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We plan to measure the spin dependence of proton deuteron breakup at 30 and 49 MeV proton
beam energy where previous measurements are few and limited. The physics objective is to
test the predictive power of the chiral effective field theory in the three nucleon continuum by
measuring analyzing powers and double spin observables with high precision over large areas of
phase space at relevant energies for the theoretical interpretation. The experiment will be done
at a newly installed and commissioned low-β section and interaction point in the COSY ring
utilizing the PAX Multipurpose Detection System that is presently in the design stage.
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1. Introduction

Presently the spin structure of the three nucleon continuum exhibits disparate results when
comparing experimental data to theoretical predictions based on two-nucleon potentials either with
or without three nucleon interactions. The inclusion of three-nucleon forces in the calculations
does not consistently improve the agreement between data and theory [1, 2, 3, 4, 5, 6]. A recent
review on the current status of the research on the nature of three-nucleon forces (3NF) can be
found in [7] considering aspects from both experiment and theory.

The rich kinematical region in proton deuteron breakup reactions at low to intermediate energy
offers a versatile laboratory for the chiral effective field theory (EFT), the modern theory of nuclear
forces in the low-energy regime; see [8, 9] and references therein. In the framework of chiral EFT
nucleon-nucleon potentials have been developed to next-to-next-to-next-to leading order (N3LO)
reproducing two-nucleon observables with high accuracy [10, 11]. Three-nucleon forces (3NF)
have been analyzed up to next-to-next-to-leading order (N2LO) with persistent discrepancies and
inconclusive results as to specifically how the presence of a third nucleon affect the interaction in
few-nucleon systems. In order to remedy this situation both the long-range [12] and short-range
contributions [13] to the 3N forces were derived up to N3LO. Thus the calculations of two-, three-
and four-nucleon forces at this order in the chiral expansion (without explicit ∆(1232) degrees
of freedom) is completed and the implementation into the theoretical calculations for scattering
observables at low to intermediate energy of three nucleon configurations is in progress [14].

Precise measurements of the majority of the spin observables over large areas of phase space
would provide a data base for the characterization of the non-vanishing contributions from the
chiral 3NF appearing at third and fourth order. To this aim we plan an experiment at the COSY
cooler synchrotron and storage ring, measuring proton deuteron breakup reactions at proton beam
energies from 30 to 50 MeV where few previous data exist. This is also an ideal energy range for
testing the predictive power of chiral EFT. In addition the only two low energy constants (LECs)
needed for both N2LO and N3LO, D and E, could be independently determined from a multitude
of scattering spin observables1.

The experiment will be carried out in one of the straight sections in the COSY ring, where a
low β section has been installed for the commissioning of the spin filtering experiment [15] with
the objective of polarizing a stored antiproton beam in situ that is proposed by the PAX Collab-
oration to be done at the AD ring at CERN [16]. The experimental details and the plans for a
PAX Multipurpose Detection System, barrel shaped with layers of silicon double sided strip de-
tectors, are given in [17]. A precursor pd breakup experiment using vertically polarized beam, an
unpolarized deuterium target and the ANKE silicon telescopes is currently being analyzed.

2. Observables and Theoretical Predictions from Chiral EFT

The formalism for polarization in nuclear reactions was worked out in detail by G.G. Ohlsen
in the seventies [18]. The general expression for the double polarized proton deuteron breakup
reaction can be found in [19]. Here is shown in table form the independent observables categorized

1These LECs are currently deduced from the 3H binding energy and the nd doublet scattering length, the properties
of light nuclei, the triton β decay or the 4He binding energy.
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by the spin alignment directions of the proton beam and the deuterium target required to access the
specified observable, see Table [1].

2.1 Grid studies

In order to facilitate a theoretical investigation for the optimization of the measurements of all
the spin observables, grids were created based on chiral EFT at N2LO, one for each observable2,
with the theoretical predictions as functions of the five kinematically independent parameters, p,
θp, θq, φp and φq; where p and q are the jacobi momenta in the center-of-mass. The grids are
thus large matrices spanning the available phase space. Using the sampling method, thoroughly
explained in [20] and applied in [3, 21], enables a systematic study of any three-particle final state.
For the current study the sampled events are isotropically generated in a phase space simulation of
pd breakup. Then multidimensional linear interpolation is used to retrieve the theoretical prediction
for each event. In the following figures a few examples of the application are given, all for a proton
beam energy of 49 MeV. Some aspects are displayed of the tensor analyzing power Axz in Figs. 1 −
4, the tensor-vector correlation coefficient Cyy,y in Figs. 5 − 7 and the vector-vector spin correlation
Cx,x in Figs. 8 and 9.

The foreseen final result for the planned pd breakup experiment is a compilation of the data
from all measured observables leading to an overall evaluation of the degree of agreement between
experiment and theory.

3. Summary

Measurements of proton deuteron breakup at energies between 30 and 49 MeV are planned
at the COSY accelerator and storage ring, motivated by the development of the chiral EFT for
describing low-energy phenomena in hadron physics. Using a new experimental approach the aim
is to obtain conclusive constraints for the chiral 3NFs, and to form a data base of analyzing powers
and spin correlation coefficients at low energy thus contributing to a fuller understanding of few-
nucleon interactions.
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PolObs pU dU pU dS pU dA pA dU pA dS pA dA pU dAU pU dAS

Ay(p) X X X X X
Az(p) X X X pA dAU pA dAS
Ay(d) X X X X X X
Az(d) X X X X
Axx −Ayy X X X X X X
Azz X X X X X X X X
Axz X X
Cx,x +Cy,y X X
Cx,x −Cy,y X X X X
Cy,x −Cx,y X X
Cx,z X X pA dAU pA dAS
Cz,x X X X
Cz,z X pA dAU pA dAS
Cxx,y −Cyy,y X X X X
Cxz,x +Cyz,y X X
Czz,z X X X pA dAU pA dAS
Czz,y X X X X X
Cxy,x X X X X
Cxz,y X X
Cyz,x X X
Cxy,z X X pA dAU pA dAS
Cyz,z pA dAU pA dAS

Table 1: Tabulated here are the 7 analyzing powers and 15 spin correlation observables possible in proton
deuteron breakup showing the required polarization alignment directions of beam and target and some com-
binations thereof. For p (proton) and d (deuteron); U means alignment up (vertical), S is sideways (parallell
to the x-axis) and A is along the beam direction (longitudinal). The last two columns refer to the situation
when the deuteron target spin alignment axis is at 45 degrees which can be accomplished by running current
through two target guide field coils simultaneously. With the longitudinal (±z) and vertical (±y) guide field
coils on, denoted dAU, and switched in ± polarity, four directions are achieved. Another four alignments are
obtained with the longitudinal and sideways (±x) combinations, denoted dAS. There are five observables
(here marked in bold font) that are parity forbidden in elastic scattering and goes to zero in breakup reactions
in coplanar kinematical configurations. In the last two columns also a few observables are included requiring
longitudinally polarized beam in addition to a target spin alignment at 45 degrees. E.g. the tensor-vector
correlation coefficient Cyz,z is accessible only using longitudinally polarized beam and diagonal target spin
alignment.
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Figure 1: The tensor analyzing power Axz (2N) (left), the difference between the 2N and 3N predictions
(middle), the figure-of-merit (right) as function of θq and φq.

(p)θ20
40

60
80

(p)
φ

0
100

200
300

-0.1

-0.05

0

0.05

0.1

(p) 49 MeVφ(p) θAxz(2N) vs 

(p)θ20
40

60
80

(p)
φ

0
100

200
300

-0.01

0

0.01

(p) 49 MeVφ(p) θAxz vs ∆

(p)θ20
40

60
80

(p)
φ

0
100

200
300

0.001

0.002

0.003

(p) 49 MeVφ(p) θAxz(2N-3N) vs ∆FOM of 

Figure 2: The tensor analyzing power Axz (2N) (left), the difference between the 2N and 3N predictions
(middle), the figure-of-merit (right) as function of θp and φp.
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Figure 3: The absolute magnitude of the difference
of the tensor analyzing power Axz(2N)− Axz(3N)
as function of θp in a profile histogram. The dots
(black) represent no selection but integration over
all independent variables. The squares (blue on-
line) represent conditions set on p and φp. For
θp > 45◦ a larger difference is observed between
2N and 3N calculations.
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includes 3N interactions. Cuts have been made on
p, θp, φp and φq in order to visualize one part of
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Figure 5: The tensor-vector correlation coefficient Cyy,y (2N) as function of θq and φq (left), θp and φp

(middle), θp and p (right), depicted in two dimensional profile histograms under the condition that the
absolute difference between the 2N and 3N calculations correspond to ∆(abs(3N −2N)≥ 0.03.
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Figure 6: The absolute magnitude of the tensor-
vector correlation coefficient Cyy,y as function of θp

in a profile histogram using conditions on p, θp, φp

and φq.
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Figure 7: The tensor-vector correlation coefficient
Cyy,y as function of θq in a profile histogram using
conditions on p, θp, φp and φq, yielding a deviation
of roughly 0.02 at 120 degrees.
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Figure 8: The vector-vector correlation coefficient
Cx,x (3N) as function of θq and φq at 49 MeV
with a condition applied on the absolute differ-
ence between the 2N and 3N theoretical predic-
tions; ∆(abs(3N−2N)≤ 00.1. From this graph one
of the conditions is deduced in order to find areas
in phase space where the theory predicts similar be-
havior for 2N and 3N calculations
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Cx,x predicted from 3N (squares, red online) and 2N
(dots, black online) calculations as function of θp in a
profile histogram integrated over all other parameters
except for selected cuts. In this graph aimed at show-
ing no or insignificant 3NF effects for a consistent de-
scription, the cuts were made on θq ≤ 100◦, q ≥ 60
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