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The cross section of the nuclear reactions involved in stellar nucleosynthesis are often very diffi-
cult to measure directly at stellar energies because of their very low value and/or the radiaoctive
nature of the concerned isotopes, often far from the valley of stability. Moreover, this situation
can be complicated by the existence of very low energy resonances and/or subthreshold reso-
nances. Indirect methods such as transfer reactions and the ANC method offer the possibility to
overcome these difficulties. In this context, the transfer reaction method will be presented and
then illustrated through the study of two cases, a resonant reaction case, 12C(α ,γ)16O and a direct
(n,γ) capture case, 60Fe(n,γ)61Fe
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1. Introduction

One of the main characteristics of the nuclear reactions involved in stellar nucleosynthesis
is the low energy where they occur (between few keV to few MeV) implying very small cross
sections, ranging from hundreds of pico-barn to fbarn especially when it involves charged particles.
These features make the direct measurements at stellar energies very difficult and often impossible.
Hence, direct measurements are usually performed at higher energies and then extrapolated down to
stellar energies using Rmatrix calculations. However, these extrapolations are not always free from
problems. In some cases, they can even lead to wrong results because they don’t take into account
the contributions of a possible unseen low energy resonances such in 22Ne(α ,n)25Mg [3] reaction
or a possible sub-threshold resonances like in 13C(α ,n)16O [4] and 12C(α ,γ)16O [5] reactions. The
effect of these resonances may change the extrapolated S-factor at stellar energies by a huge factor,
it can be even order of magnitudes. The other problem concerning the direct measurements is
related to the radioactive nature of the nuclei involved in reactions occurring in explosive sites
(novae, supernovae, X-Ray bursts,...) and those involved in (n,γ) radiative captures in r-process and
sometimes in s-process like 60Fe(n,γ) reactions. The intensities of the radioactive beams are often
low, rarely exceeding 105 to 106 pps and for nuclei with relatively long half life, making targets
with enough atoms per cm2 is very difficult. Hence the direct measurements of such reactions is
very difficult and challenging and in case of r-process reactions it is currently impossible. To bypass
these difficulties (sub-threshold resonances, radioactive nuclei,...) indirect methods such as transfer
reactions are good alternatives. In these methods, the experiments are usually performed at high
energies implying higher cross sections and the conditions are relatively less rigorous than in direct
measurements (target thickness and composition, high background, ...) . However, these methods
are model dependent. They depend, as we will see in section 2, on the uncertainties relative to
the different parameters used in the model. Hence, there are two sources of errors, experimental
and theoretical. But the global uncertainty on the measured cross section directly or indirectly can
be reduced by combining different approaches and methods. There are different indirect methods
that were used to overcome the problems mentioned above: the transfer reactions, the coulomb
dissociation method, the ANC method, the elastic and inelastic scattering and finally the Trojan
Horse method. Here, I will focus on the transfer reaction method and I will show the possible type
of reactions one can study using this method: the resonant one and the non resonant direct radiative
capture reaction.

1.1 Resonant reactions

A resonant reaction, as shown in Fig.1, is a two step process where the entrance channel A+x
forms first an excited state Ex in the compound nucleus C at the incident energy Ecm and then the
formed resonant state decays either to the exit channel (B+y) or to its ground state by emitting
γ-rays. The resonant process can occur only at energies where the incident energy in cm is very
close to the resonance energy which is given by: Er=Ex-Q where Q is the Q-value of the reaction.

Hence, in case of a narrow resonance (Γtot� Er), the reaction rate is given by:

< σv >= (
2π

µkT
)3/2(ωγ)Rexp(−ER

kT
) (1.1)
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Figure 1: Resonant reaction scheme

where the resonance strength is given by:

(ωγ)R =
2JC +1

(2JA +1)(2Jx +1)
ΓxΓy

Γtot
(1.2)

The important parameters to describe the resonant mechanism and calculate the reaction rate
are the resonance energy Er, the partial width Γx which expresses the probability to form the com-
pound nucleus C* in the excited state Ex, the partial width Γy which expresses the probability of
decay to the exit channel B+y or C+γ and the spin-parity of the nuclei and states involved.

Once these different parameters are known, one can easily calculate the reaction rate using
formulae (1.1). The exciatation energy and the partial decay widths of the states of interest can be
obtained from transfer reactions experiments.

Let’s assume a compound nucleus C in an excited state Er (see fig2) a pure core-particle
configuration |A⊗x>.

Figure 2:
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Thanks to the time reverse invariance of the electro-magnetic and nuclear processes, the partial
width of the formation of the compound nucleus in the excited state Er through A+x is identical to
the partial width of the decay of the excited state C* into A+x. The decay partial width of C into
A+x is given by the following formulae:

Γs.p
x =

h̄2

µ
RPl(E,R)|ϕ(R)|2 (1.3)

with ∫ ∞

0
ϕ(R)|2R2dR = 1 (1.4)

Where R is is the channel radius, Pl is the penetrability factor, E is the energy of the free par-
ticle x and ϕ(R) is the radial wave function of the particle x. So for a state with a pure core particle
configuration, the single particle Γs.p

x can be calculated. But in most cases, they are not pure core-
particle configurations, they are a mixture of configurations which decay or formation partial width
Γx is given by the product of the single particle Γsp

x and the spectroscopic factor S: Γx=Γsp
x ×C2S

where C is the isospin Clebsch-Grodon coefficient. The spectroscopic factor S expresses the over-
lap probability between the antisymmetrized wave functions of the entrance channel A+x and the
final state B ; S=<A+x|B>. Hence, by determining the spectroscopic factor S via transfer reactions,
one can then calculate Γx or the reduced width as we will see in section 2.

1.2 Non-resonant reactions: the (n,γ) case

For reactions where direct capture mechanism can sometime plays an important role such as
in 48Ca(n,γ)49Ca reaction [6], the capture occurs on bound states of the final nucleus in a one step
process (see fig 3). The captures are possible at all neutron energies and the cross section varies
smoothly with the neutron energy.

Figure 3: Direct capture reaction scheme
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The cross section of the direct process is described by the following single matrix element [6]:

σ(n,γ) = ∑
i

C2
i Si|

∫ ∞

r=0
φ f θemφid−→r |2 (1.5)

Where θem is the electro-magnetic multipole transition operator, φi and φ f are the scattering
and the bound state wave functions in the entrance and exit channels, respectively. The wave
functions are Schrödinger’s equation solutions with the potential V obtained by double folding and
S is the spectroscopic factor of the final state. The double folding potential V is given by:

V = λ
∫ ∫

ρn(−→r n)ρA(−→r A)ve f f (En,ρn,ρA, |
−→R −−→r |)d−→r nd−→r A (1.6)

where ve f f is the nucleon-nucleon interaction , ρn is the neutron density, ρA is the nucleus
target density and λ is a factor adjusted to reproduce the elastic scattering data for the entrance
channel and the neutron separation energy for the exit channel. The latter depends on the location
of the excited states in the final nucleus. These spectroscopic information on the low energy bound
states (Ex, l, C2S) are accessible via (d,p) transfer reactions in case of (n,γ) reaction, for example.

2. Transfer Reaction Method

Let’s assume that we want to study a resonant reaction x+A→C*→B+y and measure the
partial decay width Γx of the state of interest in C* into the entrance channel A+x. To do so,
we populate the excited states of C by transfering the small particle x (see figure 4) which can be a
nucleon or a cluster of nucleons from the nucleus X to the nucleus A.

Figure 4: Sketch of a transfer reaction before (left) and after reaction (right).

This will feed the valence states of the final nucleus C, hopefully with no perturbation of the
core, that is why it is called one step direct transfer reaction. The other part of the projectile b
will continue its movement and will be detected. By measuring the emitted angle and energy of
the particle b, one can deduce the excited state that was populated in C from kinematics and by
comparing the shape of the measured angular distributions to those predicted by the distorted Born
approximation theory (DWBA), one can deduce the angular orbital momentum l of the populated
state. The theoretical direct transfer cross section is calculated using the DWBA formalism and it
is given by the following matrix element:

(
dσ
dΩ

)DWBA ∝ |< χ f IC
xA(rxA)|V |IX

bx(rbx)χi > |2 (2.1)
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Where χi, f are the distorted wave functions of the initial and the final state, V is the transition
transfer operator, IC

xA(rxA) is the overlap function of the final bound state C formed by A+x and
IX

bx(rbx) is the overlap function of the bound state X formed by b+x.
The radial part of these last functions is given by the following product:

Iα
βγ(rβγ) = S1/2ϕβγ(rβγ) (2.2)

Where S is the spectroscopic factor, ϕβγ (r) is the radial wave function of the bound state C or
X with α being the final bound state C or the bound state X, β being the transferred particle x and
γ being A or b respectively.

The spectroscopic factor of the different populated states in C can be extracted from the ratio
of the measured differential cross section to the one calculated by DWBA:

(
dσ
dΩ

)exp = S1S2(
dσ
dΩ

)DW (2.3)

As one can see in formulae 2.3, there are two spectroscopic factors, S1 for the final bound state
of interest in the exit channel and S2 for the bound state in the entrance channel. Hence, knowing
one of the spectroscopic factors it is possible to extract the other one. Once the spectroscopic
factor of the state of interest is extracted, one can then determine the reduced decay width using
the following formula [7]:

γ2
x =

h̄2R
2µ

Sx|ϕ(R)|2 (2.4)

where ϕ(R) is the radial wave function of the bound state C formed by A+x, calculated at a
channel radius R where ϕ(R) has its asymptotic behavior. Then the calculation of Γx is possible
using:

Γx = 2Plγ2
x (2.5)

One can also extract the ANC [8] using the expression:

C̃2 = Sα
R2ϕ2(R)
W̃ 2(R)

(2.6)

where W is the Whittaker function.
To calculate the transfer DWBA differential cross sections, some inputs are needed and they

have to be carefully determined. These inputs are the optical potential parameters describing the
entrance channel, those describing the exit channel and finally the potential well parameters de-
scribing the interaction of the transferred particle with the core in the final nucleus. For the optical
potential parameters of the entrance and exit channel, elastic scattering measurements are needed.
When elastic measurements are not available, one can use the potentials from measurements per-
formed in the mass region close to the nuclei of interest and at close incident energies or the global
potential formulae from Perey and Perey [9], Daehnick et al. [10],...etc. Concerning the well pa-
rameters, different realistic sets of potentials can be used and the selected ones are those giving the
optimal fit of the measured angular distributions. Note that the accuracy on the extraction of the
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spectroscopic factor can hardly be better than 30 %, so this method can not be used for reactions
where an uncertainty better than 10% is needed.

The calculation of the transfer reaction cross sections with DWBA formalism involves the
evaluation of a six dimensional integral [11]. For light-ion reactions such as (d,p) reaction, the di-
rect reaction causing the transition is often approximated by a zero-range potential. This is partially
justified by the small size of the light nucleus (the deuteron in the example cited above) in compari-
son with the size of the other nuclei and the S wave state of the projectile. With this assumption, the
DWBA integrals reduce to three-dimensional integrals that make the calculation simpler as only the
form factor describing the interaction of the transferred particle with the core in the final nucleus
has to be considered. However, this zero range assumption is no more valid if the projectile is not
in an S wave internal state (L=0) and in case of reactions where the transferred particle is a cluster
of more than 2 nucleons such as the α-particle. Here, the relatively large size of the nucleus (6Li or
7Li in case of α transfer) from which the cluster is transferred, together with the small wavelength
associated with the relative motion, makes this assumption very poor and sometimes wrong. For
these cases, finite range DWBA calculations have to be performed with a six dimensional integral
which includes both form factors describing the interaction of the transferred particle with the core
in the initial nucleus and in the final nucleus respectively.

When using the transfer method, one has to be aware that other reaction mechanisms such as
the compound nucleus mechanism or the multi-step transfer reaction mechanism [11] can occur.
The contribution of these mechanisms can be evaluated by using Hauser Feschbach calculations and
coupled channel calculations respectively [12]. Note that usually the direct transfer mechanism is
favored at small centre-of-mass angles (θc.m650◦), so one has to perform the transfer experiments
at detection angles and incident energies where the compound nucleus component is reduced.

An illustration of the method will be given in the following through the study of two reaction
cases, the resonant reaction 12C(α ,γ)16O which was studied via 12C(7Li,t)16O and the direct capture
reaction 60Fe(n,γ)61Fe which was studied via d(60Fe,p)61Fe.

3. Application of the method to a resonant case: 12C(α ,γ)16O

12C(α,γ)16O reaction plays an important role in helium burning in massive stars and their
evolution [1, 2]. However, the low-energy cross section of 12C(α,γ)16O remains highly uncertain
despite the various experiments performed during the last four decades. 12C(α ,γ)16O reaction
occurs at temperature of about 0.2 GK that corresponds to a Gamow peak of about 300 keV. At
this energy, the expected cross section is extremely low, about 10−8 nbarn, impossible to measure
directly. Direct measurements were performed down to 900 keV in the center-of-mass system
which is far from the energy of interest. The extrapolation of the measured cross sections to stellar
energies (E=300 keV) is made difficult by the presence of the two sub-threshold states at 6.92
(2+) and 7.12 (1−) MeV of 16O. The high energy tails of these two sub-threshold resonances can
increase the cross section but their effect is badly known because their reduced alpha width and so
their corresponding alpha spectroscopic factors Sα are spread over a large range of values [5].

A recent measurement of the Sα of the two subthreshold states at 7.12 MeV and 6.92 MeV of
16O was performed through the transfer reaction 12C(7Li,t)16O at two incident energies, 28 and 34
MeV respectively, at the Tandem-Alto facility of Orsay. The tritons were analyzed with an Enge

7



P
o
S
(
E
N
A
S
 
6
)
0
3
4

Transfer reactions F. Hammache

Split-pole magnetic spectrometer and detected at the focal plane by a 50 cm long position-sensitive
gas chamber and a ∆E proportional gas-counter. The tritons were detected at angles ranging from
0 to 31 degrees corresponding to angles up to 43 degrees in the center of mass frame.
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Figure 5: Triton spectrum, in the excitation energy region from 6 to 11 MeV, obtained at 11.5◦ (lab) with
the 34 MeV 7Li beam on 12C target. The excitation energy (MeV) of 16O levels are indicated

Angular distribution measurements were performed at two incident energies, 28 and 34 MeV,
in order to check the direct character of the transfer mechanism. Elastic scattering measurements
were also performed at 28 MeV incident energy in order to get realistic optical potential parameters
for the entrance channel. Typical excitation energy spectrum of 16O measured at 11◦ is displayed
in figure 5. The overall energy resolution obtained was about 50 keV.

The experimental differential cross section measured for the 6.05, 6.13, 6.92 and 7.12 popu-
lated states of 16O at the two incident energies of 34 MeV and 28 MeV are displayed in figures
6 left and right, respectively, together with the finite range DWBA calculations and the Hauser
Feshbach (HF) calculations, which were performed to evalutate the compound nuclear reaction
contribution. The HF calculations were performed by considering the triton from (7Li,t) as coming
from evaporation of the compound nucleus 19F and they were normalized by a factor extracted from
the ratio of the absolute values of the compound nucleus cross sections calculated for the observed
non-natural parity 1− (8.87 MeV) state to those measured in this experiment [15].

The finite-range DWBA calculations were performed using Fresco code [13]. Many combina-
tions of entrance and exit optical potentials parameters were investigated. Concerning the entrance
channel, several 7Li+12C optical potentials extracted from elastic measurements were tested. For
the exit triton channel, optical potential parameters from Garrett et al [14] were selected. The de-
pendence of the calculation to the 12C-α interaction potential was also investigated. A spreading of
about 30% on Sα was found when the well geometry parameters were varied. Finally, the selected
optical and interaction parameters are those giving the best fit, using the maximum likelihood func-
tion set at 3σ level, for the studied states (6.05, 6.13, 6.92, 7.12 MeV) at both incident energies.
A good agreement between the DWBA calculations and the measured differential cross sections
of the different excited states of 16O can be observed at the two bombarding energies which gives
strong evidence of the direct nature of (7Li,t) transfer reaction.

From a χ2 minimization of the DWBA differential cross sections to the measured ones, Sα

mean values of 0.15±0.05 and 0.07±0.03 are deduced for the states of interest at 6.92 MeV and
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Figure 6: Experimental differential cross sections of the 12C(7Li,t)16O reaction obtained at 34 and 28 MeV
for the 6.05, 6.13, 6.92 and 7.12 MeV states, compared with FRDWBA calculations (red curve) normalized
to the data, Hauser-Feshbach (HF) calculations (green) and the sum HF+FRDWBA (Blue).

7.12 MeV of 16O respectively. The α-reduced width γ2
α of 26.70±10.30 keV and 7.8±2.7 keV

for the 6.92 MeV and 7.12 states respectively were then obtained at the radius of 6.5 fm using
equation 2.4. They were then included in an R-matrix calculation of the E1 and E2 component of
12C(α ,γ)16O using Pierre Descouvemont R-matrix code.

From the E2 and E1 R-matrix fits [16, 15] of both 12C(α ,γ)16O astrophysical S-factors ob-
tained by direct measurements at high energies and the phase shifts data from elastic scattering
12C(α ,α)12C measurements, an E2-Sfactor of 50±19 keV-b and an E1-Sfactor of 100±28 keV-b
were obtained at the energy of interest Ecm∼300 keV. If we take for the cascade S-factor the value
25+16

−15 keV-b from [17], we obtain a total S-factor, S(300 keV)=175±63 keV-b.

4. Application of the method to a non-resonant case: 60Fe(n,γ)61Fe

The observation of 60Fe characteristic gamma-ray lines by RHESSI and INTEGRAL space-
crafts [18, 19] as well as its observation in deep ocean crust [20] and pre-solar grains [21] have
underlined the need for accurate nuclear information concerning the stellar nucleosynthesis of this
nuclei. The yield of 60Fe, which is believed to be primarily produced in core-collapse supernovae
[22, 23] , is very uncertain due to the large uncertainties surrounding the cross sections of the
production and destruction reactions 59Fe(n,γ)60Fe and 60Fe(n,γ)61Fe respectively. To evaluate, the
cross sections of these two reactions, Hauser Feschbach calculations were used to estimate the reso-
nant capture component while the direct component is determined using the equations described in
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section 1.2 and the spectroscopic informations (Ex, l, C2S) of 60Fe and 61Fe coming from measure-
ments and shell model calculations, respectively. Our group decided to improve, via the transfer
reaction d(60Fe,pγ)61Fe, the spectroscopy of the poorly known 61Fe needed to evaluate the direct
component of 60Fe(n,γ)61Fe cross section. Indeed, this component is likely not to be negligible in
comparison to the resonant one because of the relatively small Sn value (Sn= 5.58 MeV), which
may lead to a low enough level density in contrary to a large Sn value that, in turn, leads to a very
high level density and hence to a dominant resonant component.

The (d,pγ) experiment was performed at LISE/GANIL using MUST2/EXOGAM experimental
setup (see fig.7) [24] and an 60Fe secondary beam of 105 pps produced by fragmentation of a
64Ni28+ primary beam at 64.5 A MeV on a 9Be target and slowed down to the energy of 27 A MeV
using a 9Be degrader.

The obtained 61Fe excitation energy spectrum, using the MUST2 Silicon telescopes, is dis-
played in figure 8. Two peaks are obseved below the neutron threshold. The green spectrum is
the contribution coming from the carbon background that was evaluated using a 12C target and the
blue curve is the contribution from the deuteron breakup, evaluated from a phase space monte-carlo
calculation with an arbitrary normalization. The huge bump above the neutron threshold is due to
the deuteron breakup events and to the population of the resonant states of 61Fe above the neutron
threshold. However, the detailed study of this upper part of the excitation energy spectrum needs
first a good evaluation and calculation of the deuteron breakup contribution not yet done.

Figure 7: Experimental setup used for d(60Fe,pγ)61Fe reaction.

The width of the two peaks observed below the neutron threshold was found to be 1.5 MeV
which is much larger than the expected energy resolution of about 800 keV. This means that more
than one state is present in these peaks. Therefore, the γ-ray measurements helped to discriminate
the different populated states in the first peak.

From the comparison of the excitation energy spectrum with and without γ-ray coincidence
and from the observation of the gamma-ray spectra corresponding to different energy ranges in the
first peak, three states were identified: the known 207 keV and the isomeric state at 861 keV and a
new state, which was not observed previously, at 1401 keV.
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Figure 8: 61Fe measured excitation energy spectrum.

A deconvolution of the three states identified in the first peak was performed in order to evalu-
ate the yield of each populated state and extract the differential cross sections. The very preliminary
measured differential cross sections for the three states at 201, 861 and 1401 keV of 61Fe are dis-
played in figure 9 together with the zero-range DWBA calculations. For these calculations, the
adiabatic approximation which takes into account the deuteron breakup [25] was used to describe
the entrance channel.

The angular momentums of the 207 and 861 keV states are already known, l=3 (f5/2) and l=4
(g9/2) respectively. From the χ2 minimization of the calculations to the data, spectroscopic factors
of 0.50±0.04 and 0.38±0.11 were deduced for the f5/2 and g9/2 states, respectively.

Concerning the new state at 1401 keV of 61Fe, its angular momentum was not known. Various
calculations with different orbital momenta and different combinations were performed. Those
giving the best χ2 fit (figure 10) are the p3/2 in blue and the f5/2 in red. The spectroscopic factors
obtained are respectively, 0.71±0.21 (p3/2) and 0.32±0.09 (f5/2), respectively.

The analysis of the experiment is still in progress. Once this is over and all results confirmed
and compared to shell model calculations, calculations of the direct capture cross section using
equation 1.3 with the TEDCA code [26] will be performed as well as the direct capture reaction
rate.

5. Conclusions

In both resonant and non resonant capture, the spectroscopic properties (Jπ , Er,C2S (Γ)) of the
involved states are needed to compute the reaction rate. We have seen that transfer reaction is a good
alternative method that can be used to extract spectrosopic factors, partial widths, orbital momenta
and resonance energies involved in resonant and non-resonant reaction rates. The sensitivity studies
of the spectroscopic factors to the potential and well parameters is necessary to evaluate the error
bars and DWBA analysis of the data is improved when elastic scattering measurements in the
entrance and exit channel can be performed. In this method, one should also check the dominant
character of the one step direct transfer which is described by the DWBA formalism in comparison
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Figure 9: Preliminary experimental and theoretical differential cross sections for the 207, 861 and 1401 keV
states of 61Fe

to other reaction mechanisms, such as the compound nucleus or the multi-step effect, which are
evaluated using Hauser-Feschbach and coupled channel calculations, respectively.
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