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The goal of astroarchaeology or Galactic archaeology is to unravel the history of assembly of the

Milky Way, using fossil remnants of ancient star formation events which have disrupted and are

now dispersed around the Galaxy. Recent studies of chemicalabundances of stars in individual

(undispersed) open and globular clusters show that their abundances appear to be homogeneous

to the level at which they can be measured, at least for elements heavier than Al. The technique of

chemical tagging can be used to identify the fossil remnantsof old dispersed clusters from their

element abundance patterns over many chemical elements. Weplan to use the new HERMES

multi-object high resolution spectrometer on the Anglo Australian Telescope to measure abun-

dances for up to 30 elements in about a million stars. This program is called GALAH (Galactic

archaeology with HERMES) and we hope to begin the pilot studyin mid-2013.
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1. Galactic archaeology

The goal is to learn about the formation and evolution of the Galaxy, using the stellar relics
of ancient star formation and accretion events. After theirbirth-clusters dispersed, these relic stars
may have lost much of their phase space information because of dynamical heating and radial
migration. We know however that almost all bound open and globular star clusters are chemically
homogeneous for elements above Al. The detailed chemical composition over many elements
of the surviving stars of such star forming events is likely to be conserved, and the relic stars
from a particular star forming event are likely to have the same detailed distribution of element
abundances. This provides a way to recognize relic stars from old long-dispersed star formation
sites.

I will start with some general points about the Galactic components, and then look at some
more specific issues in Galactic archaeology.

2. Galactic Components

Almost all spirals appear to have a thick disk component, in addition to their defining thin
disks. In large spirals like ours, the thick disk mass is typically about 10% of the thin disk. Near
the sun, the abundance ranges of the thick and thin disk starsoverlap. The thin disk stars have
[Fe/H] in the range−0.7 to +0.5, while most of the thick disk stars have [Fe/H] between about
−1 and−0.3, with tails extending to−2 and−0.1. The stars of the thin and thick disks have
different motions, different density distributions and different distributions in the [α /Fe]–[Fe/H]
plane, where [α /Fe] is the relative abundance of theα-elements Mg, Si, Ca and Ti. In the [Fe/H]
interval over which the two disk components overlap (about−0.7 to−0.1), the thick disk stars are
distinctly moreα-enhanced, indicating that their chemical evolution occurred more rapidly. Near
the sun, all of the stars of the thick disk appear to be old, with ages in excess of about 10 Gyr.

We know that the Galactic thin disk shows a mean abundance gradient of about−0.07 dex
kpc−1. Near the sun, the thin disk stars cover a wide age range, up toabout 10 Gyr. Their age-
metallicity relation (Figure 1) shows that stars of almost all ages up to about 10 Gyr cover a broad
abundance range, with [Fe/H] values between about−0.7 to +0.5 and only a weak trend of in-
creasing abundance with decreasing age. The current beliefis that the most metal-rich thin disk
stars near the sun did not form near the sun but rather formed in the more metal-rich inner Galaxy
and migrated radially out to the solar neighborhood. Radialmigration is a big issue in Galactic
archaeology right now. It is believed to be driven by the torques of the Galactic bar and spiral arms,
which can move stars radially from one near-circular orbit to another (Sellwood & Binney 2002),
but we do not know how important radial mixing has been in determining the current state of the
Galactic disk. This question can be answered using the techniques of Galactic archaeology.

Measuring stellar ages is a vital part of Galactic archaeology. When we identify the fossil
relic stars of dispersed star forming event, we will need to estimate their ages in order to build
up a picture of the assembly of the Milky Way. Gaia will be an important part of such work. It
will give us accurate stellar distances, and we can hope to measure the ages of the relics from
their color-magnitude diagrams. Measuring accurate ages for individual stars is still difficult at the
present time. Near the sun we can use subgiants and stars nearthe main sequence turnoff, for which
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Figure 1: The Age-Metallicity relation for subgiants near the sun (Wylie de Boer & Freeman, unpublished)

ages can be estimated from isochrones. These stars are too faint to study at larger distances, and
we therefore know relatively little about the age-metallicity distribution of the disk away from the
solar neighborhood. We can use giant stars to study the chemical properties of the disk at larger
distances from the sun, but we cannot measure isochrone agesfor giants. Asteroseismology ages
for giants are not yet very accurate but will improve.

The bulge of our Galaxy is archaeologically interesting. Small boxy bulges like the bulge of
the Milky Way are now not regarded as the products of mergers.They are believed to have formed
about 8 Gyr ago via bar-forming and bar-buckling instabilities of the early disk. The disk forms
an elongated bar structure at its center, which then bucklesvertically and settles into the long-lived
boxy shape. These instabilities of the disk redistribute the disk stars into the bulge. The different
components of the early inner disk (thick disk, old thin disk, younger thin disk) end up trapped
dynamically within the bulge structure. Their distribution within the bulge depends on their initial
phase space distribution before the instability. We can seethese components in the metallicity
distribution function of the bulge stars (Figure 2). The same three components are seen all over the
bulge, but their relative weights change with position in the bulge. In this way, the bulge provides
a fossil image of the early inner Galaxy.

3. Galactic archaeology of disk substructure

The Galactic disk near the sun shows some kinematical clumping or substructure (Figure 3).
These clumps represent stars that have some degree of commonmotion, and they are usually called
stellar moving groups. The stars of the moving groups are allaround us: they are seen as concen-
trations in velocity but not in position.

Some of these groups are the debris of old disrupted star clusters in the disk. Examples include
the HR 1614 and Wolf 630 moving groups (De Silva et al 2007, Bubar & King 2010). These groups
are now dispersed into extended regions of the Galaxy, and their stars are chemically homogenous
and have common ages. These particular groups are about 2 Gyrold but still retain some kinemati-
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Figure 2: The metallicity distribution function for the Galactic bulge. Ness et al (2012) propose that com-
ponent C comes from the stars of the early inner thick disk, B from the inner thin disk and A from the cold
metal rich part of the thin disk which is dynamically very responsive. Two more metal-poor components D
and E are also present: they are believed to come from the metal-poor thick disk (D) and the inner halo (E).

Figure 3: The density distribution of stellar kinematics of stars near the sun (adapted from Dehnen 1999). U
and V are the stellar velocity components in the radial and azimuthal directions respectively, relative to the
Local Standard of Rest. The substructure near (0,0) is dominated by relatively young stars. The Hercules
feature and the HR 1614 moving group are labelled: see text.
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cal identity. We can expect to find many older groups of this kind which have lost their kinematical
identity but still preserve their chemical identity. Theseare the relics of the star formation history
of the Galaxy, and are of great interest for Galactic archaeology.

Other moving groups are associated with dynamical resonances associated with the pattern
speed of the Galactic bar or spiral structure. The Hercules group seen in Figure 3 is an example. Its
stars are chemically a typical sample of the nearby disk, with a wide range of chemical abundances.
These dynamical groups are of limited interest for Galacticarchaeology.

Some moving groups may be the debris of infalling dwarf galaxies which were accreted by the
Milky Way and were then tidally disrupted. Such events are commonly seen in CDM simulations
of galaxy formation. Part of our goal is to identify such debris using chemical techniques, even if
the debris has lost its kinematical identity, because this provides a way to make a direct estimate of
the accretion history of the Milky Way.

In summary, although the disk does show some surviving kinematic substructure in the form
of moving stellar groups, a lot of dynamical information waslost in the the subsequent heating and
radial mixing by spiral arms and giant molecular clouds. Groups like the HR 1614 group are rare
examples of dispersed clusters which are still identifiableboth chemically and kinematically, al-
though not spatially. Most older dispersed aggregates would not now be recognizable dynamically
and chemical techniques provide the only way to recognize their debris. Using element abundance
information in this way is calledchemical tagging. The technique has not yet been widely used,
but here is a recent example in which chemical techniques areused to help identify stars which
appear to have been born together, and to work out what kind ofparent object they came from.

Wylie de Boer et al (2012) used chemical tagging techniques to identify the nature of the
Aquarius stream (Williams et al 2011). This is a stream of halo stars identified from the RAVE
survey. The stars appear to be coming directly towards the sun from nearl = 50◦, b = −60◦, and
the stream extends along the line of sight from 200 pc to 10 kpc. The question is whether the stream
is the debris of a disrupted globular cluster or a dwarf galaxy. From its chemical properties, the
stream appears to be the debris of a globular cluster. Its stars are homogeneous in heavy elements,
with a dispersion in [Fe/H] of 0.09 dex. They show the Na-O anticorrelation that is seen in almost
all globular clusters. The distribution of the stream starsin the Ni-Na plane (Figure 4) is different
for globular clusters and dwarf spheroidal galaxies (this is believed to come from the slower star
formation rate in dSph galaxies than globular clusters). The Aquarius stream stars appear to be
more consistent with globular cluster debris than with the dSph galaxies.

4. Chemical Tagging

The idea of chemical tagging is to use the detailed chemical abundances of stars to tag or asso-
ciate them to common ancient star-forming aggregates whosestars have similar abundance patters
(Freeman & Bland-Hawthorn 2002). The detailed abundance pattern over many elements reflects
the chemical state of the gas from which the aggregate formed. In this way, chemical studies of the
stars in the Galactic disk can help to identify stars that arepart of the debris of common dispersed
star-forming aggregates, and also those which came in from outside in disrupting satellites.

A vital part of the chemical tagging process is that star clusters are known to be chemically
homogeneous in the heavier elements, to the level of precision with which it is presently possible
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Figure 4: The Na-Ni distribution for globular cluster stars, dwarf spheroidal galaxy stars, field halo stars
and stars of the Aquarius stream (black star symbols) (Wyliede Boer et al. 2012). The stars of the Aquarius
stream are in the same part of the distribution as the globular cluster stars.

to measure (e.g. De Silva 2009, Pancino et al 2009). The element abundances within individual
clusters have observed dispersions that are significantly less than 0.1 dex. This should make it
relatively easy to identify the debris of disrupted star clusters via chemical tagging.

As a guide to what to expect for the abundance distributions of disrupted dwarf galaxies, we
can look at the element abundances in surviving dwarf spheroidal galaxies. This is more complex
(e.g. Venn et al. 2008). The accreted dwarf galaxies underwent a period of chemical evolution
before they were captured and disrupted by the Galaxy. Each appears to have had a different star
formation history. The [Fe/H] abundance range of the stars is different from galaxy to galaxy,
according to the usual mass-metallicity relation for dwarfgalaxies. The distribution of their stars
in the [X/Fe]–[Fe/H] plane is well defined for an individual galaxy but differs in structure from
galaxy to galaxy, depending on their star formation history. (Here X is the abundance of some
element other than Fe.)

We can think of a chemical space (C-space) of abundances of elements: e.g. Na, Mg, Al,
Ca, Mn, Fe, Cu, Zr, Ba, Eu . . . . With the HERMES instrument, abundances for up to about 30
elements will be measurable. Not all of these elements vary independently from star to star; many
vary together in near-lockstep. The dimensionality or number of independent dimensions of this
chemical space is 8 to 9 (Ting et al. 2012).

Most disk stars inhabit a sub-region of this space. Stars that came from chemically homoge-
neous aggregates like dispersed clusters will lie in tight clumps in C-space. Stars which came in
from satellites will lie on tracks in C-space which are different from each other and may be different
enough to stand out from the stars of the Galactic thin and thick disks.

With this chemical tagging approach, we will be able to reconstruct old dispersed star-forming
aggregates in the Galactic disk, and may be able to put observational limits on the satellite accretion
history of the Galaxy. This kind of chemical tagging experiment needs a high resolution spectro-
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Figure 5: Optical design of the HERMES four-band high-resolution spectrograph

scopic survey of about a million stars (see section 6), homogeneously observed and analysed. This
is the prime science driver for HERMES.

An important goal of the GALAH survey is to identify how significant mergers and accretion
events were in building up the Galactic disk and bulge. Cold Dark Matter simulations predict a
high level of merger activity, which conflicts with some observed properties of disk galaxies. The
observational goal of the survey is to find the debris of groups of stars, now dispersed, that were
associated at birth, either because they were born togetherin a single Galactic star-forming event,
or because they came from a common accreted galaxy.

5. HERMES

HERMES is a new high resolution fiber-fed multi-object spectrometer on the AAT. It has two
resolution modes (resolving power 28,000 and 45,000), and four non-contiguous spectral bands
covering a total of about 100 nm between about 470 nm and 790 nm. The bands were carefully
chosen to permit the measurement of abundances of as many elements as possible from the major
element groups and nucleosynthetic processes. The fiber positioner is the existing 2-degree field
positioner, with about 390 fibers overπ square degrees. First light at the telescope is expected
in early 2013. The optical layout is shown schematically in Figure 5. The instrument has a single
collimator and four VPH gratings and cameras, with the bandsseparated by dichroic beam splitters.
Each camera has a 4×4K E2V CCD detector. The wavelengths of the individual bandsare given
in Table 1.
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Band λmin λmax

Blue 471.8 490.3 nm
Green 564.9 587.3 nm
Red 648.1 673.9 nm
IR 759.0 789.0 nm

Table 1: Wavelength intervals for the four HERMES bands

Dwarf Giant

Thin disk 0.58 0.19
Thick disk 0.11 0.07
Halo 0.02 0.03

Table 2: Fractional contribution to the GALAH sample from Galactic components

6. Galactic archaeology with HERMES

We are planning a stellar survey (the GALAH survey) of about amillion stars, using the
HERMES instrument. The faint limit for the survey isV = 14, chosen to match the typical stellar
density to the fiber density. The survey will cover about halfof the accessible sky, with|b| greater
than about 10◦. The instrument specifications are to give spectra with SNR =100 per resolution
element (R = 28,000) atV = 14 in a one-hour exposure. The program would then take about 400
clear bright nights.

The details of the actual survey, like the adopted resolution, the exposure times, and the galac-
tic fields, depend on how well the instrument works, which we will not know until it is on the
telescope. The primary motivation for the survey is the chemical tagging experiment described
above. We can be sure, however, that a sample of a million stars, with high resolution spectra,
uniformly reduced and analysed, and with accurate radial velocities from HERMES and accurate
parallaxes and proper motions from Gaia, will be an invaluable long term resource for a huge range
of Galactic and stellar science, much of which we have not yetthought of.

The stars in such a survey will have a double-peaked temperature distribution, with one peak
dominated by stars near the main sequence turnoff and the other by clump giants. Table 2 shows
the expected fractional contribution from the giants and dwarfs from each of the main Galactic
components. The old disk dwarfs are seen out to distances of about 1 kpc, the clump giants to
about 5 kpc, and the brightest halo giants to about 15 kpc.

Our goal is to identify debris of disrupted clusters and dwarf galaxies. Assume that these
objects disrupted long enough ago so that their debris is nowazimuthally mixed right around the
galaxy. The GALAH survey has a horizon which depends on the type of star. About 9% of the
thick disk stars and about 14% of the thin disk stars pass through our 1 kpc dwarf horizon, and we
are assuming that all of the disrupted objects whose orbits pass through a±1 kpc-wide annulus
around the Galaxy at the solar circle are represented withinour horizon.

Simulations (Bland-Hawthorn & Freeman 2004, Bland-Hawthorn et al. 2010) show that a
random sample of a million stars withV < 14 will allow detection of about 20 thick disk dwarfs
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from each of about 3000 star formation sites, and about 10 thin disk dwarfs from each of about
30,000 star formation sites. These numbers are indicative only and depend on the upper and lower
mass limits for the mass spectrum of the disrupted objects. Asmaller survey would mean less stars
from a similar number of star formation sites.

Is it possible to detect the debris of about 30,000 differentstar formation sites, using chemical
tagging techniques ? Are there enough independent cells in C-space to make this possible ? The
answer appears to be yes. We would need about 7 independent chemical element groups, each with
about 5 measurable abundance levels, to get enough independent cells (i.e. 57: 48 would also be
sufficient). The abundance spread in each of the thin and thick disks is at least 0.5 dex, and we
expect to be able to measure the element abundances differentially to an accuracy of about 0.05
dex, giving more than 10 measurable abundance levels. The dimensionality of chemical space is
now known to be 8 to 9, and we discuss this further in the next section.

6.1 The dimensionality of the GALAH chemical space

We expect to be able to measure abundances for at least 25 elements (Li, C, O, Na, Al, K; Mg,
Si, Ca, Ti; Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn; Y, Zr, Ba, La, Nd, Eu), with a few more elements in
some stars. The HERMES spectral bands (BGRI) were chosen to ensure measurable lines of these
elements, which represent most of the major element groups and nucleosynthesis processes. The
bands also include the Hα and Hβ lines.

The variation of these elements from star to star is highly correlated, and the number of in-
dependent dimensions of this C-space is much less than 25. Ting et al. (2012) made a principal
component analysis (PCA) of element abundances from catalogs of metal-poor stars, metal-rich
stars, open clusters and also of stars in the Fornax dSph galaxy. The PCA included detailed simu-
lation of the effects of observational errors, element by element, on the apparent dimensionality of
the C-space. The outcome is that the HERMES C-space has dimensionality of 8 to 9 for all these
samples, but the principal components change from sample tosample.

The principal components are vectors in the C-space of the element abundances [X/Fe], and
these vectors are identifiable with nucleosynthetic processes. The principal components are eigen-
vectors of the correlation matrix, and are all orthogonal inthe C-space: therefore the higher com-
ponents are projections on hyperplanes normal to the more prominent components.

The number of significant principal components is similar for metal-rich and metal-poor stars,
but the actual components are different. The structure of the main components reflects the dominant
nucleosynthetic processes for each sample (see Ting et al. 2012 for a detailed discussion). The
interpretation of the first principal component (the component with the largest eigenvector) is clear,
but it is not so obvious for the others because of the projection.

For example, for the sample of low-metallicity stars with−3.5< [Fe/H]<−2 (excluding the
carbon-enhanced metal-poor stars), the first principal component includes all of the n-capture ele-
ments and the alpha-elements. It is probably related to core-collapse SN producing alpha-elements
plus the r-process contribution to n-capture elements. Thesecond component shows an anticor-
relation of alpha-elements with Fe-peak and n-capture elements, and may be related to “normal”
core-collapse SN which do not contribute to the r-process.

The Ting et al. (2012) PCA components are based on samples of afew hundred stars which had
not always been homogeneously analysed. The homogeneouslyobserved and analysed GALAH
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Figure 6: The location of old open clusters projected on to the Galactic plane. The red circle shows the
Galactic center. The sun is at the center of the blue circles.The smaller blue circle shows the horizon for
HERMES old turnoff stars, and the larger circle shows the horizon for clump giants. Most of the older
clusters in the inner disk have been disrupted. The sample ofHERMES clump giants in the inner disk is
expected to include the debris of many disrupted clusters. Adapted from Friel (1995).

sample of about a million stars will help to delineate the nature of the principal components more
clearly.

Ting et al. also compared the C-space for open clusters, which have Galactocentric radii from
6 to 20 kpc, with the C-space for metal-rich stars in the solarneighborhood. The C-space for the
clusters has about one more dimension that the stars near thesun. We may find for the GALAH
sample that the C-space for the more widely distributed giants (see Figure 6) has more dimensions
than the C-space for the dwarfs, which cover a smaller area ofthe Galaxy, similar to the area
covered by the Ting metal-rich sample.

7. Chemical tagging in the inner Galactic disk

Although young open clusters are present in the inner Galaxy, the old (> 1 Gyr) surviving open
clusters lie mostly in the outer Galaxy, beyond a radius of about 8 kpc (Figure 6). The absence of
old open clusters in the inner Galaxy is usually attributed to the stronger disruptive influence of the
Galactic tidal field and interactions with giant molecular clouds in the inner Galaxy. This suggests
that we may expect to find the relics of many disrupted open (and globular) clusters in the inner
disk. The inner disk may then be a good place to apply chemicaltagging techniques to recover
cluster debris, using GALAH giants in the inner disk. We expect about 200,000 survey giants to
lie in the inner regions of the Galaxy.
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Disrupted clusters will provide a strong test of the importance of radial mixing for the evolution
of the disk. Open clusters are on near-circular orbits when they are young. In the absence of
radial mixing effects, their dispersed debris would still be on near-circular orbits and be confined
to a fairly narrow annulus around the Galaxy. On the other hand, the influence of radial mixing
would be to spread the debris of individual clusters over a larger range in radius. In this way, the
radial extent of the chemically tagged debris of disrupted clusters of various ages will give a direct
measure of how much radial mixing has actually contributed to the evolution of the Galaxy.

The Na/O anticorrelation is unique to globular clusters, and will help to identify the debris of
disrupted globular clusters
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