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Figure 1: Representative Feynman graphs for the Higgs signal process (left) and the qq̄- (centre) and gg-

initiated (right) continuum background processes at LO.

1. Introduction

Higgs production in gluon fusion with subsequent decay into a weak boson pair is an impor-

tant element of the Higgs search at the LHC. The signal process (Fig. 1, left) has been calculated

and studied up to NNLO (see Refs. [1 – 11] and references therein). Continuum weak boson pair

production is the dominant irreducible background and has also been studied extensively. For the

leading quark scattering subprocess (Fig. 1, centre), programs at NLO are available, in part based

on earlier calculations (see Refs. [12 – 14] and references therein). Here, we focus on the gluon

scattering subprocess (Fig. 1, right) and its interference with the signal process. gg → VV contin-

uum production formally enters at NNLO and was calculated in Refs. [15 – 18]. Off-shell weak

boson decays and the possibility to interface with shower programs were subsequently included

[13, 19 – 25]. At the LHC, the importance of gluon-induced VV continuum production and decay is

enhanced by the large gluon-gluon flux and experimental Higgs search selection cuts. Resonance-

continuum interference has been studied for gg (→ H)→VV in Refs. [11, 16, 17, 22, 24, 26] and

for related processes in Refs. [27 – 29]. Here, results for a heavy Higgs boson with MH = 400 GeV

are presented. The search for a heavy Higgs boson at hadron colliders has been examined in Refs.

[30 – 33].

2. Calculational details

The results presented in Section 3 have been calculated with the programs gg2WW [20, 22]

and gg2ZZ [23]. Representative graphs for the gg → H → VV signal process and the gg → VV

continuum process are displayed in Fig. 1. In addition to box topologies in principle also triangle

topologies contribute to the gg-initiated continuum processes (see Fig. 2). But, in the limit of van-

ishing lepton masses the triangle graphs do not contribute.1 For cross checks, two amplitude codes

have been used based on the methods described in Ref. [22] (BCKK) and Refs. [34, 35] (Form-

Calc). Off-shell weak boson contributions and massless as well as massive quarks are taken into

account. Third quark generation contributions increase the total gg → WW → leptons continuum

cross section by 12% and the double-resonant gg → ZZ → leptons continuum cross section by 65%

(pp,
√

s = 14 TeV). For Z-pair production and decay, the γ∗ contributions are taken into account.

For W -pair production and decay, the BCKK code approximates VCKM = 1. The FormCalc code

was used to confirm at the amplitude level that this is an excellent approximation as CKM effects

1Note that the gg → Z triangle graphs do contribute for non-zero lepton masses, which was verified by explicit

calculation.
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Figure 2: Representative triangle graphs that formally contribute to gluon-induced VV continuum produc-

tion and decay.

are smaller than 0.01%. The gg2VV programs allow for the simultaneous calculation of cross

sections for multiple scales as well as the PDF error.2

As both amplitude implementations employ Passarino-Veltman-type tensor integral reduc-

tion methods, a discussion of numerical stability is warranted. The box amplitudes are affected

by spurious singularities, which are caused by inverse powers of the Gram determinant detG =

2s(tu−M2
V ∗

1
M2

V ∗
2
), because detG → 0 as pTV → 0. For phenomenologically relevant cross sections,

the error caused by numerical instabilities should be small compared to practical MC integra-

tion errors, which are typically of order 0.1%. After the symbolic cancellation of Gram deter-

minants, the BCKK amplitude code evaluated in quadruple precision is numerically stable in the

above sense.3 On the other hand, numerical instability is observed for the FormCalc amplitude

code when evaluated in quadruple precision for a relevant phase space (PS) configuration with

pTV = 0.007 GeV. Using the stable BCKK code as benchmark, the following diagnostic algorithm

was devised to detect problematic PS points with the FormCalc code and quadruple precision:

First, we exploit that instabilities spoil Lorentz invariance by comparing |M |2 evaluated at the PS

point and the PS point boosted along the beam axis with pboost = (1,0,0,0.001+0.1r1) GeV with

random r1 ∈ [0,1].4 The relative deviation is assessed using reldev(x,y) = |x− y|/min(x,y). If

reldev(|M |2, |Mboosted|2)> 10−4 the PS point is classified as unstable. The same criterion is then

applied again, except now with a random boost in the opposite direction. If the PS point is still con-

sidered stable another test is performed, which exploits that instabilities occur at exceptional PS

configurations. One therefore compares |M |2 evaluated at the PS point (in double precision) and

the PS point mapped to single precision. If reldev(|M |2, |Msingle|2) > 1 the PS point is classified

as unstable. Unstable PS points are discarded. Only in combination allow these tests to detect all

instabilities. As indicated above, this has been verified by comparison with the stable BCKK code.

One can thus also assess the error introduced by discarding PS points that are wrongly classified as

unstable. The parameters have been adjusted to minimize this error. For integrated cross sections,

it is approximately 0.03%.

2Sample output: scale1: 10.5817 MC: ±0.0063 (±0.059%) scale(×2): −2.5573 (−24%) +3.6967 (+35%) PDF:

−0.2723 (−2.6%) + 0.2382 (+2.3%) fb, sym. scale error: ±28%, sym. PDF error: ±2.4%, scale2: 19.121 MC: ±0.012

(±0.061%) fb
3Differential distributions are smooth, even when calculating extreme cross sections like σ(pTV < 1 GeV).
4The PS point is assumed to be given in the rest frame of pboost. The PS point is boosted to the frame in which

pboost is given.
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σ [fb], pp,
√

s = 7 TeV, MH = 400 GeV interference

process cuts |MH |2 |Mcont|2 |MH +Mcont|2 R1 R2

gg (→ H)→WW stand. 4.361(3) 6.351(4) 10.582(7) 0.9879(8) 0.970(2)

gg (→ H)→WW Higgs 2.502(2) 0.633(1) 3.007(3) 0.959(2) 0.949(2)

gg (→ H)→ ZZ stand. 0.3654(4) 0.3450(4) 0.7012(8) 0.987(2) 0.975(3)

gg (→ H)→ ZZ Higgs 0.2729(3) 0.01085(2) 0.2867(3) 1.010(2) 1.011(2)

Table 1: Cross sections in fb for gg (→ H) → W−W+ → lν̄l l̄
′νl′ and gg (→ H) → ZZ → ll̄l′ l̄′ in pp

collisions at
√

s = 7 TeV for MH = 400 GeV and a single lepton flavour combination calculated at LO.

Standard cuts and Higgs search cuts are applied (see main text). Interference effects are illustrated through

R1 = σ(|MVV|2)/σ(|MH |2 + |Mcont|2) and R2 = σ(|MH |2 +2Re(MHM ∗
cont))/σ(|MH |2).

3. Results

Parton-level cross sections for gg (→ H)→ W−W+ → lν̄l l̄
′νl′ and gg (→ H)→ ZZ → ll̄l′ l̄′

(l: charged lepton) in pp collisions at
√

s = 7 TeV are presented in Table 1. Results are given for

a single lepton flavour combination, e.g. l = e−, l′ = µ−. Lepton masses are neglected. The input

parameter set of Ref. [36], App. A, is used with NLO ΓV and Gµ scheme. For the Higgs resonance,

we set MH = 400 GeV and ΓH = 29.16 GeV [37]. The renormalisation and factorisation scales are

set to MH/2. The PDF set MSTW2008LO with 1-loop running for αs(µ
2) and αs(M

2
Z) = 0.13939

is used. The fixed-width prescription is used for Higgs and weak boson propagators. For ZZ

production and decay, the virtual photon contributions have been included.

The following experimental selection cuts are adopted [36, 38]: As WW standard cuts, we

use pT l > 20 GeV, |ηl| < 2.5, p/T > 30 GeV and Mll̄′ > 12 GeV. As WW Higgs search cuts for

MH = 400 GeV, we use the WW standard cuts and in addition pT l,min > 25 GeV, pT l,max > 90 GeV,

Mll̄′ < 300 GeV and ∆φll̄′ < 175◦. As ZZ standard cuts, we use pT l > 20 GeV, |ηl| < 2.5 and 76

GeV < Mll̄,Ml′ l̄′ < 106 GeV. As ZZ Higgs search cuts, we use the ZZ standard cuts and in addition

|Mll̄l′ l̄′ −MH |< ΓH .

The significance of a Higgs or new physics observation is determined as function of the

number of signal events S ∝ σ(|Msig|2) and background events B ∝ ∑σ(|Mbkg|2). When signal

and background interfere the distinction becomes blurred. Here: |MVV|2 = |MH |2 + |Mcont|2 +
2Re(MHM ∗

cont). One can choose to include the interference term in the signal: Si ∝ σ(|MH |2 +
2Re(MHM ∗

cont)).
5 We assess interference effects using two measures: R1 =σ(|MVV|2)/σ(|MH |2+

|Mcont|2) and R2 = σ(|MH |2 +2Re(MHM ∗
cont))/σ(|MH |2). As shown in Table 1, at

√
s = 7 TeV

interference effects can be as large as 5%. At
√

s = 14 TeV, interference effects can approach the

10% level: for WW production and standard cuts (Higgs search cuts) one obtains R1 = 0.9680(8)

(R1 = 0.940(2)) and R2 = 0.932(2) (R2 = 0.926(2)), and for ZZ production and standard cuts

(Higgs search cuts) one obtains R1 = 0.969(2) (R1 = 1.011(2)) and R2 = 0.945(3) (R2 = 1.011(3)).

While the additional Higgs search cuts increase the negative interference for WW production, for

ZZ production the |Mll̄l′ l̄′ −MH | < ΓH cut limits the interference effect to about 1%. The latter

5In principle, Si can be negative, and this does affect phenomenologically relevant distributions [24].
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Figure 3: Differential cross section distributions for gg (→ H) → W−W+ → lν̄l l̄
′νl′ in pp collisions at√

s = 7 TeV for MH = 400 GeV and a single lepton flavour combination calculated at LO. The pT l [GeV]

(left) and ηl (right) distributions are shown. Standard cuts are applied (see main text). fb is used as cross

section unit.

Figure 4: pT l,min [GeV] (left) and pT l,max [GeV] (right) distributions. Other details as in Fig. 3.

traces back to the fact that the interference changes sign at Mll̄l′ l̄′ = MH , as seen in Fig. 6 (left).

Differential distributions for phenomenologically relevant observables are shown in Figs. 3,

4 and 5 for WW production and in Fig. 6 for ZZ production. The distributions demonstrate that

a compensation of positive and negative interference occurs for cross sections that are integrated

over most of the phase space. For this reason, the more exclusive selection cuts typically used in

Higgs and new physics searches can increase the size of the interference effects.

4. Conclusions

gg (→ H)→VV interference effects are not suppressed and can range from 1% to about 10%.

They can be enhanced by Higgs search selection cuts and should be taken into account in the LHC

data analysis.
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Figure 5: Mll̄′ [GeV] (left) and ∆φll̄′ [◦] (right) distributions. Other details as in Fig. 3.

Figure 6: Differential cross section distributions for gg (→ H) → ZZ → ll̄l′ l̄′ in pp collisions at
√

s = 7

TeV for MH = 400 GeV and a single lepton flavour combination calculated at LO. The Mll̄l′ l̄′ [GeV] (left)

and Mll̄ [GeV] (right) distributions are shown. Standard cuts are applied (see main text). fb is used as cross

section unit.
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