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We discuss the double parton scattering (DPS) singularity, which is a specific type of Landau
singularity that can occur in certain one-loop graphs in theories with massless particles. We sketch
the derivation of a simple analytic formula for the DPS singular part of an arbitrary one-loop
diagram. This is used to explain some results for DPS singularities in four- and six-point integrals
that have been obtained using traditional loop integration techniques. As part of this we explain
why the specific MHV and NMHV six-photon amplitudes often studied by the NLO multileg
community are not divergent at the DPS singular point, and point out that whilst all NMHV
six-photon amplitudes are always finite, certain MHV amplitudes do contain a logarithmic DPS
divergence.
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1. Introduction

One-loop integrals can become singular when the four-dimensional real hypercontour over
which the integration is performed becomes pinched by two (or more) poles associated with de-
nominator factors in the integrand. Such pinch singularities in a Feynman integral are known as
Landau singularities. The locations of the Landau singularities in a one-loop Feynman graph are
entirely determined by the propagator denominator factors, and so are independent of the nature of
the particles in the graph. On the other hand, the behaviour of the integral at the singular points
does depend on the nature of the particles in the graph via the numerator factor of the Feynman
integrand – if the numerator vanishes at a singular point, the integral will be less singular than
expected there, or even finite.

In this proceedings contribution we discuss a particular type of Landau singularity known as
the double parton scattering (DPS) singularity, that was first discussed in [1]. This singularity
occurs in one-loop diagrams with the structure of figure 1(a), where two on-shell massless parti-
cles each split into two massless particles, and the four resulting particles interact in two separate
processes, each producing a set of particles with positive invariant mass. It only occurs when the
total transverse momentum of each set of outgoing particles is zero (Q2 = 0), and is associated
with the four intermediate particles becoming on-shell and collinear with the initial state particles.
[Note that in this proceedings contribution we use bold letters to denote two-component transverse
momentum vectors].

There are two reasons why it is interesting to study the behaviour of one-loop integrals around
their DPS singular point(s). First, it has been observed that certain one-loop Standard Model (SM)
multileg amplitudes are less singular than perhaps expected near points corresponding to a DPS
singularity for a subset of the contributing Feynman graphs [2, 3, 4]. A physical explanation for
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Figure 1: (a) The generic structure that a one loop graph must have in order for it to possess a DPS
singularity. Each grey blob represents some arbitrary tree-level structure. (b) The crossed box topology,
with annotations that demonstrate our labelling conventions for the particle names, helicity and momenta.
The particle names are written in bold in this figure, whilst the helicity labels are accompanied by grey
arrows. The arrows on the lines merely indicate the direction of momentum flow, and do not necessarily
signify a fermion line. We also include the two Cutkosky cuts of this box as dashed lines.
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this behaviour is needed. Second, an understanding of the nature of the DPS singularity in an
arbitrary one-loop graph is interesting from the point of view of double parton scattering theory,
and can be used to show that there are theoretical flaws in the framework for calculating proton-
proton DPS cross sections described in [5, 6]. In this contribution we focus on the first point, and
refer the reader interested in the second to [7, 8]. This contribution is a summary of part of the
paper [8].

2. DPS Singularity in One-Loop Integrals

With no numerator structure in the integrand (i.e. scalar internal and external particles), the
DPS singularity corresponds to an actual divergence in the loop integral (when the number of
dimensions is equal to 4). For the simplest graph that can contain a DPS singularity – the ‘crossed
box’ diagram of figure 1(b) – an explicit calculation of the scalar integral reveals a divergence like
1/Q2

2, and a similar power divergence is expected (and indeed turns out to be observed) for more
general scalar loops. Naively, one might expect the behaviour of SM loops at the DPS singular
point to be similar – they can only be less divergent if the numerator happens to vanish at the
singular point, as mentioned in the introduction.

However, explicit results for n-point amplitudes (with n small) that have been obtained using
conventional loop integral techniques suggest that such a strong divergence is not present in SM
loops initiated by two g/γ → qq̄ splittings (we’ll refer to these loops as ‘SM qq̄qq̄ loops’). Examples
of four-point amplitudes of this kind for which we have explicit (analytic) results are the gg → HH
and gg→ ZZ amplitudes via massless quarks, with the analytic results being presented (for arbitrary
quark mass) in [9] and [10]. From these results it is possible to extract the leading low Q2 behaviour
of the gg→HH and gg→ ZZ crossed boxes via massless quarks [8]. One finds that neither of these
graphs diverges as Q2 → 0 more strongly than a logarithm of Q2, regardless of the configuration of
external helicity in each case. In fact, neither graph diverges at all unless the helicity of the initial
state gluons is the same, and the gg → ZZ graph does not diverge unless the helicities of the final
state Z bosons are ++ or −−.

Similar behaviour was observed in a specific six-point amplitude by Bernicot and Guillet [3, 4].
The process that was studied by these authors was 2γ → 4γ via massless quarks, analytical results
for which are available in [11, 12]. Labelling the six external legs as ‘123456’, and taking legs 1
and 4 as incoming with the rest outgoing, Bernicot and Guillet made plots of a particular MHV
and a particular NMHV amplitude close to the kinematic point kt ≡ p3 + p5 = 0 corresponding
to a DPS singularity for four of the contributing Feynman graphs. The helicity configuration for
the MHV amplitude examined was −++−++ (where the helicity labels here are defined with
respect to incoming momenta), and that for the NMHV amplitude was −−−+++ (these two
helicity configurations are often studied by the NLO multileg community). From their plots they
concluded that both the MHV and the NMHV amplitudes are finite at kt = 0, contrary to the naive
expectation of a power divergence at this point [4].

Therefore, there are two important questions that we need to answer. First, what is the physical
mechanism that prevents the DPS divergence in any of these SM qq̄qq̄ graphs being stronger than
a logarithm of Q2? Second, why are only some of these SM graphs divergent, whilst others are
finite? To answer these questions an analytical study of the DPS divergence in one loop integrals is
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required, involving the derivation of an analytic formula for the ‘DPS divergent part’ of an arbitrary
one-loop integral. The ‘DPS divergent part’ of a one-loop integral is an expression for the part of
the integral in which the loop particles are almost on-shell and collinear, that is valid in the limit in
which external transverse momenta are small.

In [8], we derived an analytic expression for the DPS divergent part of the arbitrary crossed
box graph in figure 1(b), before generalising the result to the case in which the number of external
particles is arbitrary. Here we briefly summarise this derivation. We begin with an expression for
the loop integral L:

L =
∫

ddk
N

[k2 + iε][(k−Q2)2 + iε][(p1 + k−Q2)2 + iε ][(p2 − k)2 + iε]
(2.1)

The propagator denominator factors are written out explicitly in this expression, since they are
universal to all crossed boxes, whilst the numerator N is kept general. L is defined such that N

is stripped of overall factors such as coupling constants, colour factors, and factors of i (including
the overall factor of −i that always has to be inserted in the computation of an amplitude).

We decompose all four-vectors in (2.1) terms of a light-cone basis defined using the incoming
vectors p1 and p2 as the light-like basis vectors. For an arbitrary four-vector A the decomposition
is written as follows:

A = (A+p1 +A−p2)/
√

p1 · p2 +A (2.2)

After this, the integrations over the plus and minus components of the loop variable k are ex-
plicitly performed one after the other using contour methods. At each stage in this procedure we
drop terms that are negligible in the region around the DPS singularity |k−−Q−

2 |, |k+|, |k|, |k−Q2|�
Q+

i ,Q
−
i , i = 1,2. In addition to this we make use of various approximations that are only valid in

this region and that facilitate the calculation of the integrals (for full details of these approxima-
tions, see [8]). This procedure yields the following compact expression for the DPS divergence in
the crossed box:

LDPS '
(2πi)2

2s

∫
|k|�Q+

i ,Q
−
i

dd−2k N |k−=Q−
2 ,k

+=0

(k−Q2)2k2 (2.3)

One can go further than this if one notices that the DPS divergence (2.3) occurs entirely in
the real part of the loop integral L, which corresponds to the imaginary part of the box amplitude
according to the way in which we have defined L. Then, the DPS divergent part of a crossed box
can be found as the sum of the Cutkosky cuts of the box in the limit in which external transverse
momenta are small and internal particles are almost on shell. There are two Cutkosky cuts of the
box (shown in figure 1(b)), and they give identical contributions in the relevant limit, so in what
follows it suffices to consider just one of the cut diagrams (and multiply the answer by 2).

Having separated out one of the ‘hard scatterings’ in the DPS divergent part of the crossed box
using the cut, the other may be separated out using completeness relations that are approximately
valid in the small virtuality limit that we are considering (this is schematically depicted in figure
2). We then obtain LDPS as an integral over four factors, each of which corresponds to one of the
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Figure 2: Decomposition of the box integrand.

broken pieces of the crossed box drawn in figure 2(c):

LDPS(λ1λ2µ1µ2) = ∑
si,Li

∫
ddkδ (k2)δ ((k−Q2)

2)

(√
Q2

1/Q2
2

)
Φλ2→s2s3

b→L2L3
(p2; p2 − k,k) (2.4)

×Φλ1→s1s4
a→L1L4

(p1; p1 + k−Q2,Q2 − k)M s3s4→µ2
L3L4→B (k,Q2 − k;Q2)

×M s1s2→µ1
L1L2→A (p1 + k−Q2, p2 − k;Q1)

Φa→L1L4 is the lowest order light-cone wavefunction (LCWF) to produce a L1L4 pair from the
particle a, whilst M s1s2→µ1

L1L2→A is the usual lowest order matrix element for the process L1L2 → A.
Each LCWF in the above expression contains a matrix element corresponding to one of the initial
state splittings in figure 2(c), divided by the denominator of the propagator closest to this splitting
vertex in figure 2(b). For the purposes of evaluating the leading low Q2 divergence, the matrix
elements in (2.4) can be evaluated with the transverse momentum and virtuality of the initial state
particles set to zero, since the matrix elements are non-singular in this limit.

Having obtained the formula (2.4) for the DPS divergence in a crossed box diagram, the gener-
alisation of the formula to the arbitrary loop in figure 1(a) is clear. All one needs to do is to replace
the two 2 → 1 tree level matrix elements in (2.4) by expressions for the relevant 2 → n1 and 2 → n2

tree graphs.
Let us now consider the behaviour of the LCWFs in (2.4). These can in general be decom-

posed into two factors, one of which depends on the light-cone momentum fraction of one of the
daughter partons with respect to the parent parton, and the other of which depends on the transverse
momentum of that daughter parton with respect to the parent:

Φλ→s1s2
a→bc (p;k, p− k) = Xλ→s1s2

a→bc (x)Kλ→s1s2
a→bc (k) (2.5)

The factor X can be thought of as the square root of a helicity dependent splitting function. The
transverse momentum dependent factor K contains a 1/k2 factor from the propagator denominator
absorbed in the LCWF, multiplied by the k dependent part of the a → bc matrix element.

In the case of scalar φ 3 theory, the splitting matrix element is just a constant, so K(k) in this
theory ∝ 1/k2. Then, for an arbitrary loop, we obtain a power divergence at the DPS singular point
when d = 4 (as we mentioned earlier):

LDPS,φ 3 ∼
∫

dd−2k K(k)K(Q2 −k) ∝
∫ dd−2k

k2(Q2 −k)2 ∝
1

Q2
2

when d = 4. (2.6)
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On the other hand, for the g/γ → qq̄ SM splittings, the matrix element comes out as being
proportional to k. This is associated with the fact that these processes do not conserve Jz, and so
must be forbidden, in the collinear limit k → 0 (the initial state has magnitude of Jz = 1, whilst the
final state must have Jz = 0 in the collinear limit due to helicity conservation). For a SM qq̄qq̄ loop,
we therefore have, schematically:

LDPS,SM ∼
∫

dd−2k K(k)K(Q2 −k)∼
∫ dd−2k ki (Q2 −k) j T i j

k2(Q2 −k)2 ∼ log(Q2
2) (2.7)

where T i j is some k-independent matrix.
Thus, the DPS divergence in a SM qq̄qq̄ loop cannot be stronger than a logarithm of Q2.

The underlying cause of this is Jz nonconservation in g/γ → qq̄ massless particle splittings in the
collinear limit.

The schematic estimate (2.7) does not take account of the detailed structure of the LCWFs
and the matrix elements M , and so only gives an upper bound on the degree of divergence in a
SM qq̄qq̄ integral (this is why we have written ‘cannot be stronger than’, rather than ‘is’, in the
preceding paragraph). There can be additional suppression from either the LCWFs or the matrix
elements (or both) at the DPS singular point, that causes the DPS divergence to disappear entirely.
This is what is occurring in the four- and six-point amplitudes mentioned earlier that are finite at
the DPS singular point.

For any SM qq̄qq̄ loop graph , there is an additional suppression occurring in the LCWFs when
the helicities of the initial state gluons or photons are different. In this situation, it turns out that
the product of light cone wavefunctions vanishes upon integration over k when Q2 = 0, such that
the graph is finite at Q2 = 0. The underlying physical cause of this phenomenon can be exposed by
sketching the helicities of the initial state and the qq̄qq̄ intermediate state that is long-lived in the
collinear limit:

The magnitude of Jz of the gg/γγ initial state is 2, whilst that of the qq̄qq̄ intermediate state must be
0 in the collinear limit due to helicity conservation. Thus there is an issue of total Jz conservation
in this case aside from local Jz conservation at each splitting vertex – this is the source of the
additional suppression. Note that this is the reason why the NMHV six-photon amplitude studied
by Bernicot and Guillet is finite at the DPS singular point.

For the gg → ZZ crossed box, there is a suppression coming from the matrix element factors
when the helicities of the final state particles are not ++ or −−. In this case there is no configu-
ration of internal helicity in the loop which simultaneously ensures helicity conservation at every
external vertex, and conserves Jz in both qq̄ → Z processes in the collinear limit. This causes at
least one of the qq̄ → Z matrix elements in the DPS divergence formula (2.4) to vanish for all
internal helicity configurations allowed by the LCWF factors.

The finiteness of the 2γ → 4γ MHV amplitude studied by Bernicot and Guillet at kt = 0 may
similarly be explained by a suppression in the matrix element factors. Here, the DPS divergence
does not vanish on a graph-by-graph basis (as it does for the NMHV amplitude) – it only vanishes
when we sum up the four graphs that contain a DPS singularity at kt = 0. The DPS divergence in

6



P
o
S
(
R
A
D
C
O
R
2
0
1
1
)
0
4
0

Double Parton Scattering Singularity in One-Loop Integrals Jonathan R. Gaunt

the sum of the four graphs may be computed by using (2.4), with full qq̄ → γγ tree-level matrix
elements (each one being a sum of two tree graphs) replacing the matrix elements given there. For
the MHV 2γ → 4γ amplitude studied, the final-state photons have the same helicity in both of these
qq̄ → γγ matrix element factors. The matrix element factors are therefore zero according to the
MHV rules for QED [13], and the DPS divergence is nullified.

Using our approach one may make statements about the degree of DPS divergence in other
2γ → 4γ helicity amplitudes without performing further calculations. For example, we can say
that no NMHV six-photon amplitude can ever contain a DPS divergence – however one distributes
the helicities, one always ends up either with the initial state photons having opposite helicities,
or with one of the pairs of the final state photons having the same helicity. On the other hand
there are MHV amplitudes that have a logarithmic DPS divergence – for example the +−−+++

amplitude.

3. Conclusions

In this contribution we have outlined the derivation of a compact analytic expression for the
DPS divergence in an arbitrary one-loop diagram. The expression essentially consists of an integral
of two light-cone wavefunctions and two hard matrix elements over the transverse components of
the loop momentum. We used this expression to show that no SM loop initiated by two g/γ → qq̄
splittings (‘SM qq̄qq̄ loop’) can have a DPS divergence worse than a logarithm of Q2, and explained
that this behaviour is associated with Jz nonconservation in, and the consequent suppression of,
g/γ → qq̄ SM splittings in the collinear limit. We observed that the DPS divergence in SM qq̄qq̄
loops may disappear if there is some additional suppression at the DPS singular point coming
from either the light-cone wavefunctions or the hard matrix elements (or both). The gg → AB
box amplitude with unequal initial-state gluon helicities (with A,B arbitrary) and the NMHV −−
−+++ six-photon amplitude are examples of amplitudes which are finite due to a suppression
in the light-cone wavefunctions. On the other hand, the gg → ZZ box amplitude with final state
helicities not equal to ++ or −−, and the MHV −++−++ six-photon amplitude, are examples
of amplitudes which are finite due to a suppression in the matrix element factors. Finally, we
made use of our approach to point out that whilst no NMHV six-photon amplitude contains a DPS
divergence, there are MHV amplitudes that do contain logarithmic DPS divergences.
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