Resonances in 19Ne with relevance to the astrophysically important 18F(p,α)15O reaction

David Mountford*, A.St J. Murphy, T. Davinson, P.J. Woods
University of Edinburgh
E-mail: d.j.mountford@sms.ed.ac.uk

N.L. Achouri
Laboratoire de Physique Corpusculaire ENSICAEN

C. Angulo
Tractebel Engineering

J.R. Brown, A.M. Laird
University of York

F. de Oliveira Santos, O. Kamalou, P. Ujic
Grand Accélérateur National d’Ions Lourds (GANIL)

N. de Séréville
Institut de Physique Nucléaire UMR 8608

P. Descouvemont
Université Libre de Bruxelles (ULB)

S.T. Pittman
University of Tennessee

The main source of gamma ray emission from novae below 511 keV is likely to be associated with the β^+ decay of 18F. The main uncertainty in the abundance of this nucleus comes from the 18F(p,α)15O reaction. In 2006, through microscopic techniques, two previously unseen energy levels in the compound 19Ne nucleus, at 6 and 7.9 MeV were proposed by Dufour and Descouvemont. In light of this there have been two published attempts in the search for the higher of these states, by Murphy et al. and Dalouzy et al.. The aim of this work is to address the contradiction between these works and come to a conclusion as to the possible existence of this state. An experiment has taken place that utilised a 4 MeV/u 18F beam, degraded to \sim1.9 MeV/u, incident upon a thick CH$_2$ target. The data has been analysed within the R-matrix formalism and preliminary results are presented here.

VI European Summer School on Experimental Nuclear Astrophysics
September 18-27, 2011
Hotel S.Tecla Palace, Actireale, Italy

*Speaker.
Resonances in 19Ne with relevance to the astrophysically important 18F(p,α)15O reaction

David Mountford

Figure 1: The predicted enhancement of the astrophysical S-factor of the 18F(p,α)15O reaction below 0.25 MeV due to the predicted two broad 1/2$^+$ states.

1. 18F and Novae

Novae originate in binary stellar systems where hydrogen rich matter is accreted from a main sequence star to the surface of a white dwarf. Due to the electron degenerate environment, the bottom layer is compressed such that it heats rapidly to trigger hydrogen burning and eventually a thermonuclear runaway. This lifts the degeneracy and the outer layers are blown off in a nova explosion.

The high temperatures in the explosion trigger the hot CNO cycle which produces and destroys 18F through a series of hydrogen burning reactions. The destruction of this nucleus through the 18F(p,α)15O reaction is the focus of this work.

There is significant interest in the abundance of 18F present in the nova explosion due to its lifetime of approximately 110 minutes. This is slow enough so that the nova envelope has become transparent to the associated γ-rays while not exhausting the decay in the meantime. Significant efforts are being made to observe these γ-rays, such as the European Space Agency’s INTEGRAL satellite, although as yet they have not been observed.

The nuclear uncertainty in the 18F(p,α)15O reaction was the subject of a microscopic study of the 19Ne energy spectrum by Dufour and Descouvemont in 2007 [1]. This work suggested the existence of two broad states; one just below the 18F+p threshold and one \sim1.5 MeV above. The lower state could significantly enhance the rate of the 18F(p,α)15O reaction as shown by the astrophysical S-factor in Figure 1.
Resonances in 19Ne with relevance to the astrophysically important 18F(p,α)15O reaction David Mountford

2. Previous Work and the Experiment

A comprehensive review of observed states in 19Ne has been carried out by Nesaraja et al. [4] and the reader is directed there for a summary. However, two previous works have focussed on the observation of the resonant state at 1.5 MeV. Murphy et al. [2] carried out an experiment to study the direct reaction at a center of mass energy of \sim1.6 MeV, seeing no candidates exhibiting the properties predicted. On the contrary, Dalouzy et al. [3] observed the broad state with $J^\pi = 1/2^+$ via the study of inelastic 19Ne scattering.

To address this inconsistency, a direct measurement was carried out at the SPIRAL facility at GANIL with the experimental setup shown in Figure 2. The facility provided a 4 MeV/u 18F beam which was degraded by a 5.5(3) μm thick gold foil to an energy of \sim2 MeV/u, corresponding to 1.9 MeV in the center of mass.

The degraded 18F beam was then delivered onto a 55(4) μm thick polyethylene target. The thickness of the target was chosen in order to stop the impinging beam. Protons and alpha particles from the resulting 18F(p,p)18F and 18F(p,α)15O reactions were detected in a 1 mm thick double sided silicon strip detector.

Employing an energy vs time of flight plot allowed proton, alpha particle and carbon ion events (from the 18F(12C,12C)18F reaction) to be well discriminated.

3. Preliminary Results

Knowing the detected energy and angle for each proton or alpha particle event allows a projection of excitation functions in the center of mass frame for the 18F(p,p)18F and 18F(p,α)15O reactions, as shown in Figure 3.

Figure 2: Experimental setup for the direct measurement of the 18F(p,α)15O reaction at GANIL in 2010.
Resonances in 19Ne with relevance to the astrophysically important 18F(p,α)15O reaction

David Mountford

Table 1: Tabulation of the resonance parameters extracted from the present data when all resonances, apart from resonance A, are allowed to vary within the minimisation procedure.

<table>
<thead>
<tr>
<th>Resonance</th>
<th>E_{CM} (MeV)</th>
<th>J^π</th>
<th>Γ_p (keV)</th>
<th>Γ_α (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.665</td>
<td>$\frac{3}{2}^+$</td>
<td>15.2</td>
<td>23.8</td>
</tr>
<tr>
<td>B</td>
<td>0.759(20)</td>
<td>$\frac{3}{2}^+$</td>
<td>1.6(5)</td>
<td>2.4(6)</td>
</tr>
<tr>
<td>C</td>
<td>1.096(11)</td>
<td>$\frac{3}{2}^+$</td>
<td>3(1)</td>
<td>54(12)</td>
</tr>
<tr>
<td>D</td>
<td>1.160(34)</td>
<td>$\frac{3}{2}^+$</td>
<td>2.3(6)</td>
<td>1.9(6)</td>
</tr>
<tr>
<td>E</td>
<td>1.219(22)</td>
<td>$\frac{3}{2}^-$</td>
<td>21(3)</td>
<td>0.1(1)</td>
</tr>
<tr>
<td>F</td>
<td>1.335(6)</td>
<td>$\frac{3}{2}^+$</td>
<td>65(8)</td>
<td>26(4)</td>
</tr>
<tr>
<td>G</td>
<td>1.455(38)</td>
<td>$\frac{1}{2}^+$</td>
<td>55(12)</td>
<td>347(92)</td>
</tr>
<tr>
<td>H</td>
<td>1.571(13)</td>
<td>$\frac{3}{2}^+$</td>
<td>1.7(4)</td>
<td>12(3)</td>
</tr>
</tbody>
</table>

There are 7 clear structures identified in the spectra and each of these states are reported by at least one of Murphy et al., Dalouzy et al. and Nesaraja et al., [2, 3, 4]. Table 1 summarizes the states identified through the experiment discussed here. The most well-known of these is the 0.655 MeV $J^\pi = \frac{3}{2}^+$ resonance (resonance A in table 1), hence, this resonance was used for normalization and the associated parameters are taken as reported by [4].

In addition to resonant structures, the presence of carbon in the target could give a possible contribution from fusion-evaporation reactions. To investigate this, data were taken with the CH$_2$ target replaced with a thick natural carbon target. The resulting yield of both protons and alpha particles was found to be small and insufficient to make a significant contribution to any of the proposed resonant structures.

Given this information, the additional strength underlying the structure in the region of \sim1.3-1.7 MeV is of particular interest. While not accounting for this in some way has a large detrimental effect on the fit in this region, the addition of a broad $1/2^+$ state well-describes the strength.

By using measurements of the resonances labelled as B-F and H in Table 1 (as given by [2, 3, 4]) and by using the predicted paramters of G [1], the R-Matrix formalism was implemented to calculate the cross section over the energy range. Searching for a minimum χ^2 by allowing the parameters of all states (except the constrained state, A) to vary in the calculation, gives the parameters in Table 1.

The structure of particular interest in this work, resonance G is found to best reproduce the data with a tentative assignment of $J^\pi = 1/2^+$. It is found to have significantly different partial widths to the prediction [1], however it is consistent in total strength with the prediction and the previous observation of Dalouzy et al. [3].

4. Conclusion

This work allowed to obtain new data in the direct study of the astrophysically important 18F(p,α)15O reaction, and to produce the excitation functions for both 18F(p,p)18F and 18F(p,α)15O reactions. Using the R-Matrix formalism, a candidate for a predicted $1/2^+$ state has been found which is consistent with the prediction and a previous measurement. The existence of a sub-
Resonances in 10Ne with relevance to the astrophysically important 18F(p,α)15O reaction

David Mountford

Figure 3: Excitation functions of the 18F(p,p)18F and 18F(p,α)15O reactions. The solid black lines show the simultaneous R-Matrix fits to the data. The $1/2^+$ contribution is shown in long dashed and the pale line is the Coulomb contribution to the 18F(p,p)18F reaction.

A threshold partner to this state could significantly enhance 18F destruction in nova explosions, thus reducing the yield of 511 keV γ-rays observed from such events.
Resonances in ^{19}Ne with relevance to the astrophysically important $^{18}\text{F}(p, \alpha)^{15}\text{O}$ reaction

David Mountford

References

