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that simplifies these multi–sums by transforming them from inside to outside to representations
in terms of indefinite nested sums and products. In particular, we present techniques that assist
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Evaluation of Multi-Sums for Large Scale Problems C. Schneider

1. Introduction

Two-point Feynman parameter integrals with one mass containing local operator insertions in D-
dimensional Minkowski space with one time- and (D−1) Euclidean space dimensions (ε = D−4
and ε ∈ R with |ε| � 1) can be transformed symbolically to multi–sums over hypergeometric
terms depending on ε and a discrete Mellin parameter n. A detailed description of the underlying
algorithms was given in [22]. Sums of this kind emerge in the calulation of Feynman diagrams
mentioned at 2- and 3-loops [18, 11, 12, 13, 15, 6, 7] which are of importance for the precision
measurement of the strong coupling constant and the parton distribuitions from the world deep-
inelastic data, cf. e.g. [10]; at the 3-loop level a larger number of moments of these quantities has
been calculated in [14, 20] 1.

Given such a sum representation like, e.g., in [2, 6, 13, 5, 7, 4], the challenging task is to
simplify these multi–sums (usually several thousands coming from Feynman integrals that describe
a physical problem), in terms of well known special functions that can be processed further. In order
to accomplish this task, a difference field theory for symbolic summation [28, 29, 31, 32, 33] based
on ΠΣ–fields [24] is heavily used within the summation package Sigma [30] that generalizes the
summation paradigms of [27] to multi-sums. In addition, symbolic and analytic techniques for
harmonic sums [34, 16, 26, 17] and generalizations to cyclotomic sums [3] implemented within the
HarmonicSums package [1] are exploited.

In this article we report on new summation technologies that enables us to simplify huge
multi–sum expressions coming from Feynman integrals to expressions in terms of indefinite nested
product–sums. This allows us to represent these expressions, if possible, in terms of harmonic
sums and if this is not possible, in terms of S-sums or more generally in terms of cyclotomic sums;
in any case, the result is given in terms of products and sums which are algebraically independent
among each other [17, 33, 3].
The resulting ideas are implemented in the two Mathematica packages EvaluateMultiSums
and SumProduction. The procedures are illustrated by a new calculation of fermionic contri-
butions to the gluonic massive operator matrix elements [23].

2. Evaluation of Multi-Sums

Given a Feynman integral F(n) depending on a discrete Mellin parameter n and a small dimensional
parameter ε , one is interested in the first s coefficients in its Laurent series expansion

F(n) = Fu(n)εu +Fu+1(n)εu+1 + · · ·+Fu+s−1(n)εu+s−1 + . . . ;

u∈Z. As worked out in [22], a large class of Feynman integrals can be transformed to a multi–sum
written in the form

F(n) =
L1(n)

∑
k1=l1

...
Lv(n,k1,...,kv−1)

∑
kv=lv

f (ε,n,k1, . . . ,kv) (2.1)

where Li(n,k1, . . . ,kv−1) stands for an integer linear relation in the variables n,k1, . . . ,kv−1 or is ∞

and f (ε,n,k1, . . . ,kv) is a linear combination of proper hypergeomtric sequences given in terms of
1However the amount of moments is far too low to reconstruct the general expressions depending on n using the

method outlined in [21].
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Γ-functions with arguments in terms of integer linear relation in the parameters n,k1, . . . ,kv−1 and
ε might occur linearly in the form r ε with r being a rational number.

Then given such a sum, we will present tools to derive the required coefficients in terms of
indefinite nested product-sum expressions. In particular, given this format, the coefficients can be
expressed, whenever possible, in terms of harmonic sums, S-sums and more generally in terms of
cyclotomic sums [3] defined as follows:

S(a1,b1,c1),...,(as,bs,cs)(x1, . . . ,xs;n) =
n

∑
i1=1

xi1

(a1i1 +b1)c1

i1

∑
i2=1

xi2

(a2i2 +b2)c1
. . .

is−1

∑
is=1

xis

(asis +bs)cs
(2.2)

with ai,bi,ci ∈N (ai > bi, ci 6= 0) and xi being an element from the underlying field K (containing,
e.g., the complex numbers); note that choosing ai = 1, bi = 0 and xi ∈ {1,−1} restricts to the class

of harmonic sums written in the format Sx1c1,...,xscs(n) = ∑
n
i1=1

xi1
1

ic1
1

∑
i1
i2=1

xi1
1

ic1
1
. . .∑

is−1
is=1

xis
s

ics
s
. For a formal

but lengthy definition of the more general class of indefinite nested product–sums w.r.t. n we refer
to [32]. This class includes indefinite nested sums as in (2.2) where also hypergeometric terms (like
binomials, factorials/Γ-functions, Pochhammer symbols) might occur as polynomial expression in
the numerators and denominators of the nested summands.

Example 1. Consider, e.g., one of the simple sums arising within the problem of [23]:

F(n) =
n−5

∑
j1=0

n− j1−6

∑
j2=0

π2ε+3e−
3γε

2 (−1) j1 ( j2+1)Γ(2−ε)Γ( ε

2+2)Γ(− 3ε

2 )Γ(− ε

2+ j1+4)Γ(− j1+n−2)Γ(ε− j1− j2+n−5)

(ε−10)(ε−8)(ε−2)εΓ( 5
2−ε)Γ( ε+5

2 )Γ( ε

2+n+1)Γ(− j1− j2+n−4)︸ ︷︷ ︸
= f (n, j1, j2)

(2.3)
?
= F−3ε

−3 +F−2ε
−2 +F−1ε

−1 +F0ε
0 + . . . ;

note that (2.3) is not indefinite nested w.r.t. n, since the inner sum (at least in this representation)
cannot be written in the form ∑

j1
j2=l2 f2( j2) where l2 ∈ N and f2( j2) is free of j1 and n and since in

addition the outermost sum cannot be written in the form ∑
n
j1=l1 f1( j1) where l1 ∈ N and f1( j1) is

free of n. Then loading the Mathematica packages

In[1]:= << Sigma.m
Sigma - A summation package by Carsten Schneider c© RISC-Linz

In[2]:= << EvaluateMultiSums.m
EvaluateMultiSums by Carsten Schneider – c© RISC-Linz

(and defining f as the summand of our sum) we can compute the coefficients {F−3,F−2,F−1} with

In[3]:= EvaluateMultiSum[f,{{j2,0,n− j1−6},{j1,0,N−5}},{n},{5},ExpandIn→{ε,−3,−1}]

Out[3]=
{
0,

16(−1)n
(
3n2+12n+11

)
135(n+1)(n+2)2(n+3)2

−
16
(
n8+6n7−6n6−80n5−81n4+178n3+274n2−4n−96

)
45(n−2)(n−1)2n2(n+1)(n+2)2(n+3)2

16
(
n2−n−8

)
45(n−1)n(n+2)(n+3)

n

∑
i=1

1

i
,−

8
(
n2−n−8

)
45(n−1)n(n+2)(n+3)

n

∑
i=1

1

i2
+
2(−1)n(187n+127)

(
3n2+12n+11

)
c

2025(n+1)2(n+2)2(n+3)2

+
(2(17n6−231n5+121n4+2063n3−1458n2−2432n+960

)
675(n−2)(n−1)2n2(n+1)(n+2)(n+3)

−
16(−1)n

(
3n2+12n+11

)
135(n+1)(n+2)2(n+3)2

) n

∑
i=1

1

i

+
2
(
43n12+112n11+263n10−216n9−11309n8−16476n7+55837n6+78164n5−95178n4−116688n3+51784n2+30624n−23040

)
675(n−2)2(n−1)3n3(n+1)2(n+2)2(n+3)2

}
.

The input {n},{5} means that we suppose that n ≥ 5; this specification of the parameter range
is necessary for the internal calculations. Loading in addition J. Ablinger’s HarmonicSums
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package [1] would automatically transform the output sums to the harmonic sums S1(n),S2(n).
The constant term F0(n) (which would be too large to print here) introduces in addition the sum
S3(n) and the zeta-value ζ2 defined by the Riemann zeta function ζz = ∑

∞
i=1 i−z; the total timings

(including the constant term) are 4 minutes.

To get these coefficients, we expand the summand of (2.1) in the parameter ε

f (ε,n,k1, . . . ,kv) = fu(ε,n,k1, . . . ,kv)ε
u + fu+1(ε,n,k1, . . . ,kv)ε

u+1 + . . .

by using formulas such as Γ(n+1+ ε̄) = Γ(n)Γ(1+ε̄)
B(n,1+ε̄) with ε̄ = rε for some r ∈Q and

B(n,1+ ε̄) =
1
n

exp

(
∞

∑
k=1

(−ε̄)k

k
Sk(n)

)
=

1
n

∞

∑
k=0

(−ε̄)kS1, . . . ,1︸ ︷︷ ︸
k

(n)

and other well-known transformations for the Γ-functions. Finally, under the assumption that the
sums are uniform convergent, in particular if one can exchange summation signs and differentia-
tion, one gets the coefficients

Fi(n) =
L1(n)

∑
k1=l1

...
Lv(n,k1,...,kv−1)

∑
kv=lv

fi(ε,n,k1, . . . ,kv)

of the expansion (2.1). Now the hard task is to simplify these sums further. Here we rely on the
following summation paradigms [30] in the context of difference fields.

Deriving recurrences: Given an integer d ≥ 0 and given a sum

F(~m,n) :=
L(~m,n)

∑
k=l

f (~m,n,k) (2.4)

where l ∈ N, f (~m,n,k) is an expression in terms of indefinite nested product–sums w.r.t. k, and
where ~m = (m1, . . . ,mr) and n are discrete parameters; find

a0(~m,n)F(~m,n)+ · · ·+ad(~m,n)F(~m,n+d) = h(~m,n). (2.5)

where a0(~m,n), . . . ,ad(~m,n) are rational functions in ~m and n, and h(~m,n) consists of an expres-
sion in terms of sums of the type as F(~m,n), but with simpler summands (i.e., less summation
objects or less nested summation quantifiers).

Remarks. (1) The underlying algorithms [31] utilize creative telescoping that has been originally
introduced with Zeilberger’s algorithm [35] for hypergeometric summands.
(2) The upper bound L(~m,n) might depend integer linearly on n,~m or might be ∞. In this particular
case, in order to get (2.5), limit calculations are necessary using asymptotic expansions of the
summand objects. For the expansion of harmonic sums, S-sums and cyclotomic sums efficient
algorithms are developed [3] and implemented in HarmonicSums [1].

Now suppose that we are given a recurrence of the type (2.5) where we succeed in representing
h(~m,n) in terms of indefinite nested product–sums w.r.t. n. Then we can proceed as follows.

Recurrence solving: Given such a simplified recurrence, find all solutions that are expressible
in terms of indefinite nested product–sum expressions w.r.t. n.

Remark. The underlying algorithms, see e.g. [9, 28, 8], find indefinite nested sum expressions that
are highly nested: the maximal nesting depth will be the recurrence order. Thus the simplification

4
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to expression with minimal depth is a crucial step [32]. In addition, the occurring sums are reduced,
i.e., they are algebraically independent among each other [33].

Combination of solutions: Given these simplified solutions, combine them such that the evalu-
ation agrees with the original sum F(~m,n) for the first, say n = l, ..., l +d−1 initial values.

If this is possible, it follows –up to some mild side conditions– that this combination of indefinite
nested product–sums is equal2 to the definite input sum for all n≥ l.

Example 2. The goal is to find a representation in terms of indefinite nested product-sums w.r.t. n
for the coefficient

F−2(n) =
n−5

∑
j1=0

−8( j1+2)( j1+3)(n+1)( j1−n+3)( j1−n+4)(−1) j1 ( j1+1)!(− j1+n−5)!
135(n+1)!

= f (n, j1)︷ ︸︸ ︷
n− j1−6

∑
j2=0

j2 +1
j1 + j2−n+5

(2.6)

in the expansion of sum (2.3). In the first round, we transform the summand f (n, j1) to indefinite
nested product–sums w.r.t. j1 with the algorithms implemented in Sigma. First, we compute a
recurrence for f (n, j1) with shifts in j1:

(− j1 +n−5) f (n, j1)+( j1−n+4) f (n, j1 +1) = j1−n+5.

Next, we solve the recurrence and get the full solution space L = {c(− j1 + n− 4)+ (− j1 + n−
4)∑

j1
i=1

1
−3+n−i |c ∈ R} which means that f (n, j1) ∈ L. Now we have to combine the solutions (i.e.,

to determine c) so that they agree with f (n, j1) at, e.g., j1 = 0, i.e., f (n,0)=∑
n− j1−6
j2=0

j2+1
j2−n+5 . Again,

we turn this sum to an indefinite nested sum (by computing a recurrence, solving the recurrence and

combining the solutions) and obtain f (n,0) =
(n−4)

(
n4−2n3−7n2+16n−6

)
(n−3)(n−2)(n−1)n +(4−n)∑

n
i=1

1
i . Choosing

c = f (n,0)/(n−4) finally yields

f (n, j1) = (− j1 +n−4)
j1

∑
i=1

1
−3+n− i

+

(
n4−2n3−7n2+16n−6

)
(− j1+n−4)

(n−3)(n−2)(n−1)n +( j1−n+4)
n

∑
i=1

1
i
.

With this indefinite nested sum representation w.r.t. j1 of the summand f (n, j1), we start the final
round: we compute a recurrence for (2.6), solve the recurrence and combine the solutions to get
the coefficient F−2(n) computed in Example 1.

In a nutshell, given a multi–sum of the form

F(~m,n) =
L(~m,n)

∑
k=l

L(~m,n,k)

∑
k1=l1

...
Lv(~m,n,k,k1,...,kv−1)

∑
kv=lv

f (~m,n,k,k1, . . . ,kv)︸ ︷︷ ︸
f (~m,n,k)

where f itself is an expression in terms of indefinite nested products-sums (in particular the class
of sums given in (2.1) is covered), we apply the following method to transform F(~m,n) to an
expression in terms of indefinite nested product–sums.

1. Transform the outermost summand f (~m,n,k) to an expression in terms of indefinite nested
product–sums w.r.t. k by applying the method recursively to all the arisings definite sums
(i.e., the parameter vector ~m is replaced by (n,~m) and the the role of n is k). Note that the
occurring sums in f are simpler than F(n) (one definite sum less). If the summand is free of
sums, nothing has to be done.

2We emphasize that in each computation step of this transformation we produce proof certificates which enables
one to verify rigorously the correctness of the result.
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2. Compute a recurrence (2.5) for the sum (2.4); note that by construction the right hand side
might be again an expression in terms of definite multi–sums, but these summands are of
simpler format than f . Apply the method recursively to these sums and compute a right hand
side representation which consists of indefinite nested product–sums w.r.t. n.

3. Solve the recurrence (2.5) in terms of indefinite nested product–sums w.r.t. n.

4. Compute d initial values (i.e., specialize the parameter n to appropriate values from N, say
n = l, l + 1, . . . , l + d− 1, and apply the method recursively to the arising sums where m1

takes over the role of n and the parameters are ~m. If no parameter is left, the expression
is a constant. In particular, if there is no sum left, nothing has to be done. Otherwise, in
the outermost summations the upper bound is ∞. In this case, our method is applied to
transform the summands to indefinite nested product–sums w.r.t. the outermost summation
index. Usually, the derived sums can be transformed to multiple zeta values [19] or infinite
versions of S–sums or cyclotomic sums [3]. Otherwise, they are kept in the given format.

5. Try to combine the solutions to find an indefinite nested product-sum representation w.r.t. n
of F(~m,n). If this fails, ABORT.

Remarks. (1) The existence of a recurrence in step 2 is guaranteed by using arguments form [27]
and [25]. Only computation issues are a bottleneck. Usually, we succeed in finding recurrences
when f consists up to 100 indefinite nested product–sum objects. If f is more complicated (or if it
seems appropriate), the sum is split into several parts and the method is applied separately.
(2) Termination: The method is applied recursively to sums which are always simpler than the
original sum (less summation quantifiers, less parameters, or less objects in the summand). After
finitely many recursion steps, one arrives at the base cases where no summation quantifiers arise.
(3) Success: If the method does not abort in one of the executions of step 5, it terminates and outputs
an indefinite nested product-sum expression w.r.t. n. As a consequence, finding not sufficiently
many solutions of a given recurrence of the type (2.5) in step 5 is the only reason why the method
might fail. For general multi–sums this failure would happen all over. However in the context of
Feynman integrals, we found almost always d linearly independent solutions of the homogeneous
version (2.5) and one particular solution of the recurrence itself; in these cases, the solution space
of (2.5) is completely determined, and the failure in step 5 cannot occur. The (for us surprisingly)
rare case that not sufficiently many solutions are found was always an indication that the sum
representation of the Feynman sums could be improved so that afterwards our method worked.
(4) Subtle details: The input sums coming from Feynman integrals are rather challenging. In
each step of the method, pole issues arose (lower and upper bounds must be updated during the
calculations and thus compensating terms must be computed separately, the initial values must be
chosen carefully, etc.). As a consequence, the 5 line method above implemented in the package
EvaluateMultiSums requires currently about 8000 lines of code in Mathematica (not counting
the implementations for recurrence finding and solving which are part of the package Sigma).

The package EvaluateMultiSums has been applied successfully to various complicated
3–loop ladder graphs [2, 5]. In particular, the graphs from [4] could be calculated by reducing it to

6
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several multi–sums, one of them being

n−3

∑
j=0

j

∑
k=0

k

∑
l=0

− j+n−3

∑
q=0

−l+n−q−3

∑
s=1

−l+n−q−s−3

∑
r=0

( j+1
k+1)(

k
l)(

n−1
j+2)(

− j+n−3
q )(−l+n−q−3

s )(−l+n−q−s−3
r )r!(−l+n−q−r−s−3)!(s−1)!

(−l+n−q−2)!(− j+n−1)(n−q−r−s−2)(q+s+1)

(−1)− j+k−l+n−q−3
[
4S1(− j+n−1)−4S1(− j+n−2)−2S1(k)− (S1(−l +n−q−2)

+S1(−l +n−q− r− s−3)−2S1(r+ s))+2S1(s−1)−2S1(r+ s)
]
.

3. Mass production

For various problems, like e.g. [2, 6], several thousand sums have to be evaluated. In particular,
for the brand new calculation of fermionic contributions to the gluonic massive operator matrix
elements [23] the ε-expansion of a 2 GByte expression consisting of 2419 multi–sums was calcu-
lated; one of the simple sums is, e.g., (2.3). With a lot of computer resources this problem could be
tackled 3. However, we can do it much better by using the following routines which are available
in the new package

In[4]:= << SumProduction.m
SumProduction - A summation package by Carsten Schneider c© RISC-Linz

1. Reduction to key sums: First, we reduce the 2 GByte expression (stored in expr) to key sums
with the function call

In[5]:= compactExpr = ReduceMultiSums[expr,{n},{5}];

The reduced expression compactExpr is only 7.6 MByte large and contains only 29 sums and
15 terms free of sums; in total it took us 6 hours and 53 minutes to obtain this reduction.

Remark. Internally, the 2419 sums have been synchronized w.r.t. the occurring summation ranges
(taking for each class the maximum of the lower bounds and the minimum of the upper bounds).
As result, we obtained only 4 sums with equalized summation ranges

n−5

∑
i2=5

i2

∑
i1=0

h1(ε,n, i2, i1),
n−5

∑
i2=0

n−i2−5

∑
i1=0

h2(ε,n, i2, i1),
n−5

∑
i1=5

h3(ε,n, i1),
∞

∑
i1=0

h4(ε,n, i1)

plus a large term free of summation quantifiers. Next, all the occuring Pochhammer symbols,
factorials/Γ-functions, and binomials are written in a basis of algebraically independent objects
plus the extra object (−1)n (if necessary); for details see [33, Sec. 9] and [29, Sec. 6]. Finally,
the expressions are split further to get the form ∑h(n,(i2,)i1,ε)∗ r(n,(i2,)i1,ε) or h(n,ε)∗ r(n,ε)
where h stands for a (proper) hypergeometric term in n (and i1, i2), i.e., being a product of binomi-
als/factorials/Pochhammers in the numerator and denominator, and r(n,(i2, i1),ε) being a rational
function in n,ε (and i1, i2); note that r might fill several pages.

2. Computing ε–expansions in parallel: Next, we compute the coefficients of the ε-expansion as
outlined for sum (2.3); as it turns out, the time to calculate the expansion of a key sum is similar to
calculating just one typical candidate within the 2419 sums contributing to the corresponding key
sum. In order to produce these expansions automatically, we developed the routine

3For testing we calculated around 800 of these sums with the help of 16 Mathematica processes in around 4 days.
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In[6]:= ProcessEachSum[compactExpr,{n},{6},ExpandIn→{ep,−3,0}]

which sequentially applies EvaluateMultiSum with the corresponding input parameters to the
occurring multi-sums in compactExpr. This step took in total 2 hours and 35 minutes.

Remark. Internally, it takes the first multi-sum and generates a file with the name SUM1. If the
result is computed, the file is updated with the result. Then the routine continues with the second
sum provided the file SUM2 is not existent on the hard disk. In this way, ProcessEachSum can be
executed in parallel for mass productions (for even larger problems than this).

3. Combining the subresults: Finally, the coefficients of the expansions of the subresults are read
from the hard disk and are summed up to the final coefficients of the expansion:

In[7]:= result = CombineExpression[compactExpr,{n},{6}];

Remark. Internally, the expressions are reduced further by eliminating all algebraic relations of the
occurring sums and products [17, 33, 3]. This step took 21 seconds.

The final result can be expressed in terms of

ζ2,ζ3,(−1)n,S1(n),S2(n),S3(n),S2,1(n),S3,1(n),S2,1,1(n)

and requires about 100 KByte memory. The total calculation took around 9 hours and 30 minutes.

In conclusion, we are ready to go into mass production for various challenging problems being
of similar type as outlined in [6, 7, 4, 23].

Acknowledgment. This work has been supported in part by DFG Sonderforschungsbereich Tran-
sregio 9, Computergestützte Theoretische Teilchenphysik, Austrian Science Fund (FWF) grant
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