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Cosmic nucleosynthesis co-produces unstable isotopes, which emit characteristic gamma-ray
emission lines upon their radioactive decay that can be measured with SPI on INTEGRAL.
High spectral resolution allows to derive velocity constraints on nucleosynthesis ejecta down to
' 100 km s−1. Supernova explosion generate gamma-rays from radioactive decays of 56Ni and
44Ti, which can reveal details of the explosion mechanism. Core-collapse supernovae apparently
do not always produce significant amounts of 44Ti, as in the Galaxy fewer sources than expected
from the supernova rate have been found. INTEGRAL’s 44Ti data on the well-observed Cas A
and SN1987A events are evidence that non-spherical explosions and 44Ti production may be cor-
related. INTEGRAL may have the chance to see directly for a SNIa the 56Ni decay chain which
powers the supernova light curve: SN2011fe at only 6.4 Mpc distance may be close enough.
Characteristic gamma-ray lines from radioactive decays of long-lived 26Al and 60Fe isotopes
have been exploitted to obtain information on the structure and dynamics of massive stars in
their late evolution and supernovae, as their yields are sensitive to those details. The extended
INTEGRAL mission establishes a database of sufficiently-deep observations of several specific
regions of massive star groups, such as Cygnus, Carina, and Sco-Cen. In the inner Galaxy, 26Al
nucleosynthesis gamma-rays help to unravel the Galaxy’s structure and the role of a central bar,
as the kinematically-shifted 26Al gamma-ray line energy records the longitude-velocity behavior
of hot interstellar gas. Thus, INTEGRAL has consolidated the feasibility of constraining cos-
mic nucleosynthesis through gamma-ray line observations. High-resolution spectroscopy with
SPI provides insights into super nova explosion physics, massive-star interiors, and dynamics of
nucleosynthesis ejecta in extended interstellar space. Due to its extended mission INTEGRAL
maintains its chance to also see rare sufficiently-nearby events, such as a nova to provide first
nova nucleosynthesis measurements of 7Be and 22Na production.
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1. Nucleosynthesis and Gamma-Rays

Radioactive by-products of nuclear fusion reactions in astrophysical objects are the basis for
one of INTEGRAL’s key science objectives, the study of cosmic nucleosynthesis through gamma-
ray line spectroscopy measurements. Candidate sources are supernovae, massive stars, and novae.
Radioactive ejecta, in the case of short-lived (≤My) radioactivities, decay in the exploding source
during its expansion, or they produce an extended, diffuse emission for longer-lived radioactive
isotopes and annihilating positrons. Early observations of the sky in gamma-rays had shown the
existence of such lines, brightest lines being the positron annihilation line at 511 keV [12], and
the 1809 keV line from 26Al [23]. Supernova 1987A in the LMC then led to first direct proof of
supernova light origin from radioactive 56Ni decay [27]. This had prepared the ground for a first
gamma-ray line sky survey with the Compton Gamma-Ray Observatory (CGRO; 1991-2000) with
its OSSE and COMPTEL instruments. CGRO measurements first detected supernova radioactiv-
ity from 57Co in SN1987A [21] and from 44Ti in Cas A [15]. Diffuse radioactivity in 26Al was
mapped over the Galaxy [3], and positron emission gamma-rays were seen from the inner, bulge
region of our Galaxy as an extended source [33]. Yet, CGRO had a modest spectral resolution
of order 10%, inadequate for any gamma-ray spectroscopy in the sense of identifying new lines
or constraining kinematics of source regions through line shape measurements; balloone-borne
measurements had indicated the power of such measurements [44, 40] with solid state detectors
operated at cryogenic temperatures. INTEGRAL’s spectrometer SPI was set out to perform such
gamma-ray spectroscopy within the ESA Mission program. With a spectral resolution of 2–3 keV
in the MeV regime, SPI is the highest spectral-resolution instrument ever operated for such obser-
vations, and will remain so for a while; no MeV-gamma-ray spectroscopy mission is currently at
the horizon of any of the international space agencies’ programs. INTEGRAL data will establish
the nuclear-astrophysics legacy database for (at least) the current generation of astrophysicists.

INTEGRAL’s early-mission program included a core program part [49], where the plane of the
Galaxy was surveyed, and regions of particular interest for nucleosynthesis studies were observed,
such as the Cygnus and Vela regions, and the Cas A supernova remnant. The inner Galaxy itself
obtained substantial exposure on top of this from monitoring programs on its rich population of
transient X-ray sources. Altogether, at this time, INTEGRAL’s sky exposure (Fig. 1) covers all
regions of candidate sources of nucleosynthesis gamma-rays, although sensitivities in particular
outside the inner-galaxy region are not always sufficient to constrain nucleosynthesis (see below).

2. Supernovae

We know of two basic types of supernova explosions, the thermonuclear explosion of a white
dwarf star, which is believed to conform to observational supernova class SNIa [28], and the core-
collapse events, which are associated with all other observational classes of supernovae, SNIb-c
and SNII with their subtypes [16]. Beyond such basic understanding, a physical explanation and
model of neither of these supernovae types is established, although many candidate models are
available. The problem lies in inadequate modeling of the observational variety, as these explosive
events are highly dynamic and unfold into surrounding interstellar medium. Observational features
are thus dominated by how the energy of the initial explosion and the radioactive decay of 56Ni
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Figure 1: The sky exposure of nucleosynthesis line observations with SPI after nine years of operations
assembles data from the major candidate source regions, along the plane of the Galaxy, and the LMC and
Virgo regions. (left). SPI measurements have observed diffuse-continuum and line emission from the Galaxy
[1, 50]. (right).

therein is transferred into radiation of different types, as the photosphere of the object recedes and
leads to transparency of the object on a time scale of months only [37]. Therefore, it remains
difficult to relate observational features to the inner explosion physics. Neutrinos and gravitational
waves are the basis of hopes to overcome this problem. Meanwhile, penetrating gamma-ray line
and continuum emission appears to be most-directly related to physics in the supernova interiors,
in particular as their brightness is driven by the weak interaction of radioactive decay and thus
largely independent of thermal or density conditions and thus all expansion and ISM-interaction
physics. This is the basis of their complementary value for supernova studies, and thus even few
measurements in gamma-rays have a potential for major impacts on astrophysics of supernovae
and their implications throughout astrophysical studies.

2.1 Core-collapse Supernovae

Massive stars end their evolution through gravitational collapse, if their initial mass exceeds
about 8–10 M� [16, 42]. Radioactive ejecta which could be observed with gamma-ray spectrome-
ters include 56Ni and 44Ti, at estimated amounts of ' 0.1 and ' 10−4 M�, respectively. Although
both isotopes should be produced in core collapse events which form neutron star remnants and
hence eject freshly-produced isotopes, only the ejection of 56Ni appears secured as it powers the
supernova light (although amounts vary by almost three order of magnitude [29]), while 44Ti ejec-
tion is much less clear [41]. INTEGRAL has surveyed the plane of our Galaxy [35], where one
would expect to see about half a dozen 44Ti line sources if it would be ejected by typical core-
collapse supernovae[41]. None has been found beyond the 350-year old Cas A supernova remnant
which had been discovered with COMPTEL. This relative paucity of 44Ti ejection suggests that
core-collapse supernova explosions rarely occur with high spherical symmetry (as 1D models had
to assume [43]), but rather non-spherical with clumps and jets, where in particular 44Ti ejection
would vary by more than an order of magnitude. [41, 22].

For the radioactivity afterglow of the Cas A supernova itself, the non-detection of the 1157 keV
decay line by INTEGRAL’s SPI instrument [26], while INTEGRAL’s IBIS measurement confirms
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Figure 2: The ratio of radioactive isotopes 56Ni and 44Ti is a sensitive probe of the effective location of
the “mass cut”, the separation between ejected material and the neutron-star remnant of a core-collapse
supernova [43]. Measurements for Cas A and SN1987A appear consistent with the ratio as inferred from
solar abundances of the stable daughter isotopes. Models assuming spherical symmetry (black dots) fall
below observations in this representation, while non-spherical explosion models indicate better agreement
(adapted after [31]).

an ejected 44Ti amount of 1-2 10−4 M� [34], suggests that 44Ti-rich ejecta move at velocities above
500 km s−1 [26]. As Doppler broadening increases with photon energy, this makes the high-energy
decay line much broader than SPI’s instrumental resolution, hence the signal-to-background ratio
for this line degrades and may escape detection, while the 68 and 78 keV lines have been measured
from this same event. It will be interesting to see how Nustar [11] (to be launched in spring
2012) will map out the 44Ti emission morphology for Cas A, with its high imaging resolution, to
complement these measurements and teach us more on supernova asymmetries in the case of Cas
A.

The detection of SN1987A in an energy band conforming to the 68 and 78 keV lines from
44Ti decay with IBIS was first reported at this conference (Grebenev et al., this volume). This
provides an important second case, where for a well-observed supernova radioactivity in 56Ni and
44Ti can be compared and confronted with model predictions for different assumptions of explosion
symmetry (see Fig. 2; see also [18, 9, 19]).

2.2 Supernovae of Type Ia

SNIa are used as standard candles with known (and redshift-independent) brightness for cos-
mological studies [10]. This underlines the need for a physical model of this supernova type, at
least to properly account for evolutionary biases such as could arise from progenitor’s metallicity.
Recently, the existence of substantial variety among SNIa has become established, and underlines
the need for a physical understanding of explosion physics or at least of the physical origins of the
Phillips relation used to standardize SNIa luminosities from their brightness evolution with time.
Hope for an accurate measurement of the amount of 56Ni which powers a SNIa light curve (canon-
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Figure 3: The gamma-ray line emission at 847 keV from decay of 56Co rises towards a maximum at
about 90 days after explosion. Shown here are the gamma-ray brightness evolutions according to several
model variants for the case of SN2011fe (see legend for model types). The INTEGRAL observing win-
dows are indicated by arrows in the lower part of the graph. INTEGRAL’s narrow-line sensitivity would be
3 10−5ph cm−2s−1, degrading with line width to about 3 10−4ph cm−2s−1 if lines would be 50 keV wide.

ically about 0.7 M�, ±0.3, [39]) through direct radioactive-decay gamma-rays had rested on the
opportunity of a sufficently-nearby event, closer than about 5 Mpc [13]. Those events should arise
once every few years [13]), depending on assumptions about the local galaxy populations.

So far, only one SNIa, SN2003gs at 16 Mpc distance, had been considered a candidate for
INTEGRAL observations, no other SNIa being closer and observable since then. This year’s
SN2011fe in M101/NGC5457 [30] appears a much more promising candidate, although still prob-
ably marginal with a distance of 6.4 Mpc, considering that lines are likely to be significantly broad-
ened. But as nearby SNIa are rare, INTEGRAL observed this event for 4 Ms – one Ms of observa-
tions was scheduled early after the explosion, in order to search for 56Ni which could be produced
on the outer surface and appear early, if SN2011fe would be triggered by a He flash on a white
dwarf’s surface [38]. Then, a composite of 2+1 Ms were scheduled towards the expected maxi-
mum gamma-ray brightness, where one could hope for a line detection and possibly discriminate
among candidate models [36] (see Fig. 3). Note that after the maximum, the SN is transparent
to gamma-rays and explosion differences can be less constrained, as occultation differences vanish
and only the total 56Ni mass determines the gamma-ray brightness. Analysis is currently underway,
but first analyses do not show any of the candidate lines from the 56Ni decay chain [14].

3. Diffuse Radioactivity from 26Al and 60Fe

Massive-star interiors and supernovae are candidate sources of long-lived radioactive iso-
topes 26Al (τ ∼ 1.04 My) and 60Fe (τ ∼ 3.8 My) [42]. Both isotopes have been measured with
SPI/INTEGRAL from the Galaxy at large [5, 47, 46] (Fig. 1), and 26Al is bright enough to also be
seen from localized regions along the Galactic plane hosting many massive stars, such as Cygnus
[24]. Nevertheless, the Cygnus region observations provide a key constraint on wind-ejected 26Al
[24, 25].
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Due to favorable location above the plane of the Galaxy, 26Al emission from the nearby
(' 120 pc) Scorpius-Centaurus association could be discriminated, as discussed in [7]: Stellar
subgroups of different ages would result from a star forming region within a giant molecular cloud
if the environmental effects of massive-star action of a first generation of stars (specifically shocks
from winds and supernovae) would interact with nearby dense interstellar medium, in a scenario
of propagating or triggered star formation. Then later-generation ejecta would find the ISM pre-
shaped by previous stellar generations. Such a scenario was proposed based on the different sub-
groups of the Scorpius-Centaurus Association [2, 32] and the numerous stellar groups surrounding
it [8]. Indications of recent star formation have been found in the L1688 cloud as part of the ρ Oph
molecular cloud, and may have been triggered by the winds and supernovae causing the 26Al we
observe. The young ρ Oph stars then could be interpreted as the latest signs of propagating star
formation originally initiated from the oldest Sco-Cen subgroup in Upper Centaurus Lupus [48].
Many proposed scenarios of triggered star formation are only based on relatively weak evidence,
such as the presence of Young Stellar Objects (YSOs) near shocks caused by massive stars. Posi-
tional evidence alone is not unequivocally considered to prove a triggered star formation scenario.
Much more reliable conclusions can be drawn if the ages of the young stellar populations can be
determined and compared to the moment in time at which an external shock from another star for-
mation site arrived. Agreement of these timings would add convincing evidence for the triggered
star formation scenario.

60Fe is only marginally seen from the Galaxy as a whole, its brightness being only 1/7 of
that of 26Al [47, 46]. In steady state, this brightness ratio constrains massive-star interiors globally,
as those same sources produce each of these isotopes in different inner regions and at different
times of stellar evolution – yields from models for those object types should come out consistent
for all their nucleosynthesis products [6]. Particularly interesting would be the 60Fe/26Al ratio for
source populations of specific ages, as the ratio varies significantly due to wind-released 26Al before
any core-collapse supernova would eject 60Fe and more 26Al [45]. 60Fe is exclusively released in
supernovae, although predominantly produced in the late shell-burning phase before the collapse of
the core. Only the Cygnus region appears within INTEGRAL’s sensitivity range for this, however
[25].

Along the inner Galaxy, the uniquely-high spectral resolution of SPI allows an interesting ap-
plication: Kinematic shift of the 26Al line from the Doppler effect and due to large-scale rotation
of sources about the center of the Galaxy has been observed [4]. The velocity resolution obtain-
able from 26Al gamma-rays now reaches 100 km s−1, which is astrophysical significant for tracing
Galactic gas streams, or potentially constraining turbulence within supernova-blown cavities of the
interstellar medium. In the inner Galaxy, 26Al measurements (Fig. 4) record higher velocities at
large scale than was derived from CO measurements for cold, molecular gas. This appears surpris-
ing, but massive star clusters along the bar of our Galaxy could plausibly lead to such kinematic
behavior (Kretschmer et al., in preparation).

4. Summary and Prospects

Observing ejection of freshly-produced radioactive isotopes still remains the major target of
INTEGRAL, should the opportunity arise of a sufficiently nearby supernova or nova. The gamma-
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Figure 4: The centroid of the 26Al line appears systematically Doppler-shifted along the inner Galaxy, as
plausible from large-scale Galactic rotation. Note that data points as shown are not independent, but chosen
to include sufficient 26Al signal and to maximize the longitudinal signature of 26Al line shifts (Figure from
[50]1).

ray lines expected from current nucleosynthesis have been detected with INTEGRAL. For 26Al,
now also studies of nucleosynthesis in identified massive-star groups (with therefore known source
numbers, distances, and ages) became possible with INTEGRAL. 60Fe has first been measured by
INTEGRAL with astrophysically-significant precision. 44Ti has now been seen from two core-
collapse supernovae, and constrains nuclear yields and non-sphericities in inner regions of such
supernovae. INTEGRAL so far did not have a chance to demonstrate the potential of gamma-
ray measurements of supernova-powering 56Ni decay, due to paucity of sufficiently-nearby events
(' 5 Mpc for SNIa). Similarly, nova nucleosynthesis could not be constrained through 22Na nor
7Be, though positron annihilation provides some clue [17, 20]. Meanwhile, the deepening of expo-
sure resulting from the extended mission now gradually lifts details beyond thresholds of scientific
significance. Astrophysical conclusions are more precise than global galactic averages, and SPI’s
imaging capability is essential here. Continued deepening of exposure with INTEGRAL in its late
mission years in such key regions will help to consolidate what could be learned from INTEGRAL
on cosmic nucleosynthesis.
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