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We study the implications on compact star properties of a soft nuclear equation of state determined

from kaon production at subthreshold energies in heavy-ioncollisions. On one hand, we apply

these results to study radii and moments of inertia of light neutron stars. Heavy-ion data provides

constraints on nuclear matter at densities relevant for those stars and, in particular, to the density

dependence of the symmetry energy of nuclear matter. On the other hand, we derive a limit

for the highest allowed neutron star mass of three solar masses. For that purpouse, we use the

information on the nucleon potential obtained from the analysis of the heavy-ion data combined

with causality on the nuclear equation of state.
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1. Introduction

The study of neutron star properties such as their masses andradii has been a topic of high
interest over the last decades. Very recently, the measurement of the Shapiro delay for the mil-
lisecond pulsar PSR J1614-2230 has provided a new reliable limit for the highest known pulsar
mass of(1.97±0.04)M⊙ [1]. The value for the maximum mass is of major interest not only for
astrophysics but also for nuclear physics as it is closely connected to the properties of dense nuclear
matter, especially the stiffness of the nuclear matter equation of state (EoS). Nuclear matter at finite
baryon number densities is also subject of studies at heavy ion facilities such as Relativistic Heavy
Ion Collider (RHIC) at Brookhaven, the future Facility for Antiproton and Ion Research (FAIR)
at GSI, Darmstadt, and the Nuclotron-based Ion Collider facility (NICA) in Dubna, as well as the
Facility for Rare Isotope Beams at the Michigan State University in East Lansing, USA.

This work aims at studying the impact on the properties of compact stars of a soft nuclear
matter EoS, as obtained from the KaoS experiment at GSI, Darmstadt, for baryon densities up
to two-three times nuclear matter saturation densityn0 ∼ 0.17 fm−3. The K+ meson production
in nuclear collisions at subthreshold energies is used to study the level of compression of dense
matter, which, in turn, is controlled by the stiffness of nuclear matter through the nucleon potential
UN. The more attractive UN is, the higher is the produced K+ meson abundance, which therefore
can serve as a probe for the stiffness of nuclear matter [2] .

This paper is organized as follows. First, we review the results on K+ meson production from
the KaoS experiment and the need of a soft EoS to explain the observed data. Next, we study
the relevance of the KaoS results for low mass neutron stars and their connection to the nuclear
symmetry energy. This question arises since light neutron stars can have interior densities in the
same range as the ones probed by KaoS. The last part of the paper is focused on the determination of
the upper limit on neutron star maximum masses by using the information coming from the KaoS
experiment and causality constraints. We conclude the paper with a discussion of the obtained
limits for the highest possible neutron star mass with respect to neutron star observations, such as
the PSR J1748-2021 pulsar [3].

2. A soft nuclear equation of state from KaoS experiment

The measurements on K+ meson production in nuclear collisions at subthreshold energies
were performed with the Kaon Spectrometer (KaoS) at GSI. Thebeam energy dependence of the
K+ multiplicity ratio from Au+Au and C+C collisions at subthreshold energies of 0.8 to 1.5 GeV
per nucleon was introduced as a sensitive and robust probe for the stiffness of nuclear matter [4].

In order to describe the experimental results, IQMD and RQMD(Isospin and Relativistic
Quantum Molecular Dynamics) transport model calculationswere done [5, 6], applying a Skyrme
typeUN with two- and three-body forces. The detailed analysis showed that the K+ multiplicity ra-
tio from Au+Au and C+C collisions is rather insensitive to cross-sections, momentum dependence
of in-medium potentials and transport models used while theexperimental uncertainties cancel out
in the double ratio [4]. The transport calculations consistently demonstrate that the beam energy
dependence of the kaon multiplicity ratio is described bestby the nucleon potential with small
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repulsion. When applied to infinite isospin symmetric nuclear matter this corresponds to a soft
nuclear EoS characterized by a stiffness parameterK = 9dp

dn |n0 = 200MeV [5].

The measured attractive nucleon potential and the corresponding soft nuclear EoS [4, 5, 6]
have to be tested on their compatibility with neutron star observations. In this work we want to
analyze the implications of the results from the KaoS collaboration on compact stars.

3. Radii and moments of inertia of low mass neutron stars:
density dependence of the nuclear symmetry energy

The neutron star radii are a focus of major attention [7, 8, 9,10, 11, 12, 13, 14, 15] due to
their implications for nuclear matter properties. Also moments of inertia seem to have captured the
interest of the astrophysics community. Guillemot et al. have presented a new technique to deduce
limits on the moment of inertia of gamma-ray pulsars [16]. This analysis is based on the efficiency
of the gamma ray emission from gamma-ray pulsars with respect to the total energy loss obtained
from the pulsar spin-down. Due to the fact that the energy emitted in gamma-rays cannot be larger
than the total emitted energy, one can obtain a lower limit onthe pulsar’s moment of inertia. Also
moments of inertia have been addressed in connection with double pulsars [17]. Such studies could
be substantially refined in the future with the Large Observatory For X-ray Timing (LOFT) [18].

Neutron star radii and moments of inertia are strongly connected to the symmetry energy [19].
For our study, light neutron stars are of special interest, because their central densities can be in
the same range as the ones probed by the KaoS experiment. Since the latter provides information
on the stiffness of nuclear matter, the symmetry energy is the remaining uncertainty of the nuclear
EoSs.

For a consistency, we choose a Skyrme type EoS with a nucleon potential similar to the one
which was used in the analysis of the KaoS data. The energy perbaryon is written as [20]:

E
A
= mn(1−Yp)+mpYp+E0u

2
3 +B

u
2
+D

uσ

(σ +1)

+ (1−2Yp)
2
[(

2
2
3 −1

)

E0

(

u
2
3 −F(u)

)

+S0uγ
]

, (3.1)

whereasu = n/n0 is the baryon number density andE0 is the average kinetic energy of nuclear
matter atn0 and a proton fraction ofYp = 0.5. Two- and three-body forces, described by the terms
B andD, together withσ , are fitted to reproduce the binding energy per baryonE(n0,Yp = 0.5) =
−16 MeV, the stiffness parameterK, and the saturation densityn0. While S0 is varied between
28MeV and 32MeV, its density dependence is chosen as a power law withuγ whereγ = 0.5−1.1
[9, 21, 22, 23].

Eq. (3.1) is used to describe matter in the neutron star core,while we incorporate an inner and
outer crust [24, 25]. We first study non-rotating neutron stars with M = 1.25 M⊙, in accord with
the lightest pulsar masses [27]. The radii and moments of inertia in dependence ofK are shown
in Fig. 1 for different symmetry energy configurations. It can be seen that both largely depend
on the density dependence of the symmetry energy given byγ , i.e. L = 3n0(dS(nb)/dnb)|n0. At
K ∼ 200 MeV, stiff and soft symmetry energy configurations lead to a difference in the neutron
star radius and moment of inertia of∆R∼ (1− 1.5) km and∆I ∼ (2 · 1043− 2.5 · 1043) g cm2,
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Figure 1: Radii R and moments of inertiaI of non-rotating neutron star configurations with 1.25 M⊙ as
function of different slopes of the symmetry energyL. Central densities are given in units of the nuclear
matter saturation densityn0. Taken from [28].
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Figure 2: Radii and moments of inertia of light neutron stars forK0 ∼ 200MeV as function of their mass
for different symmetry energy setups as in previous figure. Central densities are given in units of the nuclear
matter saturation densityn0. Taken from [28].

respectively. The central densities of the corresponding stars are in the range of. 3.4n0, similar
to the density region explored by the KaoS collaboration.

In Fig. 2, we study the radii and moments of inertia of light neutron stars with masses in the
range of(1.1−1.6)M⊙ for K0 ∼ 200MeV and with equal configuration for the symmetry energy
as in Fig. 1. It can be seen that especially neutron stars withM . 1.3 M⊙ have central densities
which are low enough so that the entire neutron star interiorcan be described by an EoS which is
probed by the KaoS experiment. With the isospin symmetric part of the nuclear EoS determined
by the latter, radius and moment of inertia measurements from light neutron stars could thereby
distinguish between a soft and a stiff behavior of the symmetry energy.

4. Maximum mass for neutron stars

The most massive stable neutron star configuration depends on the stiffness of nuclear matter.
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Figure 3: The nucleon potential as a function of the baryon number density for different models. The
vertical thin lines indicate different densities for the onset of the stiffest EoS. Taken from [28].

The softer the nuclear EoS, the lower is the maximum mass which can be reached before the star
becomes unstable against collapse to a black hole.

Ref. [26] introduced the idea to use known properties of hadronic matter up to a critical density
ncrit . At higher densities, the low density EoS is smoothly connected to the stiffest possible EoS
allowed by causality. Previous studies showed that the highest possible mass can be expressed as
[27, 29, 30, 31]

Mhigh = 4.1M⊙ (εcrit/ε0)
−1/2 , (4.1)

with εcrit being the energy density taken at the transition densityncrit from the known low density
EoS to the stiffest one. In Refs. [29, 31, 32] an extrapolation of measurements on nuclei atn∼ n0

to higher densities were made and resulted in a maximum mass of Mhigh ∼ 2.9M⊙ for εcrit = 2ε0.
KaoS data directly tests the EoS for densitiesn∼ (2−3)n0 and justifies the choice ofncrit in the
same range. Consequently, we will calculate the highest possible masses with the restriction on
ncrit given by the KaoS data.

Forncrit up to(2−3)n0 the nucleon potential should fulfill the results from the analysis of the
KaoS data. For Skyrme type models this restriction corresponds toK ≤ 200MeV. As seen in Fig. 3,
we use two representative approaches for Skyrme models, BSk8 and SLy4 [33, 34]. For Relativistic
Mean Field (RMF) EoSs, the stiffness of high density nuclearmatter is determined by the nucleon
effective massm∗ at n0 [35]. Consequently, the correspondingUN is chosen by varyingm∗ for
a given compression modulusK0, so as to obtain a nucleon potential which is similar to or even
more attractive than the Skyrme parametrization within thedensity limits. A more attractiveUN at
supra-saturation densities allows a higher compression ofmatter for the same bombarding energy,
which enhances multiple-step processes in subthreshold kaon production and is in line with KaoS
results. Fig. 3 also shows that the TM1 [36] parametrizationas well as the Brueckner-Hartree-Fock
approximation (BHF) [37, 38, 39, 40] fulfill this requirement. Schemes, such as BSk8 [33], SLy4
[34] or NL3 [41], produce nucleon potentials which are more repulsive than the Skyrme benchmark
in the density region of interest.

Fig. 4 shows the highest possible neutron star masses atncrit ∼ (2− 3) n0 for the discussed
EoSs. Note that the maximum mass does not depend on the asymmetry at low densities but on the
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Figure 4: Highest possible masses for compact stars for different EoSas a function of the critical density
for the onset of the stiffest possible EoS. Taken from [28].

critical density. The higherncrit is, the later is the onset of the stiffest EoS in the star’s interior.
Consequently, less mass is supported and the value for the highest mass decreases. Forncrit ∼ 2n0,
the star is dominated by the stiffest EoS and therefore reaches masses of up to 3 M⊙. Smaller
maximum masses ofMhigh ∼ 2.4 M⊙ are obtained for the upper limit ofncrit ≃ 3n0. However,
this lower bound depends on the EoS studied. Moreover, it canbe observed that a lower bound of
2.8M⊙ as given by the NL3 EoS is not compatible with constraints from KaoS data. From Fig. 4
we can conclude that a pulsar mass of 2.7 M⊙ as found for PSR J1748-2021 by [3] is marginally
compatible with a soft EoS and requires a prompt transition from a soft EoS to the stiffest possible
for a density around(2.2−2.5)n0.

5. Summary

We have studied the properties of low mass neutron stars, such as radius and moments of
inertia, using K+ multiplicities from heavy-ion collisions at GSI. Light mass neutron stars can
have interior densities in the same range as the ones probed by KaoS experiment. Thus, these
experimental results serve to constrain the stiffness of the nuclear EoS for low mass stars. The radii
and moments of inertia of low mass neutron stars are then sensitive to the density dependence of
the symmetry energy, which is the remaining uncertainty of the nuclear EoSs. We find that light
neutron stars withM . 1.25M⊙ are well suited for future radius measurements, such as the LOFT
mission.

Moreover, we apply the KaoS results up to densities of 2n0 ≤ ncrit ≤ 3n0 and introduce the
stiffest possible EoS forn > ncrit to calculate the highest allowed maximum mass. In this way,
we test whether a soft nuclear EoS up to∼ 3n0 is compatible with tentatively massive neutron
stars such as PSR J1748-2021. The KaoS results confirm the previous theoretical estimation for
the highest possible neutron star mass of∼ 3 M⊙, estimation based on an extrapolation to supra-
saturation densities of results for nuclei atn∼ n0. A pulsar mass of 2.7M⊙ is not excluded by the
KaoS data, but requires the onset of the stiffest possible EoS already atncrit ∼ 2.2−2.5n0. Future
experiments, such as FAIR at GSI, aim at probing matter at densities beyond 3n0 and, therefore,
giving further constraints on maximum masses.
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