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We report on the resummation of soft-gluon emissions for squark-antisquark production at next-

to-next-to-leading-logarithmic (NNLL) accuracy. We willput particular emphasis on the one loop

hard matching coefficients required to perform the resummation. Furthermore we will discuss the

numerical effect of the different ingredients in the corrections. We find a significant reduction in

the scale uncertainty and a considerable increase in the prediction of the total cross section at the

central scale. Compared to the next-to-leading order prediction, the corrections increase the cross

section by up to 30% for 1.5 TeV squarks at a centre-of-mass (CM) energy of 7 TeV at the LHC.
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1. Introduction

Supersymmetry (SUSY), and in particular the minimal supersymmetric Standard Model [1],
can provide a solution to the hierarchy problem, accommodate gauge coupling unification and offer
a dark matter candidate. Since these issues are addressed only if the SUSY scale is comparable to
the weak scale, one would expect new SUSY particles (sparticles) with masses in the TeV range,
which could be measured at the Large Hadron Collider (LHC). Particularly the coloured sparticles,
squarks ( ˜q) and gluinos ( ˜g), would be pair-produced copiously in hadronic collisionsand thus offer
the strongest sensitivity. Searches at the LHC with a centre-of-mass (CM) energy of

√
S= 7 TeV

have placed lower limits on squark and gluino masses around 1TeV [2,3].
The leading order (LO) predictions for inclusive squark andgluino hadroproduction depend

strongly on the renormalization and factorization scale. This dependence is reduced significantly if
higher-order SUSY-QCD corrections are included. If the renormalization and factorization scales
are chosen close to the average mass of the produced particles, the corrections generally increase the
size of the cross section compared to the LO prediction. Consequently, the SUSY-QCD corrections
have a substantial impact on the determination of mass exclusion limits and lead to a significant
reduction of the uncertainties on SUSY mass or parameter values in the case of discovery [4,5].

The squark-antisquark production processes have been known for quite some time at next-to-
leading order (NLO) in SUSY-QCD [6, 7]. A significant part of the NLO QCD corrections can
be attributed to the threshold region, where the partonic CMenergy is close to the kinematic pro-
duction threshold and the NLO corrections are dominated by soft-gluon emission off the coloured
particles in the initial and final state. These soft-gluon corrections can be taken into account to all
orders in perturbation theory by means of threshold resummation techniques [8, 9]. This has been
done for all MSSM squark and gluino production processes at next-to-leading-logarithmic (NLL)
accuracy [10–14].

Recently, resummation at NNLL accuracy for squark-antisquark pair production was pre-
sented [15]. Compared to the NLL calculation the new ingredients are the one-loop matching
coefficients, which contain the NLO cross section near threshold, and the two-loop soft anomalous
dimensions. We will discuss the impact of the corrections and provide an estimate of the theoretical
uncertainty due to scale variation.

In section 2 we discuss NNLL resummation for squark-antisquark pair-production. In sec-
tion 3 we present the calculation of the hard matching coefficients. The numerical results for the
LHC with a CM energy of

√
S= 7 TeV are presented in section 4. We conclude in section 5.

2. Threshold resummation at NNLL

We first briefly review the formalism of threshold resummation for q̃ ¯̃q production. The inclu-
sive cross sectionσh1h2→q̃ ¯̃q can be written in terms of its partonic versionσi j→q̃ ¯̃q as:

σh1h2→q̃ ¯̃q

(

ρ ,{m2}
)

= ∑
i, j

∫

dx1dx2 dρ̂ δ
(

ρ̂ − ρ
x1x2

)

fi/h1
(x1,µ2) f j/h2

(x2,µ2)σi j→q̃ ¯̃q

(

ρ̂,{m2},µ2) ,

where{m2} denotes all masses entering the calculations,i, j are the initial parton flavours,fi/h1

and f j/h2
the parton distribution functions,µ is the common factorization and renormalization scale
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andx1,2 are the momentum fractions of the partons in hadronsh1 andh2. The hadronic threshold
for the inclusive production of two squarks with massmq̃ corresponds to a hadronic CM energy
squaredS= 4m2

q̃. Therefore we define a threshold variableρ = 4m2
q̃/Sand its partonic equivalent

ρ̂ = 4mq̃/s, with s= x1x2S the partonic CM energy squared. The resummation of the soft-gluon
contributions is performed after taking a Mellin transform(indicated by a tilde) of the cross section,

σ̃h1h2→q̃ ¯̃q

(

N,{m2}
)

≡
∫ 1

0
dρ ρN−1 σh1h2→q̃ ¯̃q

(

ρ ,{m2}
)

= ∑
i, j

f̃i/h1
(N+1,µ2) f̃ j/h2

(N+1,µ2) σ̃i j→q̃ ¯̃q

(

N,{m2},µ2) . (2.1)

The threshold limitρ̂ → 1 corresponds toN → ∞. Near threshold, fixed-order perturbation theory
does not converge well due to logarithmically enhanced terms. By resumming large logarithmic
corrections containingL = log(N) to all orders, a new perturbative expansion arises, where first the
leading logarithmic (LL) corrections are resummed, followed by the NLL, NNLL, ... contributions.
The relation between this new perturbative expansion and fixed-order perturbation theory is shown
schematically in Figure 1.

Figure 1: Schematic form of the logarithmically enhanced terms with the LO cross section factored out.
The terms enclosed in the solid line occur in the LL approximation, which completes the first column. The
new terms in the NLL approximation are enclosed in the dottedline and complete the second column. The
shaded region corresponds to new terms coming from the NNLL approximation, which completes the third
and fourth column. We resum the logarithms to all orders, so the columns extend downwards to infinity.

The all-order summation of these logarithmic terms is basedon the near-threshold factorization
of different classes of radiation: hard, (soft)-collinear, and wide-angle soft radiation [8, 9, 16–19].
Near threshold the resummed partonic cross section to NNLL accuracy has the form [8,9,20]:

σ̃ (res)
i j→q̃ ¯̃q

(

N,{m2},µ2) = ∑
I

σ̃ (0)
i j→q̃ ¯̃q,I

(

N,{m2},µ2) exp
[

Lg1(αsL)+g2,I (αsL)+ αsg3,I (αsL)
]

×
(

1+
αs

π
C

Coul,(1)
i j→q̃ ¯̃q,I (N,{m2},µ2)

) (

1+
αs

π
C

(1)
i j→q̃ ¯̃q,I ({m2},µ2)

)

, (2.2)

whereσ̃ (0)
i j→q̃ ¯̃q,I are the colour-decomposed LO cross sections in Mellin-moment space. The colour

labelI corresponds to an irreducible representation of the colourstructure of the process, which for
squark-antisquark production can be either a singlet or an octet [10, 11, 21]. The exponent in the
first line of Eq. (2.2) captures all dependence on the large logarithmL. The last line contains the
one-loop Coulomb contributionC Coul,(1) and hard matching coefficientC (1).

Setting the hard matching and Coulomb coefficients to 0 and keeping only theg1 term in
Eq. (2.2) constitutes the LL approximation. Including theg2 term as well corresponds to NLL.
For NNLL accuracy also theg3 term and the one-loop hard matching and Coulomb coefficients
need to be taken into account, as can be seen explicitly by expanding Eq. (2.2) and comparing it to
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figure 1. Theg3 term can be found in [15, 22–24] and the ingredients forC
Coul,(1)
i j→q̃ ¯̃q,I in [15, 25, 26].

The calculation of the NLO hard matching coefficientsC
(1)
i j→q̃ ¯̃q,I will be discussed in section 3.

The hadronic cross sectionσh1h2→q̃ ¯̃q can be recovered by taking the inverse Mellin transform.
We retain the information contained in the complete NLO cross section [7] by combining the NLO
and NNLL results through a matching procedure that avoids double counting of the NLO terms:

σ (NLO+NNLL matched)
h1h2→q̃ ¯̃q

(

ρ ,{m2},µ2) = ∑
i, j

∫

CT

dN
2π i

ρ−N f̃i/h1
(N+1,µ2) f̃ j/h2

(N+1,µ2) (2.3)

×
[

σ̃ (res,NNLL)
i j→q̃ ¯̃q

(

N,{m2},µ2) − σ̃ (res,NNLL)
i j→q̃ ¯̃q

(

N,{m2},µ2) |
(NLO)

]

+ σ (NLO)
h1h2→q̃ ¯̃q

(

ρ ,{m2},µ2).

We adopt the “minimal prescription” of Ref. [27] for the contour CT of the inverse Mellin transform
in Eq. (2.3). In order to use standard parametrizations of parton distribution functions inx-space
we employ the method introduced in Ref. [28].

3. Calculation of the hard matching coefficients

We now discuss the calculation of the one-loop hard matchingcoefficientsC (1). The calcula-
tions were done usingFORM [29]. After performing an expansion of the NLO cross sectionin β ,
the hard matching coefficientsC (1) are determined by the terms in the NLO cross section that are
proportional toβ , β log(β ) andβ log2(β ). Terms that contain higher powers ofβ are suppressed
by powers of 1/N in Mellin-moment space and do not contribute to the matchingcoefficient. In
contrast to the case of top-pair production in Ref. [30], there is no full analytic result for the real
corrections to squark-antisquark production, so we cannottake the explicit threshold limit.

The virtual corrections for squark-antisquark productioncan be obtained from the full analytic
calculation as presented in Ref. [7]. First we need to colour-decompose the result. We only need
the colour decomposition of the LO matrix element. Due to theorthogonality of thes-channel
colour basis that we use, the full matrix element squared is then automatically colour-decomposed:

|M |2NLO,I = 2Re(MNLOM
∗
LO,I ).

Then we are left with an expression in terms of masses, Mandelstam variables and scalar integrals.
Since we need the cross section toO(β ), we have to expand|M |2 to zeroth order inβ to obtain
the virtual part of the hard matching coefficients.

The integrated real corrections at threshold are formally phase-space suppressed near threshold
unless the integrand compensates this suppression. Therefore we can construct the real corrections
at threshold from the singular behaviour of the matrix element squared, which can be obtained
using dipole subtraction [31,32]. First we recall that the cross section can be split into three parts:
a part with three-particle kinematicsσ {3}, one with two-particle kinematicsσ {2}, and a collinear
countertermσC to remove the initial-state collinear singularities. These parts are well-defined in
n = 4−2ε dimensions, but their constituents diverge forε → 0. With the aid of an auxiliary cross
sectionσA, which captures all singular behaviour, all parts are made finite and integrable in four
space-time dimensions. This auxiliary cross section is subtracted from the real correctionsσR at
the integrand level to obtainσ {3} and added to the virtual correctionsσV , which definesσ {2}:

σNLO =
∫

3

[

dσR−dσA]

ε=0+
∫

2

[

dσV +
∫

1
dσA]

ε=0+ σC ≡ σ {3} + σ {2}+ σC
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Compared to the case of two-parton kinematics, the phase space ofσ {3} is limited by the energy
of the third, radiated massless particle. Near the two-particle threshold, the maximum energy of
the radiated particle, and thus the available phase space, equalsEmax=

√
s−2mq̃ ∝ β 2. Since after

subtractingσA no divergences are left in the integrand ofσ {3}, the leading contribution ofσ {3} is at
most proportional toβ 2 and can thus be neglected. So at threshold the real radiationis completely
specified by the singular behaviour contained inσA and can therefore be determined by summing
over dipoles that correspond to pairs of ordered partons [32] and taking the threshold limit.

After combining the real and the virtual corrections the hard matching coefficients can be ob-
tained by taking the Mellin transform and omitting the Coulomb corrections and the log(N) terms.
The complete expressions for the hard matching coefficientsof the squark-antisquark production
processes can be found in Ref. [15]. Their behaviour for varying gluino mass is shown in Fig. 2.

(a) (b)

Figure 2: Gluino-mass dependence of the colour-decomposed NLO hard matching coefficients for theqq̄
initiated channel (a) and thegg initiated channel (b). We have setµ = mq̃ = 1.2 TeV andmt = 172.9 GeV.

4. Numerical results

We now present numerical results for NNLL-resummed squark-antisquark pair-production at
the LHC for a CM energy of 7 TeV. We use the 2008 NLO MSTW parton distribution functions [33]
with the correspondingαs(M2

Z) = 0.120. We have used a top quark mass ofmt = 172.9 GeV [34].
In order to study the effects from the hard matching coefficients and the Coulomb corrections sep-
arately, we compare the NLL matched cross sectionσNLO+NLL , which is based on the calculations
presented in [10–12], the NNLL matched cross section without the Coulomb contributions to the
resummationσNLO+NNLL w/o Coulomb, which hasC Coul,(1) = 0 in Eq. (2.2), and the NNLL matched
cross sectionσNLO+NNLL , which does include the Coulomb correctionC Coul,(1). All cross sections
are matched to the NLO result calculated withPROSPINO [7,35] using Eq. (2.3).

Figure 3(a) shows the mass dependence of the scale uncertainty for the squark-antisquark cross
section. The squark and gluino mass have been taken equal andthe scale has been varied in the
rangemq̃/2≤ µ ≤ 2mq̃. We see that the scale uncertainty reduces when higher-order corrections are
included. In this range of squark masses, the NNLL resummation without the Coulomb corrections
C Coul,(1) already reduces the scale uncertainty to at most 10%. The inclusion of the Coulomb term
C Coul,(1) in the resummed NNLL prediction results in a scale uncertainty of only a few percent.
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(a)

NLO+NNLL, µ={ 1

2
mq̃, 2mq̃}

NLO+NNLLw/oCoulomb, µ={ 1

2
mq̃, 2mq̃}

NLO+NLL, µ={ 1

2
mq̃, 2mq̃}

NLO, µ={ 1

2
mq̃, 2mq̃}

σ(µ)
σ(µ0) ( pp → q̃¯̃q + X )

µ0 = mq̃, mq̃ = mg̃√
S = 7 TeV

mq̃[GeV]

200018001600140012001000800600

1.40

1.30

1.20

1.10

1.00

0.90

0.80

0.70

0.60

(b)

NLO + NLL

NLO + NNLLw/oCoulomb
NLO + NNLL

µF = µR = mq̃

Kx(pp → q̃¯̃q + X)
√

S = 7TeV, r =
mg̃

mq̃

= 1.0

mq̃[GeV]

200018001600140012001000800600

1.50

1.45

1.40

1.35

1.30

1.25

1.20

1.15

1.10

1.05

1.00

Figure 3: The scale uncertainty (a) and K-factor (b) of the LO, NLO, NLO+NLL and NLO+NNLL (both
with the Coulomb partC Coul,(1) and without it) squark-antisquark cross sections for the LHC at 7 TeV. The
central scale and the gluino mass have been taken equal to thesquark mass. In (a) the common renormaliza-
tion and factorization scale has been varied in the rangemq̃/2≤ µ ≤ 2mq̃.

In figure 3(b) we study the mass dependence of theK-factorKx = σ x/σNLO at the central scale
µ = mq̃ andmg̃ = mq̃. The theoretical prediction of the cross section increasesas more corrections
are included. The effect is more pronounced for higher masses, since in that case particles are
produced closer to threshold. The NNLL resummation withoutthe Coulomb correctionsC Coul,(1)

already results in a 25% increase of the cross section with respect to the NLO cross section for
squarks of 2 TeV. The contribution from the Coulomb term to the resummed NLO+NNLL cross
section is even larger, yielding a totalK-factor of 1.45. Although the effect from the Coulomb
corrections could be somewhat smaller in reality due to the finite lifetime of the squarks, figure 3(b)
suggests that the NNLL contribution will remain large.

5. Conclusions

We have discussed the NNLL resummation of threshold corrections for squark-antisquark
hadroproduction and presented numerical results for the NLO+NNLL resummed cross section for
squark-antisquark production at the LHC with a CM energy of 7TeV. For a squark mass of 2 TeV,
the NLO+NNLL squark-antisquark cross section is up to 45% larger than the corresponding NLO
cross section. The correction is reduced to 25% if the resummation contributions due to Coulombic
interactions are omitted. The scale dependence is reduced significantly, particularly after inclusion
of the Coulomb corrections. However, the observed reduction in the scale dependence might be
modified somewhat by the inclusion of the width of the particles or by matching to the full NNLO
result, which is not available. A very conservative estimate of the scale uncertainty is provided
by the NLO+NNLL w/o Coulomb results, which do not include theCoulomb corrections. This
information could be used to improve current limits on SUSY masses or, in the case that SUSY is
found, to more accurately determine the masses of the sparticles.
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