaq that satisfy multiple-cut conditions of typeDi = D j =

· · ·= 0.
In this framework, the numerator can be computed with tree-level techniques. Let us consider

thecut loopthat results from (2.6) by cutting theD0 propagator and removing denominators,

N β
α (In;q) = In =

in

In−1 . (2.10)

The indicesα andβ are associated with the arrows that mark the ends of the cut line, and the trace
of the cut loop corresponds to the numeratorN (In;q). As depicted in (2.10),n-point cut loops can
be constructed by recursively merging lower-point cut loops and sub-trees. More explicitly,

N β
α (In;q) = Xβ

γδ (In, in,In−1)N
γ
α(In−1;q) wδ (in), (2.11)

whereXβ
γδ and wδ are the same vertices and sub-trees that enter the tree algorithm. It is thus

possible, within the OPP framework, to reduce the calculation of scalar-integral coefficients to a
tree-level problem. Highly automatic tree generators can be upgraded to loop generators [21, 22],
thereby reducing the human power needed for NLO calculations by orders of magnitude. However,
when applied to non-trivial processes, this approach can require massive computing resources.
The reason is that OPP reduction requires repeated evaluations ofN (In;q) for a large number of
momentaq.

This is related to the nature of loop calculations, which requires the knowledge of the numer-
ators asfunctionsof the loop momentumq. It is thus natural to handle the building blocks of the
recursion (2.11) as functions ofq. Accordingly, the cut loop (2.10) is expressed as a polynomial

N β
α (In;q) =

R

∑
r=0

N β
µ1...µr ;α(In) qµ1 . . .qµr (2.12)

in the loop momentumq. This representation is called anopen loop. In renormalisable gauge
theories, splitting theX tensor in (2.11) into a constant and a linear part,

Xβ
γδ =Yβ

γδ +qν Zβ
ν ;γδ , (2.13)

leads to recursion relations forn-point open loops in terms of lower-point open loops and sub-trees:

N
β
µ1...µr ;α(In) =

[

Yβ
γδ N

γ
µ1...µr ;α(In−1)+Zβ

µ1;γδ N
γ
µ2...µr ;α(In−1)

]

wδ (in). (2.14)
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The number of coefficients grows with the polynomial degree,which corresponds to the tensorial
rank r. However, symmetrising open-loop tensorial indicesµ1 . . .µr keeps the number of com-
ponents well under control [25]. Once the coefficients are known, multiple evaluations of the
polynomial (2.7) can be performed at a negligible CPU cost [28]. This strongly boosts OPP reduc-
tion. Moreover, the same coefficients can be used for a tensor-integral representation of the loop
amplitude (2.8). Open loops can thus be interfaced with bothOPP and tensor-integral reduction in
a natural way.

The efficiency of the open-loop recursion is further increased by means of relations that arise
from pinching loop propagators. Let us consider the parent (n-point) and child ((n− 1)-point)
diagrams in Fig. 1, where the child results from pinching theDn−1 propagator of the parent. It

In−2

in−1in

n− 1 In−2

in−1in

Figure 1: Parent (left) and child (right) open loops which share the common substructureIn−2.

is evident that the parent can be constructed byrecycling the In−2 part of the child. But this
requires that parent and child are cut as in Fig. 1. To this endwe order the external subtrees using a
function ik →S(ik) that fulfills S(ik)> 0; S(ik) 6= S(i l ) if ik andi l contain different external legs;
S(ik ⊕ i l ) > max{S(ik),S(i l )} whereik ⊕ i l is the merged sub-tree resulting fromik and i l . The
position and direction of the cut are determined by selecting contiguous sub-treesi1 andin with

S(ik)> S(i1) ∀ k> 1, S(in)> S(i2). (2.15)

This guarantees that parent and child diagrams are cut as in Fig. 1, so that each parent can be
constructed from theIn−2 part of a previously computed child.

The possibility ofhighly efficient helicity sumsis another key feature of open loops. Unpo-
larised transition probabilities require multiple evaluations of the polarised amplitudes (2.6). The
number of helicity configurations grows exponentially withthe particle multiplicity, and the result-
ing CPU cost can be very large. This can be avoided by exploiting the decomposition (2.8) into
helicity-dependent coefficientsNµ1...µr and helicity-independent tensor integrals. The CPU expen-
sive evaluation of tensor integrals (2.9) is performed onlyonce, and helicity sums—when restricted
to the coefficients—become very fast. More explicitly, the contribution of (2.8) to the unpolarised
transition probability is handled as a linear combination

δW(d) = Re
R

∑
r=0

δW(d)
µ1...µr Tµ1...µr

n,r , (2.16)

with helicity- and colour-summed coefficients

δW(d)
µ1...µr = 2∑

hel

(

∑
col

M∗C(d)

)

Nµ1...µr (In). (2.17)

The unpolarised representation (2.16) can be reduced to scalar integrals with any method, including
OPP. Within the OPP framework, the reduction is performed bystarting from the unpolarised nu-
merator functionδW(d)(In;q) = ∑r δW(d)

µ1...µr q
µ1 . . .qµr ; in this way open loops lead to extremely

5



P
o
S
(
R
A
D
C
O
R
2
0
1
1
)
0
1
5

A recursive one-loop algorithm for many-particle amplitudes Philipp Maierhöfer

fast helicity sums as compared to traditional tree generators. The OPP reduction is further im-
proved by combining sets of loop diagrams with identical loop propagators but different external
sub-trees.

3. Implementation and Benchmarks

We realised a fully automatic generator of QCD corrections to Standard-Model processes.
Diagrams are generated with FEYNARTS [29]; sub-tree and open-loop topologies are processed by
a MATHEMATICA program, which concatenates them in a recursive way, reduces colour factors,
and returns FORTRAN 90 code. Generalising the setup to other theories than QCD ismerely a
matter of implementing the corresponding additional vertices and propagators. The reduction to
scalar integrals is performed in terms of tensor integrals and, alternatively, with the OPP method.
For tensor integrals we use COLLIER, a private library by A. Denner and S. Dittmaier, which
implements the scalar integrals of Ref. [30] and reduction methods that avoid instabilities from
spurious singularities [31]. The library calculates the coefficients of a covariant decomposition
of the tensor integrals and uses them to construct explicit tensor components. OPP reduction is
performed with CUTTOOLS [32] and, alternatively, with SAMURAI [33]. Ultraviolet and infrared
divergences are dimensionally regularised. While loop denominators are consistently treated in
D = 4−2ε dimensions, the momentaqµ and the coefficientsNµ1...µr in (2.7)–(2.9) are handled in
D = 4. TheirD−4 dimensional contributions, which yield so-calledR2 rational terms, are restored
via process-independent counterterms [34] using the tree generator.

The correctness of the construction of open loops is verifiedby a consistency check against
our generator for tree amplitudes. By fixing the momentum of the cut propagator in the loop and
attaching external wave functionsεα

1 andε2β to the open loop we obtain pseudo-tree amplitudes

P = εα
1

(

N β
µ1...µr ;α qµ1 . . .qµr

)

ε2β . (3.1)

Agreement between the amplitudeP and the value which is computed independently by evaluating
the same diagram with a tree generator confirms the consistent implementation of the routines for
the numerical construction and evaluation of open loops as well as the organisation of the recursion
and recycling procedures. The loop matrix element is futhermore checked by comparing tensor-
integral versus OPP reductions, and observing cancellation of UV and IR divergencies.

To assess flexibility and performance of the method, we considered the 2→ 2,3,4 reactions
u ū→ W+W−+ng, ud̄→ W+g+ng, u ū→ tt̄+ng, and gg→ tt̄+ng, with n= 0,1,2 gluons. This
covers all non-trivial processes of the Les Houches priority list [35]. The open-loop approach leads
to compact codes and fast code generation. For instance—as compared to Ref. [2]—the numerical
code for gg→ W+W−bb̄ becomes two orders of magnitude smaller, and its generation time goes
down from more than 1 week to 4 minutes. Also the CPU speed of open loops, when compared
against the high performance of Refs. [1, 2], reveals a further improvement. The CPU cost of
one-loop scattering probabilities is plotted versus the number of diagrams in Fig. 2 (left). Sums
over colours and helicities are always included. For W bosons and top quarks, assuming decays
into massless left-handed fermions, we include a single helicity. For the 12 considered processes,
involving O(10) to O(104) diagrams, the CPU cost scales almost linearly with the number of

6
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number of loop diagrams
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/
t T
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104103102101
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1

gg → tt̄ + n g

uū → tt̄ + n g

ud̄ → W+g+n g

uū → W+W−+ n g
t T

I
[m

s]

1000

100

10

1

0.1

.

.

n = 2
n = 1
n = 0

n = 2
n = 1
n = 0

n = 2
n = 1
n = 0

n = 2
n = 1
n = 0

uū → tt̄ +ng

ud̄ → W+g+ng

uū → W+W−+ng

gg → tt̄ +ng

fraction of runtime

coeffsTRSI

Figure 2: left: CPU cost of colour and helicity summed one-loop probabilities δW versus number of
diagrams. Runtimes per phase space point, with tensor-integral (tTI) and OPP reduction with CUTTOOLS

(tOPP), on a single Intel i5-750 core compiled with ifort 10.1.right: Fractions of the CPU timetTI needed
for the calculation of scalar integrals (SI), tensor reduction (TR) and for the coefficientsNµ1...µr (coeffs).

diagrams. This unexpected feature indicates that the increase of tensorial rank does not represent
an additional penalty at large particle multiplicity. Withtensor-integral reduction (upper frame), the
runtime per phase-space point is typically below 1 ms for 2→ 2 processes; for the most involved
2 → 4 process it never exceeds one second. The ratio of timings obtained with CUTTOOLS and
tensor integrals (lower frame) shows that, when combined with open loops, OPP reduction permits
to achieve similarly high speed. While always slightly lower, the relative OPP efficiency seems to
improve with particle multiplicity. This holds also for SAMURAI .

To study the CPU utilisation in the tensor integral reduction approach in more detail we mea-
sured the times needed for the calculation of the scalar integrals, the tensor reduction and the
coefficients separately1. The results are shown in Fig. 2 (right). We observe that for low particle
multiplicity the time needed for the scalar integrals dominates. For higher multiplicities the relative
cost for the reduction of tensor integrals to scalar integrals and for the calculation of the coefficients
increases. Typically for a 2→ 4 process the coefficients require around 50% of the CPU time.Still
the total runtime is fairly close to the CPU cost of the scalarintegrals which represents a lower
bound for both methods, tensor integrals and OPP reduction,and is independent of the algorithm
employed for the amplitude construction.

4. Summary

We implemented the open loops algorithm and combined it withtensor integral and OPP
reduction to obtain a fully flexible generator for one-loop amplitudes. With its excellent CPU
speed the method has the potential to handle multi-particleprocesses with up toO(105) diagrams.
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