

Influence of the variation of fundamental constants on the primordial nucleosynthesis

Alain Coc^{*1}, Pierre Descouvemont², Jean-Philippe Uzan³ and Elisabeth Vangioni³

¹ Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), IN2P3-CNRS and Université Paris Sud 11, UMR 8609, Bât. 104, 91405 Orsay Campus (France)

² Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium

³ Institut d'Astrophysique de Paris, UMR-7095 du CNRS, Université Pierre et Marie Curie, 98 bis bd Arago, 75014 Paris (France)

E-mail: coc@csnsm.in2p3.fr, pdesc@ulb.ac.be, uzan@iap.fr, vangioni@iap.fr

We investigate the effect of a variation of fundamental constants on primordial element production in Big Bang nucleosynthesis (BBN). We focus on the effect of a possible change in the nucleonnucleon interaction on nuclear reaction rates involving the A = 5 (⁵Li and ⁵He) and A = 8 (⁸Be) unstable nuclei. The reaction rates for ³He(d,p)⁴He and ³H(d,n)⁴He are dominated by the properties of broad analog resonances in ⁵Li and ⁵He compound nuclei respectively. While the triple– alpha process ⁴He($\alpha\alpha, \gamma$)¹²C is normally not effective in BBN, its rate is very sensitive to the position of the "Hoyle state" and could in principle be drastically affected if ⁸Be were stable during BBN. We found that the effect of the variation of constants on the ³He(d,p)⁴He, ³H(d,n)⁴He and ⁴He($\alpha\alpha, \gamma$)¹²C reaction rates is not sufficient to induce a significant effect on BBN, even with a stable ⁸Be. The main influences come from the weak rates and the A = 2, n(p, γ)d, bottleneck reaction.

XII International Symposium on Nuclei in the Cosmos August 5-12, 2012 Cairns, Australia

*Speaker.

1. Introduction

Constraints on the possible variation of fundamental constants are an efficient method of testing the equivalence principle [1], which underpins metric theories of gravity and in particular general relativity. These constraints are derived from a wide variety of physical systems and span a large time interval back to Big Bang Nucleosynthesis (BBN). Using inputs from WMAP for the baryon density [2], BBN yields excellent agreement between the theoretical predictions and astrophysical determinations for the abundances of D and ⁴He [3, 4] despite the discrepancy between the theoretical prediction of ⁷Li and its determined abundance in halo stars. The effects of the variation of fundamental constants on BBN predictions is difficult to model. However, one can proceed in a two step approach: first by determining the dependencies of the light element abundances on the nuclear parameters and then by relating those parameters to the fundamental constants, following our earlier work [5].

It is well known that, in principle, the mass gaps at A = 5 and A = 8, prevent the nucleosynthetic chain from extending beyond ⁴He. The presence of these gaps is caused by the instability of ⁵He, ⁵Li and ⁸Be which are respectively unbound by 0.798, 1.69 and 0.092 MeV with respect to neutron, proton and α particle emission. Variations of constants will affect the energy levels of the ⁵He, ⁵Li, ⁸Be and ¹²C nuclei [6, 7], and hence, the resonance energies whose contributions dominate the reaction rates. In addition, since ⁸Be is only slightly unbound, one can expect that for even a small change in the nuclear potential, it could become bound and may thus severely impact the results of Standard BBN (SBBN). It has been suspected that stable ⁸Be would trigger the production of heavy elements in BBN, in particular that there would be significant leakage of the nucleosynthetic chain into carbon [8]. Indeed, as we have seen previously [7], changes in the nuclear potential strongly affects the triple–alpha process and as a result, strongly affect the nuclear abundances in stars.

2. Thermonuclear reaction rate variations

It would be desirable to know the dependence of each of the main SBBN reaction rates to fundamental quantities. This was achieved in Ref. [5], but only for the first two BBN reactions: the $n \leftrightarrow p$ weak interaction and the $p(n,\gamma)d$ bottleneck. Here, we propose to extend this analysis to the ${}^{3}H(d,n){}^{4}He$ and ${}^{3}He(d,p){}^{4}He$ reactions that proceed through the A = 5 compound nuclei ${}^{5}He$ and ${}^{5}Li$, and to the ${}^{4}He(\alpha\alpha,\gamma){}^{12}C$ reaction that could bridge the A = 8 gap.

The weak rates that exchange protons with neutrons can be calculated theoretically and their dependence on G_F (the Fermi constant), Q_{np} (the neutron–proton mass difference) and m_e (the electron mass) is explicit [9]. The dependence of the n+p \rightarrow d+ γ rate [10] cannot be directly related to a few fundamental quantities as for the weak rates, but modeling of its dependence on the binding energy of the deuteron B_D has been proposed [11, 12].

For the ${}^{3}H(d,n){}^{4}He$, ${}^{3}He(d,p){}^{4}He$ and ${}^{4}He(\alpha\alpha,\gamma){}^{12}C$ reactions, we used a different approach. In these three reactions, the rates are dominated by the contribution of resonances whose properties can be calculated within a microscopic cluster model. The nucleon-nucleon interaction $V(\mathbf{r})$ depends on the relative coordinate and is written as:

$$V(\mathbf{r}) = V_C(\mathbf{r}) + (1 + \delta_{_{\rm NN}})V_N(\mathbf{r}), \qquad (2.1)$$

where $V_C(\mathbf{r})$ is the Coulomb force and $V_N(\mathbf{r})$ the nuclear interaction. The parameter δ_{NN} characterizes the change in the nucleon-nucleon interaction. When using the Minnesota force [13], it is related to the binding energy of deuterium by $\Delta B_D/B_D = 5.7701 \times \delta_{NN}$ [7]. (The variation of the Coulomb interaction is assumed to be negligible compared to the nuclear interaction). The next important step is to relate ΔB_D to the more fundamental parameters. To summarize, B_D has been related, within an ω and σ mesons exchange potential to quark masses and Λ_{QCD} by Flambaum & Shuryak [14] and subsequently to more fundamental parameters (see Coc et al. [5] and references therein), and in particular to the fine structure constant.

2.1 The triple–alpha

The triple-alpha reaction is a two step process in which, first, two alpha-particles fuse into the ⁸Be ground state, so that an equilibrium $(2\alpha \leftrightarrow^8 Be)$ is achieved. The second step is another alpha capture to the Hoyle state in ¹²C. In our cluster approximation the wave functions of the ⁸Be and ¹²C nuclei are approximated by two and three-cluster wave functions involving the alpha particle, considered as a cluster of 4 nucleons. It allows the calculation of the variation of the ⁸Be ground state and ¹²C Hoyle state w.r.t. the nucleon-nucleon interaction, i.e. δ_{NN} . In Ref. [7], we obtained $E_{g.s.}(^{8}\text{Be}) = (0.09208 - 12.208 \times \delta_{NN})$ MeV, for the ⁸Be g.s. and $E_R(^{12}\text{C}) = (0.2877 - 20.412 \times \delta_{NN})$ MeV, for the Hoyle state. From these relations, it is possible to calculate the partial widths, and subsequently the ${}^{4}\text{He}(\alpha\alpha,\gamma){}^{12}\text{C}$ rate as a function of δ_{NN} [7]. Indeed, variations of $\delta_{_{\rm NN}}$ of the order of 1%, induces orders of magnitude variations of the rate [7] at temperatures of a few 100 MK. In addition, one sees that $E_{g.s.}$ (⁸Be) (relative to the 2- α threshold) becomes negative (i.e. ⁸Be becomes stable) for $\delta_{_{NN}} \gtrsim 7.52 \times 10^{-3}$. In that case, we have to calculate the two reaction rates, ${}^{4}\text{He}(\alpha,\gamma){}^{8}\text{Be}$ and ${}^{8}\text{Be}(\alpha,\gamma){}^{12}\text{C}$ for a stable ${}^{8}\text{Be}$. The calculation of the rate of the second reaction can be achieved using the sharp resonance formula with the varying parameters of the Hoyle state from Ref. [7]. For the first reaction, ${}^{4}\text{He}(\alpha, \gamma){}^{8}\text{Be}$, we have performed a detailed calculation following [15] to obtain the astrophysical S-factor, and reaction rate, for values of the ⁸Be binding energy of $B_8 \equiv -E_{g.s.}(^8\text{Be}) = 10, 50$ and 100 keV.

2.2 The ³He(d,p)⁴He and ³H(d,n)⁴He reactions

The ${}^{3}\text{He}(d,p){}^{4}\text{He}$ and ${}^{3}\text{H}(d,n){}^{4}\text{He}$ reactions proceeds through the ${}^{5}\text{Li}$ and ${}^{5}\text{He}$ compound nuclei and their rates are dominated by contributions of $\frac{3}{2}{}^{+}$ analog resonances. The corresponding levels are well approximated by cluster structures (${}^{3}\text{He}\otimes d$ or t $\otimes d$), so that we can use the same microscopic model as for the ${}^{4}\text{He}(\alpha\alpha,\gamma){}^{12}\text{C}$ reaction. However, unlike in the case of ${}^{8}\text{Be}$, the ${}^{5}\text{He}$ and ${}^{5}\text{Li}$ nuclei are unbound by ~ 1 MeV and the resonances are broad. Therefore the issue of producing A = 5 bound states, or even a two step process, like the triple–alpha reaction is irrelevant.

To be consistent with our previous work, we want to reproduce, for $\delta_{NN}=0$, the experimental *S*-factors (see references in Ref. [16]) obtained by a full *R*-matrix analysis, but, here, for convenience, we restrict ourselves here to the single pole *R*-matrix approximation which will be shown to be sufficient:

$$\sigma(E) \propto \frac{(\hbar c)^2}{\mu E} \frac{\Gamma_{\rm in}(E)\Gamma_{\rm out}(E)}{(E_R^* + \Delta E_R^* - E)^2 + \Gamma^2(E)/4}$$
(2.2)

For the ${}^{3}H(d,n){}^{4}He$ reaction, we use the parameterization of Barker [17], which reproduces the resonance corresponding to the $\frac{3}{2}{}^{+}$ state at 16.84 MeV which is in perfect agreement with the full

Figure 1: *S*-factor curves for the ³He(d,p)⁴He reaction from Ref. [16] (dashed), from our fit (solid and overlapping) and for extreme variations of $\delta_{NN} = \pm 0.15$ (dotted). Deviations with experimental data at very low energy are due to screening.

R-matrix fit [16] that we used in previous work [4, 18, 19, 20]. For the 3 He(d,p) 4 He reaction, we performed a fit (see Fig. 1) of the full R-matrix *S*-factor provided from Ref. [16] since, in that case, the parameterization of Barker [17], does not reproduce well the more recent data.

The additional level shifts obtained with our cluster model are given by $\Delta E_R = -0.327 \times \delta_{NN}$ for ${}^{3}\text{H}(d,n)^{4}\text{He}$ and $\Delta E_R = -0.453 \times \delta_{NN}$ for ${}^{3}\text{He}(d,p)^{4}\text{He}$ (units are MeV) [21]. These energy dependences are much weaker (~ 20–30 keV for $|\delta_{NN}| \le 0.03$) than for ⁸Be and ¹²C. This is expected for broad resonances which are weakly sensitive to the nuclear interaction. In contrast, Berengut *et al.* [6] find a stronger energy dependence. These authors perform Variational Monte Carlo calculations with realistic N-N interactions, which provide better D and ${}^{3}\text{H}/{}^{3}\text{He}$ wave functions, but which are not well adapted to broad resonances, such as those observed in ${}^{5}\text{He}$ and ${}^{5}\text{Li}$. Besides, the calculation of ΔE_R as a function of δ_{NN} is obtained by the *difference* between the energy of the $\frac{3}{2}^+$ states and the thresholds for the two–clusters emission in the entrance channel, both depending on the N–N-interaction. Berengut *et al.* [6] assume that these levels follow the dependence of the ${}^{5}\text{Li}$ and ${}^{5}\text{He}$ ground states, but the $\frac{3}{2}^+$ resonant levels state have indeed a ${}^{3}\text{He}\otimes\text{d}$ or t $\otimes\text{d}$ structure, different from the ground states. We also use a more elaborate parameterization of the cross–section.

3. Effects on primordial nucleosynthesis

The results of the former sections can be implemented in a BBN code in order to compute the

Figure 2: Limits on of η_{10} (the number of baryons per 10¹⁰ photons) and δ_{NN} provided by observational constraints on D (solid) ⁴He (dash) and ⁷Li (dot).

primordial abundances of the light elements as a function of δ_{NN} . For ⁴He, D, ³He and ⁷Li, we found that the effect of the ³He(d,p)⁴He and ³H(d,n)⁴He rate variations was negligible compared to the effect of the n \leftrightarrow p and n(p, γ)d reaction rate variations that we considered in our previous work [5]. Hence, next, we allow those two last reaction rates to vary through the coupled variation of δ_{NN} , B_D , electron and quark masses, G_F , Q_{np} , Λ_{QCD} , etc.... as done in Ref. [5]. Then, with updated D and ⁴He primordial abundances abundances deduced from observations, we obtained [21]

$$-0.0025 < \delta_{\rm NN} < 0.0006. \tag{3.1}$$

for typical values of the parameters. Those allowed variations in δ_{NN} are too small to reconcile ⁷Li abundances with observations, where $\delta_{NN} \approx -0.01$ is required. We can easily extend our analysis by allowing both η_{10} and δ_{NN} to vary. This allows one to set a joint constraint on the two parameters δ_{NN} and baryonic density, as depicted on Figure 2. No combination of values allow for the simultaneous fulfilment of the ⁴He, D and ⁷Li observational constraints.

Note that the most influential reaction on ⁷Li is surprisingly [5, 14] $n(p,\gamma)d$ as it affects the neutron abundance and the ⁷Be destruction by neutron capture. The dependence of this rate to B_D that we used comes from Dmitriev et al. [11] but, very recently, this has been challenged by the work of Carrillo et al. [12] that provide a very different dependence. If so, the influence of δ_{NN} on ⁷Li would have to be re–evaluated.

Finally, we investigated the production of ¹²C by the ⁴He($\alpha\alpha,\gamma$)¹²C, or the ⁴He(α,γ)⁸Be

Alain Coc

and ⁸Be(α, γ)¹²C reactions as a function of δ_{NN} . This is to be compared with the CNO (mostly ¹²C) SBBN production that has been calculated in a previous work [20] to be CNO/H = $(0.5 - 10^{-10})$ 3.) $\times 10^{-15}$, in number of atoms relative to hydrogen. A network of ≈ 400 reactions was used, but the main nuclear path to CNO was found to proceed from ${}^{7}\text{Li}(n,\gamma){}^{8}\text{Li}(\alpha,n){}^{11}\text{B}$, followed by ¹¹B(p, γ)¹²C, ¹¹B(d,n)¹²C, ¹¹B(d,p)¹²B and ¹¹B(n, γ)¹²B reactions. To disentangle the ¹²C production through the ${}^{4}\text{He} \rightarrow {}^{8}\text{Be} \rightarrow {}^{12}\text{C}$ link, from the standard ${}^{7}\text{Li} \rightarrow {}^{8}\text{Li} \rightarrow {}^{11}\text{B} \rightarrow {}^{12}\text{C}$ paths, we reduced the network to the reactions involved in A < 8 plus the ${}^{4}\text{He}(\alpha\alpha,\gamma){}^{12}\text{C}$, or the ${}^{4}\text{He}(\alpha,\gamma){}^{8}\text{Be}$ and ${}^{8}\text{Be}(\alpha,\gamma){}^{12}\text{C}$ reactions, depending whether or no ${}^{8}\text{Be}$ would be stable for a peculiar value of δ_{NN} . The carbon abundance shows a maximum at $\delta_{NN} \approx 0.006$, C/H $\approx 10^{-21}$ [21], which is *six orders* of magnitude below the carbon abundance in SBBN [20]. This can be understood as the baryon density during BBN remains in the range 10^{-5} to 0.1 g/cm³ between 1.0 and 0.1 GK, substantially lower than in stars (e.g. 30 to 3000 g/cm³ in stars considered by Ekström et al. [7]). This makes three-body reactions like ${}^{4}\text{He}(\alpha\alpha,\gamma){}^{12}\text{C}$ much less efficient compared to two-body reactions. In addition, while stars can produce CNO at 0.1GK over billions of years, in BBN the optimal temperature range for producing CNO is passed through in a matter of minutes. Finally, in stars, ⁴He($\alpha \alpha, \gamma$)¹²C operates during the helium burning phase without significant sources of ⁷Li, d, p and n to allow the ${}^{7}\text{Li} \rightarrow {}^{8}\text{Li} \rightarrow {}^{11}\text{B} \rightarrow {}^{12}\text{C}$, A=8, bypass process.

Note that the maximum is achieved for $\delta_{_{NN}} \approx 0.006$ when ⁸Be is still unbound so that contrary to a common belief, a stable ⁸Be would not have allowed the buildup of heavy elements during BBN. This is illustrated in Figure 3 which displays the evolution of the ¹²C and ⁸Be mass fractions as a function of time when ⁸Be is supposed to be bound by 10, 50 and 100 keV (solid lines). They both increase with time until equilibrium between two α -particle fusion and ⁸Be photodissociation prevails as shown by the dotted lines. For the highest values of B_8 , the ⁸Be mass fraction increases until, due to the expansion, equilibrium drops out, as shown by the late time behavior of the upper curve ($B_8 = 100 \text{ keV}$) in Figure 3. For $B_8 \gtrsim 10 \text{ keV}$, the ¹²C production falls well below, out of the frame, because the ⁸Be(α, γ)¹²C reaction rate decreases dramatically due to the downward shift of the Hoyle state. For comparison, the SBBN ≈400 reactions network (essentially the ⁷Li→⁸Li→¹¹B→¹²C chain) result [20] is plotted (dashed line) in Figure 3. It shows that for the ⁴He→⁸Be→¹²C path to give a significant contribution, not only ⁸Be should have been bound by much more than 100 keV, but also the ⁸Be(α, γ)¹²C rate should have been much higher in order to transform most ⁸Be in ¹²C.

4. Discussion

We have investigated the influence of the variation of the fundamental constants on the predictions of BBN and extended our previous analysis [5]. Through our detailed modeling of the cross-sections we have shown that, although the variation of the nucleon-nucleon potential can greatly affect the triple– α process, its effect on BBN and the production of heavier elements such as CNO is typically 6 orders of magnitude smaller than standard model abundances. Even when including the possibility that ⁸Be can be bound, at the temperatures, densities and timescales associated with BBN, the changes in the ⁴He($\alpha\alpha, \gamma$)¹²C and ⁸Be(α, γ)¹²C reaction rates are not sufficient. We have also extended our previous analysis by including effects involving ⁵He and ⁵Li. This allowed us to revisit the constraints obtained in Ref. [5] and in particular to show that the

Figure 3: ¹²C and ⁸Be mass fractions as a function of time, assuming ⁸Be is bound by 100, 50 and 10 keV as shown by the upper to lower solid curves respectively [21]. (Only the ¹²C mass fraction curve, for $B_8 = 10$ keV, is shown; others are far below the scale shown). The dotted lines correspond to the computation at thermal equilibrium and the dashed line to the SBBN [20] production.

effect of the ${}^{3}\text{He}(d,p){}^{4}\text{He}$ and ${}^{3}\text{H}(d,n){}^{4}\text{He}$ cross-sections variations remain small compared to the $n(p,\gamma)d$ induced variation.

Acknowledgments

This work was partly supported by the French ANR VACOUL.

References

- J.-P. Uzan, Varying Constants, Gravitation and Cosmology, Living Rev. Rel. 14 (2011) 2 [astro-ph/1009.5514].
- [2] E. Komatsu et al. [WMAP Collaboration], "Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. 192 (2011) 18, [astro-ph/11001.4538].

- Alain Coc
- [3] R.H. Cyburt, B.D. Fields and K.A. Olive, An update on the big bang nucleosynthesis prediction for ⁷Li: the problem worsens, JCAP 11 (2008) 12 [astro-ph/0808.2818].
- [4] A. Coc and E. Vangioni, Big-Bang Nucleosynthesis with updated nuclear data, J. of Phys. Conf. Series 202 (2010) 012001.
- [5] A. Coc, N.J. Nunes, K.A. Olive, J.-P. Uzan and E. Vangioni, *Coupled Variations of Fundamental Couplings and Primordial Nucleosynthesis*, *Phys. Rev.* D 76 (2007) 023511 [astro-ph/0610733].
- [6] J. C. Berengut, V. V. Flambaum and V. F. Dmitriev, *Effect of quark mass variation on big bang nucleosynthesis*, *Phys. Lett.* B 683 (2010) 114, [nucl-th/0907.2288].
- [7] S. Ekström, A. Coc, P. Descouvemont, G. Meynet, K.A. Olive, J.-P. Uzan and E. Vangioni, *Effects of the variation of fundamental constants on Population III stellar evolution, Astron. Astrophys.* 514 (2010) A62 [astro-ph/0911.2420].
- [8] H.A. Bethe, Energy Production in Stars, Phys. Rev. 55 (1939) 434.
- [9] D. Dicus, E. Kolb, A. Gleeson, E. Sudarshan, V. Teplitz and M. Turner, *Primordial nucleosynthesis including radiative, Coulomb, and finite-temperature corrections to weak rates, Phys. Rev.*, D 26 (1982) 2694.
- [10] S. Ando, R.H. Cyburt, S.W. Hong and C.H. Hyun, *Radiative neutron capture on a proton at big-bang nucleosynthesis energies*, *Phys. Rev.* C 74 (2006) 025809.
- [11] V. F. Dmitriev, V. V. Flambaum and J. K. Webb, Cosmological variation of deuteron binding energy, strong interaction and quark masses from big bang nucleosynthesis, Phys. Rev. D 69 (2004) 063506.
- [12] M.E. Carrillo-Serrano, I.C. Clöet, K. Tsushima, A.W. Thomas and I.R. Afnan, Variations of nuclear binding with quark masses, [astro-ph/1208.3009], and these proceedings.
- [13] D. Thompson, M. LeMere and Y. Tang, *Systematic investigation of scattering problems with the resonating-group method*, *Nucl. Phys.* A **286**, 53 (1977).
- [14] V.V. Flambaum and E.V. Shuryak, Dependence of hadronic properties on quark masses and constraints on their cosmological variation, Phys. Rev. D 67 (2003) 083507.
- [15] D. Baye and P. Descouvemont, Microscopic description of nucleus-nucleus bremsstrahlung, Nucl. Phys. A 443 (1985) 302.
- [16] P. Descouvemont, A. Adahchour, C. Angulo, A. Coc and E. Vangioni–Flam, Compilation and R-matrix analysis of Big Bang nuclear reaction rates, At. Data Nucl. Data Tables, 88 (2004) 203.
- [17] F.C. Barker, 3/2 + levels of ⁵He and ⁵Li, and shadow poles, Phys. Rev. C 56 (1997) 2646.
- [18] A. Coc, A., E. Vangioni-Flam, P. Descouvemont, A. Adahchour and C. Angulo, Updated Big Bang Nucleosynthesis Compared with Wilkinson Microwave Anisotropy Probe Observations and the Abundance of Light Elements, Astrophys. J. 600 (2004) 544.
- [19] A. Coc, K.A. Olive, J.-P. Uzan and E. Vangioni, Nonuniversal scalar-tensor theories and big bang nucleosynthesis, Phys. Rev. D 79 (2009) 103512 [astro-ph/0811.1845].
- [20] A. Coc, S. Goriely, Y. Xu, M. Saimpert and E. Vangioni, Standard Big Bang Nucleosynthesis up to CNO with an Improved Extended Nuclear Network, Astrophys. J. 744 (2012) 58 [astro-ph/1107.1117].
- [21] A. Coc, P. Descouvemont, K.A. Olive, J.-P. Uzan and E. Vangioni, Variation of fundamental constants and the role of A=5 and A=8 nuclei on primordial nucleosynthesis, Phys. Rev. D 86 (2012) 043529 [astro-ph//1206.1139].