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Recently methods have been developed to extend the resummation of large-x double logarithms in
inclusive deep-inelastic scattering (DIS) to terms not addressed by the soft-gluon exponentiation.
Here we briefly outline our approach based on fixed-order results, the general large-x structure in
dimensional regularization and the all-order factorization of mass singularities, which is directly
applicable also to semi-inclusive e+e− annihilation (SIA). We then present some main results
for the corresponding timelike splitting functions and transverse and longitudinal fragmentation
functions. The close relation between DIS and SIA facilitates the determination of additional
third-order results for the latter function which is fully known only at the next-to-leading order.
Therefore all above quantities can be resummed at next-to-next-to-leading logarithmic accuracy.
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1. Introduction

In the past years quite a few studies have addressed the threshold behaviour of higher-order split-
ting functions and hard-process coefficient functions in perturbative QCD beyond the quantities or
contributions covered by the standard soft-gluon exponentiation [1–13]. Except for the gluon con-
tributions to the longitudinal structure and fragmentation functions FL which include an additional
factor (1−x), the dominant terms are of the divergent but integrable ‘double-logarithmic’ form

α
n
s ln2n−n0−`(1−x) . (1.1)

Here n0 depends on the quantity under consideration, with n0 = 2 for the ‘off-diagonal’ splitting
functions Pi j(x) with i 6= j – recall that the diagonal splitting functions Pii(x) do not exhibit any
n-dependent large-x enhancement in the MS scheme adopted in the present contribution [14, 15] –
and n0 = 1 for the structure functions in deep-inelastic scattering (DIS) and fragmentation functions
in semi-inclusive e+e− annihilation (SIA) with the exception of the functions FL where n0 = 2.
` = 0, 1, 2, . . . in Eq. (1.1) represent the leading logarithmic (LL), next-to-leading logarithmic
(NLL), next-to next-to-leading logarithmic (NNLL = N2LL), . . . large-x contributions.

Using the third-order results of Refs. [16, 17], the LL, NLL and NNLL coefficients of the
(non-singlet) quark coefficient functions for the structure functions F2, F3 and FL in DIS and their
counterparts FT , FA and FL in SIA have been obtained in Refs. [8,9], together with the correspond-
ing LL and NLL results for the Drell-Yan process, from the single-logarithmic behaviour of the
physical evolution kernels of these observables. The corresponding approach is not sufficient for
all-order predictions in flavour-singlet cases, but was used to obtain the NNLL approximations of
the fourth-order contributions to the off-diagonal spacelike splitting functions PS

i j for the parton
distribution and the longitudinal coefficient function CL,g in DIS [10, 11].

Those DIS results have been confirmed and extended by studying the D-dependence of the
unfactorized structure functions in dimensional regularization [12, 13]. This approach facilitates
the determination of the one previously missing parameter in the N3LL non-singlet coefficients
for F2 and F3 – a result that has been obtained independently in Ref. [6] – and the extension of the
NNLL all-order resummation to the off-diagonal splitting functions and gluon coefficient functions.
In the present contribution we briefly report on the generalization of those results to the off-diagonal
timelike splitting functions PT

i j for parton fragmentation and the singlet coefficient functions for the
fragmentation functions in SIA; a detailed account of our results will be published elsewhere [18].

For this purpose we consider the transverse and longitudinal gauge-boson exchange fragmen-
tation functions FT

T and FT
L as defined in Ref. [19] together with the corresponding Higgs-decay

quantity in the heavy top-quark limit FT
φ

. Schematically our notation for the corresponding time-
like coefficient functions CT

a,i and the evolution of the fragmentation distributions Di at the physical
scale Q2 with as = αs(Q2)/(4π) reads (note the transposition of the splitting-function matrix)

F T
a (Q2) = CT

a,i(as)⊗Di(Q2) ,
d

d lnQ2 D j = PT
i j (as)⊗Di (1.2)

where ⊗ represent the Mellin convolution and the appropriate summations over i are understood.
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2. Outline of the resummation
The primary objects of the present resummation are the unfactorized SIA fragmentation functions

F̂ T
a,k = C̃T

a, i⊗ZT
ik for a,k = T,g , φ ,q , L,q and L,g (2.1)

in D = 4− 2ε dimensions. The functions C̃T
a, i are given by Taylor series in ε , with the εk terms

including k more powers in ln(1−x) than the 4-dimensional coefficient functions. The timelike
transition matrix ZT consist of only negative powers of ε and can be written in terms of

PT = as P0 + a2
s P1 + a3

s P2 + . . . (2.2)

and the corresponding coefficients βm of the beta function. This dependence can be summarized as

an
s ε

−n : P0 , β0 , an
s ε

−n+1 : +P1, β1 , . . . , an
s ε

−1 : Pn−1 . (2.3)

Hence fixed-order knowledge at NmLO (i.e., of the splitting functions to Pm and the corresponding
coefficient functions) fixes the first m+1 coefficients in the ε expansion of F̂ T

a,k at all orders in as.
The large-x expansions of F̂ T

a 6=L,k (the corresponding relation for FL is slightly different) are given by

F̂ T
∣∣
an

s ε−n+` = F
(0)
n,` lnn+`−1 (1−x) + F

(1)
n,` lnn+`−2 (1−x) + . . . . (2.4)

If the constants up to F
(m)
n,` are known for all n and `, then the splitting functions and coefficient

functions can be determined at NmLL accuracy at all orders of the strong coupling.
As in DIS, the nth order large-x contributions to F̂ T

a 6=L,k are built up from n term of the form(
An,k ε

−2n+1 + Bn,k ε
−2n+2 + Cn,k ε

−2n+3 + . . .
)
(1−x)−kε , k = 1, . . . , n (2.5)

which arises from the phase-space integrations for the undetected final-state partons and the loop
integrals of the virtual corrections [21–23]. Since the terms with ε−2n+1, . . . , ε−n−1 have to cancel
in sum (2.1), there are n−1 relations between the LL coefficients An,k which lead to the constants
F

(0)
n,` in Eq. (2.4), n−2 relations between the NLL coefficients Bn,k etc. As discussed above, a

NmLO calculation fixes the (non-vanishing) coefficients of ε−n, . . . , ε−n+m at all orders n, adding
m + 1 more relations between the coefficients in Eq. (2.5). Consequently the highest m+1 double
logarithms, i.e., the NmLL approximation, can be determined in this manner from the NmLO results.

The coefficient functions for FT ≡ FT
T , FT

L and FT
φ

are known at the second order [23–26].
The third-order timelike splitting functions have been determined, up to an uncertainty which is
irrelevant in the present context, in Refs. [26–28]; see also Ref. [7] for their large-x logarithms.
The all-order factorization of the quantities (2.1) requires corresponding large-x results for the
quantities F T

T,q and F T
φ ,g. These are available from the soft-gluon exponentiation to a far higher

accuracy than required here, cf. Ref. [29]. The calculations are carried out in Mellin-N space with

lnk (1−x) ∧= (−1)k N−1( lnkÑ + 1
2 k(k−1)ζ2 lnk−2Ñ + . . .

)
, ln Ñ = lnN + γe (2.6)

where γe is the Euler-Mascheroni constant. The required formalism is completely analogous to that
in Ref. [13]. Our symbolic manipulations have been performed using FORM and TFORM [30, 31].
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3. Results for the timelike splitting functions
As their spacelike counterparts, the LL and NLL contributions to the off-diagonal timelike splitting
functions can be expressed in terms of functions Bn(x) introduced and discussed in Refs. [12, 13],

Bk(x) =
∞

∑
n=0

Bn

n!(n+ k)!
xn and B−k(x) =

∞

∑
n=k

Bn

n!(n− k)!
xn (3.1)

for k = 0, 1 ,2, . . ., where Bn are the Bernoulli numbers in the normalization of Ref. [20]. We obtain

NPT
qg(N,αs) = 2as nf B0(−ãs)

+ a2
s ln Ñ nf

[
(12CF −6β0)

1
ãs

B−1(−ãs) −
β0

ãs
B−2(−ãs)+ (6CF −β0) B1(−ãs)

]
+ NNLL contributions + . . . , (3.2)

NPT
gq(N,αs) = 2asCF B0(ãs)

+ a2
s ln Ñ CF

[
(12CF −2β0)

1
ãs

B−1(ãs) +
β0

ãs
B−2(ãs) + (8CA−2CF −β0)B1(ãs)

]
+ NNLL contributions + . . . . (3.3)

Here CA and CF are the standard SU(nc) colour factors with CA = nc = 3 and CF = 4/3 in QCD,
nf represents the number of effectively massless quark flavours, β0 = 11/3 CA−2/3 nf is the first
coefficient of the (four-dimensional) beta function, and we have used the shorthand

ãs ≡ 4asCAF ln2Ñ with CAF ≡CA−CF (3.4)

reflecting the vanishing of the double logarithms for the ‘supersymmetric’ case CA = CF .
The first and second lines of Eqs. (3.2) and (3.3) are the LL and NLL results, respectively.

They differ from their spacelike counterparts, nf /CF PS
gq and CF/nf PS

qg only by coefficients of B1

proportional to CA−CF . These differences are due to different (1−ε)−1 prefactors of the spacelike
and timelike unfactorized structure functions, e.g., the absence of the DIS gluon spin-averaging
in the corresponding SIA quantity, which are otherwise related by a (at this level) simple analytic
continuation. As in the spacelike case, we have no closed all-order expression for the NNLL
contributions to Eqs. (3.2) and (3.3) which therefore will be presented via tables to a sufficiently
high order in αs in Ref. [18]. After transformation back to x-space the fourth-order results read

PT
qg(x)

∣∣∣
a4

s

= ln5(1−x)C 2
AFnf

[
22
27 CAF − 14

27 CF − 4
27 nf

]
+ ln4(1−x)CAFnf

[(
1432

81 + 64
9 ζ2

)
C 2

AF +
(

1471
54 − 8ζ2

)
CAFCF (3.5)

− 16
3 CAFnf − 49

81 C 2
F + 17

81 CFnf + 32
81 n2

f

]
+O

(
ln3(1−x)

)
,

PT
gq(x)

∣∣∣
a4

s

= ln5(1−x)C 2
AFCF

[
− 26

27 CAF − 14
27 CF − 4

27 nf

]
+ ln4(1−x)CAFCF

[(
469
27 − 128

9 ζ2

)
C 2

AF +
(

5317
162 − 8ζ2

)
CAFCF (3.6)

− 212
81 CAFnf − 13

81 C 2
F + 17

81 CFnf − 4
81 n2

f

]
+O

(
ln3(1−x)

)
.

The LL coefficients vanish at all even orders in αs from the fourth due to B2n+1 = 0 for n ≥ 1.
The above results are illustrated in Fig. 1 below for αs = 0.12 and nf = 5, i.e., at a scale Q2 'M 2

Z .

4



P
o
S
(
R
A
D
C
O
R
2
0
1
1
)
0
2
3

Generalized threshold resummation for semi-inclusive e+e− annihilation N.A. Lo Presti

αs = 0.12, nf = 5

P T

gq /P T to α
3

s

gq

N
302010

1.004

1.002

1

0.998

+NNLL

+NLL

+LL

P T

qg /P T to α
3

s

qg

N
302010

1.02

1.01

1

0.99

Figure 1: The relative leading-logarithmic (LL), next-to-leading logarithmic (NLL) and next-to-next-to-
leading logarithmic (NNLL) higher-order large-x corrections to the third-order off-diagonal timelike splitting
functions PT

i j in Mellin-N space at a typical high-scale reference point.

αs = 0.12, nf = 5

NCT
L,g(N)

N
3020100

0.03

0.02

0.01

0

+NNLL

+NLL

+LL

to α2
s

CT,g(N)

N
3020100

0

-0.01

-0.02

-0.03

Figure 2: The absolute LL, NLL and (for CT,g) NNLL higher-order threshold corrections to the second-
order transverse and longitudinal gluon coefficient functions CT,g and C T

L,g in N-space at a scale Q2 'M 2
Z .

Note that our normalization of both functions differs by a factor of 1
2 from that of Refs. [23–25], i.e., here the

lowest-order large-x limits are CT,g(x,as) = 2CF as ln(1−x) + . . . and CT
L,g(x,as) = 4CF as (1− x) + . . . .
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4. Results for the SIA coefficient functions
The NNLO results facilitate the resummation of also the (more complicated) coefficient functions
CT,g and CT

φ ,q at NNLL accuracy. Here we show, for brevity, only the NLL resummation of the
former quantity (the NNLL contributions and the result for the latter will be given in Ref. [18]),

NCT,g(N,αs) =
1

2ln Ñ

CF

CA−CF

[
exp(2asCF ln2Ñ)B0(ãs)− exp(2asCA ln2Ñ)

]
− 1

8ln2Ñ

CF(3CF −β0)
(CA−CF)2

[
exp(2asCF ln2Ñ)B0(ãs)− exp(2asCA ln2Ñ)

]
(4.1)

− as

4
CF

CA−CF
exp(2asCA ln2Ñ)(8CA +4CF −β0)

− a2
s

3
β0 ln2Ñ

CF

CA−CF

[
CA exp(2asCA ln2Ñ)−CF exp(2asCF ln2Ñ)B0(ãs)

]
− as

4
CF

CA−CF
exp(2asCF ln2Ñ)

[
−6CFB0(ãs)− (8CA−2CF −β0)B1(ãs)

− (12CF −4β0)
1
ãs

B−1(ãs)−
β0

ãs
B−2(ãs)

]
+ NNLL contributions + . . . .

Also this expression differs from its spacelike counterpart in Ref. [13] only in the coefficient of B1.
The third-order contribution, now including the NNLL term, is given by

CT,g(x)
∣∣∣
a3

s

= ln5(1−x)CF

[
2
3C 2

A + 10
3 C 2

F

]
+ ln4(1−x)CF

[
7

27CAnf − 269
54 C 2

A + 17
27CFnf − 338

27 CFCA − 97
18C 2

F

]
+ ln3(1−x)CF

[(
2990

81 − 16
9 ζ2

)
C 2

A +
(

3652
81 − 88

9 ζ2

)
CFCA

−
(

41
9 −

112
9 ζ2

)
C 2

F − 140
81 CAnf − 436

81 CFnf

]
+ O

(
ln2(1−x)

)
. (4.2)

For the longitudinal fragmentation function the second-order results represent only the NLO
contribution. The resulting NLL results for the gluon coefficient function read

N 2CT
L,g(N,αs) = 4asCF exp(2asCA ln2Ñ) + 2asCF NCLL

T,g(N,αs)

+ 8a2
s ln Ñ nf exp(2asCA ln2Ñ)

[(
4CA−CF

)
+ 1

3 as ln2ÑCAβ0

]
. (4.3)

where the first terms is the LL contribution. The resulting third-order x-space expression is

(1−x)−1 CT
L,g(x)

∣∣∣
a3

s

= 8CFC 2
A ln4(1−x)

+ ln3(1−x)CF

[
20
3 C 2

F + 52
3 CFCA − 952

9 C 2
A + 16

9 CAnf

]
+ . . . . (4.4)

The third logs for CT
L,g can not be derived by resumming the NLO results. The coefficient at order

α 3
s , however, can be obtained be comparing the physical kernels for (FT , FT

L ), cf. Ref. [32], to the
analogous DIS results [11,13] along the lines of Refs. [7,26], yielding the continuation of Eq. (4.4)

. . . + ln2(1−x) CF

[
(62−32ζ2)C 2

F −
(

784
3 −32ζ2

)
CFCA + 5720

9 C 2
A + 16

3 CFnf − 224
9 CAnf

]
+ . . .

where, as in Ref. [11], an additional dabcdabc contribution has been suppressed for brevity. The
consequences of this result and its extension to the ln(1−x) term will be discussed in Ref. [18].
The numerical size of the resummed large-N corrections is shown in Fig. 2, again using Q2 'M 2

Z .
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5. Discussion and Outlook
We have derived the all-order resummation of the three highest (NNL) threshold double logarithms
for the off-diagonal timelike splitting functions PT

i j and the coefficient functions CT
T,g , CT

L,g , CT
φ ,q and

CT
L,q for gauge-boson and (in the heavy-top limit) Higgs exchange semi-inclusive e+e− annihilation

(SIA). Our results for the last quantity confirm the findings obtained in Ref. [9] by a different
method, while the others are new. For brevity only a part of these results have been discussed here;
for a full account the reader is referred to Ref. [18].

The numerical effect of the double logarithms beyond the third order on the splitting functions
in Mellin-N space is very small for a strong coupling αs ' 0.12 corresponding to a scale close to
the Z-boson mass, amounting to less that 1% for N <∼ 20. Here the contributions of terms beyond
the fourth order are negligible. The corresponding corrections are larger, and receive noticeable
contributions to order α 5

s , for the coefficient functions.
In (almost) all these cases these is no reason to believe that the N`LL corrections for ` > 2

are small compared to the present results. This is hardly surprising, given previous experience
with other end-point resummations, but indicates that more terms are required in order to achieve
phenomenological relevance. We hope that the present results will provide useful information for
the development of more sophisticated approaches in the future.

As done at the fourth-order for non-singlet quark coefficient functions in Ref. [9] and the
spacelike splitting functions in Ref. [10], it is possible to extend the present results to all higher
orders in the expansion in powers of (1−x), i.e., to all terms of the form (1−x)a ln2n−`−n0 (1−x).
Consequently all large-x double logarithms in inclusive deep-inelastic scattering (DIS) and SIA are
fixed by lower-order information, with the coefficient of the N`LL contributions determined by the
N`LO fixed-order results.

Due to the somewhat different structure of the D-dimensional phase-space integrations, the
present approach is unfortunately not directly applicable (beyond the leading logarithms) to the
Drell-Yan lepton-pair and Higgs-boson production in proton-proton collisions. Hence further, more
refined tools are required in these cases to improve upon the physical-kernel constraints of Ref. [9]
and to extend those results to the flavour-singlet contributions.

The present approach can be extended, on the other hand, to high-energy (small-x) double log-
arithms, if neither to all quantities nor to all powers a in the analogous small-x expansion in terms
of xa ln2n−`−n0 x terms. The NNLL resummation of the dominant x−1 terms in the timelike splitting
functions and the fragmentation functions in SIA has been presented in Ref. [33], the results for the
x0 terms for the corresponding DIS quantities have also been derived and will be presented else-
where [34]. Clearly more research is required on both the threshold and high-energy logarithms.
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