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1. Introduction

Inclusive quark production through a decay of a heavy virtual photon, Z boson orτ is a process
of importance for QCD as the theory of strong interactions. Perturbative QCD (pQCD) provides
theoretically clean prediction for the process (see, e.g. [3, 4]).

Combined with the precise determination of theZ-boson decay rate into hadrons at LEP [5]
this has led to one of the most precise determinations of the strong coupling constantαs(MZ). An
alternative and also very precise determination ofαs(MZ) as derived fromαs(Mτ) has been re-
cently obtained from theO(α4

s ) prediction [1] for the ratioRτ =
Γ(τ→hadrons)

Γ(τ→l+ν̄l+ντ )
and the experimental

determinations ofRτ by ALEPH, CLEO and OPAL collaborations (see, e.g. [4]).

Note that while theO(α4
s ) predictions forRτ are complete this is not the case forR(s) and the

Z-decay rate. The missing pieces are related to so-called singlet diagrams (see Fig. 1 below). Note
that while the top quarks can not be produced in Z-decays due to kinematical reasons, the (axial)
singlet diagrams containing internal quark loops arenot power suppressed (unlike similar loops
for the vector singlet (and non-singlet) diagrams. This remarkable phenomenon first shows up at
orderα2

s and was first established and fully investigated in works [6,7]. The full account of singlet
diagrams at orderα3

s was performed in papers [8, 9, 10] (vector case) and in [11, 12, 13, 10] (axial
case).

In the present work we present the results of the calculations of the orderα4
s axial singlet

contributions for the decay rates of theZ-boson as well as the vector singlet contribution to the
cross section for electron-positron annihilation into hadrons. Note that we will not dwell on any
phenomenological applications of our calculations as theyhave been recently discussed in some
detail in [14].

2. Preliminaries

The interaction of the Z boson to quarks is described (in the lowest order approximation
in the weak coupling constant) by adding to the QCD Lagrangian an extra term of the form

MZ

(

GF

2
√

2

)1/2
ZαJ0

α , with J0
α = ∑i ψ iγα(gV

i − gA
i γ5)ψi being the neutral quark current. As a re-

sult, the hadronic decay rate of the Z boson (Γh
Z) including all strong interaction corrections may be

viewed as an incoherent sum of vector (ΓV
Z ) and axial (ΓA

Z) contributions. By the optical theorem
both contributions can be conveniently related to the correlators of vector and axial vector quark
currents. The general definition for the latter reads:

ΠV/A
µν ;i, j(q) = i

∫

eiqx〈0| T jV/A
µ ,i (x) jV/A

ν , j (0) |0〉 dx

= gµνq2ΠV/A
1;i, j (−q2)+qµqν ΠV/A

2;i, j (−q2) (2.1)

with jVµ ,i = ψ i γµ ψi = V i
µ and jAµ ,i = ψ i γµ γ5ψi = Ai

µ . The corresponding absorptive parts are
defined as follows:

RV/A
i, j (s) = 12πℑ ΠV/A

1;i, j (−s− i ε). (2.2)
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Figure 1: Examples of non-singlet diagrams (a), (b), where the twoZ vertices are connected by a fermion
line, and of singlet diagrams (c),(d), where the diagram canbe split by only cutting gluon lines. The imag-
inary part of the non-singlet diagrams givesRV/A,NS, while the imaginary part of the singlet diagrams is
denoted byRV/A,S.

The Z decay rateΓ(Z → hadrons) = Γ0
(

RV(M2
Z)+RA(M2

Z)
)

, whereΓ0 = GFM3
Z/(24π

√
2) and

RV/A can be expressed in terms ofRV/A
i, j defined in eq. (2.2), namely

RV =∑
i, j

gV
i gV

j RV
i, j , RA = ∑

i, j
gA

i gA
j RA

i, j . (2.3)

Similarly, the inclusive cross-section reaction of the reaction e+e− annihilation into hadrons
through the photon is described by the current correlation function

Πµν(q) =
∫

dxeiqx〈0|T[ jem
µ (x) jem

ν (0) ]|0〉= (−gµνq2+qµqν)ΠEM(−q2) , (2.4)

with the hadronic EM current

jem
µ =∑

f

qf ψ f γµψ f and R(s) = 12π ℑΠEM(−s− i ε),

with qf being the EM charge of the quarkf . As a result, we arrive to the following representation
for the ratio R(s) valid in massless approximation (precisedefinitions ofRNS andRV,S will be given
below)

R(s) = ∑
i, j

qi q j RV
i, j(s) =

(

∑
i

q2
i

)

RNS(s)+
(

∑
i

qi

)2
RVS(s). (2.5)

As the Z-boson is much heavier than all known quarks but the top one, it is natural1 to neglect
all power suppressed light quark mass corrections when dealing with O(α4

s ) contribution toΓh
Z. It

is customary to splitRV/A
i, j into two contributions as described in Fig. 1

RV/A
i, j (M2

Z) = δ ℓ
i j RNS(M2

Z)+RV/A,S
i j (M2

Z) , (2.6)

with the delta functionδ ℓ
i j ≡ δi j if both flavoursi and j are light andδ ℓ

i j = 0 if either i or/and j
refer to the top quark. In the non-singlet diagrams there is no top quark present in the fermion loop
connecting the two external currents, because these diagrams have no physical cut and therefore
have no imaginary part contributing toRNS(s= M2

Z). This, together with the assumed masslessness

1Mass corrections to both vector and axial vector correlatordue to other massive quarks are dominated by the
bottom quark and can be classified by orders inm2

b/M2
Z andαs. Up to O(α2

s m2
b/M2

Z) andO(α2
s m4

b/M4
Z) they can be

found in [3], as well terms of orderα2
s m2

b/M2
Z (const + logm2

b/M2
Z) andα2

s m2
b/M2

t (const + logm2
b/M2

Z) that arise from
axial vector singlet contributions. Terms of orderα3

s m4
b/M4

Z andα4
s m2

b/M2
Z can be found in [15] and [16] respectively.

Corrections of orderα2
s m2

Z/m2
t andα3

s m2
Z/m2

t from singlet and non-singlet terms are known from [7, 6, 17] and [10]
respectively.
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of all quarks but top leads to the factorized form of the non-singlet term in eq. (2.6). Note that
the internal top quark loops like in diagram (b) of Fig. 1 still contributeto RNS(s= M2

Z) if the
strong coupling is defined for 6 flavours. However, it is well known that such contributions could
be naturally described (up to power suppressed terms) by transition from the fullnf = 6 QCD to
the effective masslessnf = 5 one (see, e.g. [3] and references therein). In fact, the same is true for
the vector singlet term (θh

i j below is defined as 1 if either i or/and j refer to the top quark and 0 in
all other cases)

RV,S
i j (MZ)≡ (1−θh

i j )RV,S(MZ)+O(M2
Z/M2

t ).

The corresponding massless calculations ofRNS in orderα4
s have been recently finished [1, 2].

In what follows we concentrate on the singlet termsRV,S andRA,S.

3. γ5-treatment

As is well-known the treatment ofγ5 within dimensional regularization is a non-trivial prob-
lem by itself (for an excellent review see [18]). Following works [11, 12] in all our calculations
we employ, in fact, two different definitions ofγ5. First, for all non-singlet diagrams completely
anticommuting naiveγ5 have been used. Second, for singlet diagrams we employ essentially the ’t
Hooft-Veltman definition [19]

Ai
α = ψ iγα γ5ψi ≡

ξ A
5 (as)

6
i εαβνρψiγβ γν γρψi ., (3.1)

where the currentψiγβ γν γρ ψi is assumed to be minimally renormalized.
The finite normalization factorξ A

5 = 1−4as/3+O(a2
s) on the rhs of (3.1) is necessary [20, 21]

for the current (3.1) to obey the usual (non-anomalous) Wardidentities which in turn are crucial in
renormalizing the Standard Model.

In principle, one could (and even have to!) use one and the same definition (3.1) also for non-
singlet diagrams. This would result to much more complicated calculations due to significantly
longer traces encountered. Fortunately, it is not necessary because the factorξ A

5 is chosenin such
a way to restore the anti-commutativity of theγ5 (for a detailed discussion, see [21]).

4. Vector O(α4) singlet term RV,S

From purely technical point of view the calculation of the massless five-loop diagrams con-
tributing toΠV,S

i j is not much different from those contributing toΠV,NS. Using the same methods
as described in [1, 2] we have obtained (belowas = αs(µ)/π andµ is the renormalization scale in
theMS scheme)

RV,S(s) = a3
s

(55
72

− 5
3

ζ3

)

+ a4
s

(

nl

[

−745
432

+
65
24

ζ3+
5
6

ζ 2
3 −

25
12

ζ5−
55
144

ln
µ2

s
+

5
6

ζ3 ln
µ2

s

]

+
5795
192

− 8245
144

ζ3−
55
4

ζ 2
3 +

2825
72

ζ5+
605
96

ln
µ2

s
− 55

4
ζ3 ln

µ2

s

)

. (4.1)
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5. Axial vector O(α4) singlet term RA,S
i, j

Due to the obvious property2 RA,S
i, j = RA,S

i′, j ′ if all 4 indexes refer to the massless quarks and the
fact thatgu

A+gd
A = gc

A+gs
A = 0, we can write the axial singlet part of the Z decay rate as follows:3

RA,S= RA,S
tt −2RA,S

tb +RA,S
bb . (5.1)

All diagrams contributing to the first two terms of (5.1) contain at least one top quark loop. The
third term receives contributions by both the completely massless diagrams and those with top
quark loop (the latter start from orderα3

s , an example is given by Fig. 1 (d)).

As MZ ≪ 2Mt , one can use the effective theory methods to compute top-mass-dependent
diagrams as a series in the ratioM

2
Z

4M2
t
. The procedure was elaborated long ago and successfully

employed (see works [22, 11, 12]) to get all ingredients of eq. (5.1) at orderα3
s at leading order

in 1/Mt expansion (still keepingall power non-suppressed terms, including those which depends
on ln(µ2/M2

t )). From purely technical point of view the evaluation at order α4
s involves absorptive

parts of five-loop diagrams with massless propagators and, in addition, absorptive parts of four-loop
diagrams combined with one-loop massive tadpoles, etc. down to one-loop massless diagrams
together with four-loop massive tadpoles. The latter have been computed with the help of the
Laporta’s algorithm [23] implemented in Crusher [24]. The massive tadpoles with number of loops
less or equal three have been independently recalculated with the help of the FORM program
MATAD [25]. Our results forRA,S

tt , RA,S
tb , RA,S

bb andRA,S read

RA,S
tt = (a5

s)
4
[

15
64

− 15
8
ℓµt +

15
4
ℓ2

µt

]

, (5.2)

RA,S
tb = (a5

s)
2
[

3
8
− 3

2
ℓµt

]

+(a5
s)

3
[

−3869
288

+
55
8

ζ3−
45
8
ℓµt −

25
8
ℓ2

µt

]

+ (a5
s)

4
[

−370478273
14515200

−ζ2+
1309601
16800

ζ3−
4225817
34560

ζ4−
10453
288

ζ5

−2ζ2 ln(2)− 89
48

ζ4 ln(2)− 5861
1080

ζ2(ln(2))
2+

2
9

ζ2(ln(2))
3+

5861
6480

(ln(2))4

− 1
45

(ln(2))5+
5861
270

a4+
8
3

a5−
37
32

ℓµZ − 47015
576

ℓµt

+
709
8

ζ3ℓµt +
37
8
ℓµZ ℓµt −

363
16

ℓ2
µt −

193
32

ℓ3
µt

]

, (5.3)

2Obvious, thanks to the existence of the unitarySU(nl ) symmetry in the flavour subspace of the first 1. . .nl = 5
massless quarks.

3Note that separate terms on the rhs of (5.1) arenot scale-invariant, while their sum is [11, 12].
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RA,S
bb = (a5

s)
2
[

−17
2

−3ℓµZ

]

+ (a5
s)

3
[

−4673
48

+
23
2

ζ2+
67
4

ζ3−
373
8

ℓµZ − 23
4
ℓ2

µZ

− 1
12

ℓµt −
1
2
ℓ2

µt

]

+ (a5
s)

4
[

−79017683
82944

+
8747
32

ζ2+
54179
128

ζ3+
1481
128

ζ4−
6455
96

ζ5

−ζ2(ln(2))
2+

1
6
(ln(2))4+4a4−

174767
288

ℓµZ +
529
8

ζ2ℓµZ

+
1519

8
ζ3ℓµZ − 8747

64
ℓ2

µZ − 529
48

ℓ3
µZ − 1975

288
ℓµt +

37
8

ζ3ℓµt

− 247
48

ℓ2
µt −

25
24

ℓ3
µt

]

, (5.4)

RA,S= (a5
s)

2
[

−37
4

−3ℓµZ +3ℓµt

]

+ (a5
s)

3
[

−5075
72

+
23
2

+ζ2+3ζ3−
373
8

ℓµZ − 23
4
ℓ2

µZ

+
67
6
ℓµt +

23
4
ℓ2

µt

]

+ (a5
s)

4
[

−13083735979
14515200

+
8811
32

ζ2+
17967167

67200
ζ3+

553219
2160

ζ4+
1541
288

ζ5

+4ζ2 ln(2)+
89
24

ζ4 ln(2)+
5321
540

ζ2(ln(2))
2− 4

9
ζ2(ln(2))

3− 5321
3240

(ln(2))4

+
2
45

(ln(2))5− 5321
135

a4−
16
3

a5−
174101

288
ℓµZ +

529
8

ζ2ℓµZ

+
1519

8
ζ3ℓµZ − 8747

64
ℓ2

µZ − 529
48

ℓ3
µZ +

11125
72

ℓµt −
1381

8
ζ3ℓµt

− 37
4
ℓµZ ℓµt +

2111
48

ℓ2
µt +

529
48

ℓ3
µt

]

. (5.5)

Here a5
s = αs(µ)/π in the effective (topless)nf = 5 QCD, ℓµZ = ln µ2

M2
Z
, ℓµt = ln µ2

M2
t
, andMt is

the pole top quark mass. In addition,ζn = ζ (n) is Riemann’s zeta function andan = Lin(1/2) =

∑∞
i=1 1/(2i in).

Finally, settingµ = MZ, we arrive at the following numerical form of (5.5)

RA,S= (a5
s)

2
[

−9.25+3. ln
M2

Z

Mt

]

+ (a5
s)

3
[

−47.9632+11.1667ln
M2

Z

Mt
+5.75ln2M2

Z

Mt

]

+ (a5
s)

4
[

147.093−52.9912ln
M2

Z

Mt
+43.9792ln2M2

Z

Mt
+11.0208ln3 M2

Z

Mt

]

. (5.6)
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6. Conclusion

All our calculations have been performed on a SGI ALTIX 24-node IB-interconnected cluster
of 8-cores Xeon computers and on the HP XC4000 supercomputerof the federal state Baden-
Württemberg using parallel MPI-based [26] as well as thread-based [27] versions of FORM [28].
For evaluation of color factors we have used the FORM programCOLOR [29]. The diagrams have
been generated with QGRAF [30]. This work was supported by the Deutsche Forschungsgemein-
schaft in the Sonderforschungsbereich/Transregio SFB/TR-9 “Computational Particle Physics” and
by RFBR grants 11-02-01196 and 10-02-00525.

We thank P. Marquard for his friendly help with the package Crusher.
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