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1. NLO calculations and subtraction schemes

The analysis of experimental signatures at the LHC require theoretical predictions for differ-
ential distributions and cross sections. Since corrections to LHC processes are in general large,
higher-order contributions are necessary to match experimental accuracies and reduce the theoreti-
cal uncertainty. Furthermore, they decrease renormalization and factorization scale dependence of
the cross section. The general structure of any NLO calculation consists of two parts, the virtual
corrections and real radiation. In this context, the virtual exchange and real emission of partons
lead to divergences. After UV-renormalization, the virtual and real emission cross sections each
contain infrared and collinear singularities, which are regularized, usually, using dimensional reg-
ularization. In order to allow Monte Carlo simulations, different approaches have been devised for
the treatment of the divergent parts originating from different phase space contributions, namely
phase space slicing and subtraction. In our case, we follow the subtraction approach, which has
proven its superiority in many analyses. Generally, subtraction schemes introduce local counter-
terms dσA, which match the behavior of the real-emission matrix element Mm+1 in each soft and
collinear region. Subtracting these counter-terms from real-emission matrix elements and adding
back the corresponding one-particle integrated counterparts to the virtual contribution dσV results
in finite integrands for both the virtual correction ({p}m phase space) and the real contribution
({p}m+1 phase space):

σNLO =
∫

m

dσV +
∫

m+1

dσA+
∫

m+1

[

dσR−dσA
]

→
∫

m

[

dσV +∑
i

Vi ⊗dσB

︸ ︷︷ ︸

integrated

]

+
∫

m+1

[

dσR−∑
i

Di ⊗dσB
]

︸ ︷︷ ︸

subtracted real

. (1.1)

The form of the subtraction terms in the singular limits is dictated by the well known factorization
properties of QCD amplitudes

Mm+1
(
{p}m+1

)
−→ ∑

l

vl
(
{p}m+1

)
⊗Mm

(
{p}m

)
(1.2)

Herevl denotes the splitting function involved in the scattering process andMm the corresponding
Born matrix element. Additionally, a proper mapping between the{p}m+1 and{p}m phase spaces
is required, which satisfies momentum conservation and on-shellness.

2. Setup and implementation

Several different subtraction schemes exist at NLO, which differ in the phase space mapping
relating real-emission and leading-order kinematics. In our approach, we use a new subtraction
scheme proposed by Nagy and Soper (NS) in the context of a parton shower with quantum inter-
ference [1, 2, 3]. In this scheme, for a given number (N) of particles in the final state, the number
of mappings (relating real-emission and leading-order kinematics), as well as the number of sub-
traction terms (local counter terms) scale withN2. This is already an improvement over the other
well-established scheme, namely the Catani-Seymour (CS) subtraction scheme [4], in which the
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scaling is withN3. Even a constant scaling behavior could be achieved for anN-gluon final state
within the Madgraph framework [5]. Moreover, the application of the shower splitting functions as
subtraction terms in the NS-scheme facilitates the combination of shower and NLO calculations.
The small number of counterterms is obtained by treating allfinal state partons, which do not par-
ticipate in the splitting as a collective spectator. Here, the spectator momenta are reshuffled via a
unique Lorentz-transformation

Λµ
ν
(
K̂,K

)
= gµ

ν −
2(K̂ +K)µ(K̂ +K)ν

(K̂ +K)2
+

2K̂µKν

K2 , (2.1)

whereK̂ = Q− (p̂i + p̂ j) andK = Q− pi denote the momentum of the collective spectator in the
{p}m+1 and{p}m parton phase space. Throughout our subtraction scheme all splitting functions
are derived from usual QCD vertices, spinors and polarization vectors for on-shell partons. In
the case of virtual contributions, a fully analytical integration of the splitting functions over the
unresolved parton (splitting variable) has to be performed. Hence, for the final state splitting, the
full singularity structure can be extracted in form of theI -operator

∫

m+1

dσA = ∑
i

∫

m

dσB⊗
∫

1

dVi =

∫

m

[

dσB⊗ I
]

. (2.2)

In this connection, the splitting variable is parameterized by an azimuthal, a collinear and a soft
variable. We follow here a semi-numerical approach, where the azimuthal variable is integrated
analytically and collinear and soft variables are integrated numerically via Monte Carlo. The briefly
introduced alternative subtraction method is implementedfor both massless and massive cases
into the HELAC-DIPOLES framework [6], which provides additionally helicity/color description,
calculation of color correlated amplitudes and the integration setup in a fully automated way.

3. Results

To check our implementation, we performed several numerical and analytical tests partly with
already existing analytic results [7]. As an example of the first numerical results of our implemen-
tation, we show in Fig. [1-3] comparisons of some basic differential distributions evaluated with the
Catani-Seymour and the new Nagy-Soper subtraction scheme for the processe+e− → uug+X. The
comparison was done with

√
s= 1 TeV using thekT-algorithm, and the scale for both factorization

and renormalization was set at 1 TeV. The cross sections are given in femto-barns and correspond
to inclusive cuts (pT( j) > 20 GeV,∆Rj j > 0.8 and|y( j)| > 2.5). Notice that the details of the
setup are not particularly important for the comparison. The plots demonstrate a strong scheme
dependence of the subtracted-real and the I-operator contributions taken separately. Independence
on the subtraction scheme is obviously achieved, when all contributions to the real cross section
are summed up. We have checked the scheme-independence of all our results within a permille
accuracy.
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Figure 1: CS vs NS schemes for invariant mass of the two hardest jets.
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Figure 2: CS vs NS schemes forpT of the hardest jet.
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Figure 3: CS vs NS schemes for rapidity of the most forward/backward jet
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