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1. Introduction

Siegel [1] introduced regularisation by dimensional reduction (DRED) as a variation of di-
mensional regularisation, DREG [2], to maintain the equality of Bose-Fermi degrees of freedom
characteristic of supersymmetry, an equality not preserved by DREG. As a consequence, for exam-
ple, the relationship between the quark-quark-gluon and quark-squark-gluino couplings in SQCD

is not preserved when DREG is used. Which is not to say that DREG cannot be used in supersym-
metric theories; but it lacks convenience. For a formal discussion of the equivalence of DRED and
DREG (modulo DRED ambiguities to be discussed below) see [3],[4]. A pedagogical introduction
to Siegel’s proposal, and a first discussion of its application to the non-supersymmetric case appears
in Ref. [5]. Essentially DRED amounts to defining

xµ ≡ (xi,0)

pµ ≡ (pi,0)

Wµ ≡
(
Wi(x j),Wσ (x j)

)
(1.1)

where µ and i, j are 4-dimensional and D-dimensional indices respectively, and D < 4. It is useful
to define hatted quantities with µ,ν · · · indices whose only non-vanishing components are in the
D-dimensional subspace; in particular, ĝµν = (gi j,0).

So we define
gµν = ĝµν + g̃µν (1.2)

where

gµνgµν = 4

gµν ĝν
ρ = ĝνρ

ĝµν ĝµν = D

gµν g̃ν
ρ = g̃νρ

g̃µν g̃µν = ε = 4−D

ĝµν g̃ν
ρ = 0 (1.3)

A (Dirac) fermion represents 4 degrees of freedom as long as we define the Dirac matrix
trace to satisfy Tr1 = 4. Just as in DREG, the UV divergences of the four-dimensional theory are
manifested by the occurrence of poles in D−4, and renormalisation is effected by subtracting these
poles. The DRED version of the familiar DREG subtraction method MS is often termed DR.

The dimensionally reduced form of the gauge transformations:

δW a
i = ∂iΛ

a +g f abcW b
i Λ

c

δW a
σ = g f abcW b

σ Λ
c

δψ
α = ig(Ra)αβ

ψ
β

Λ
a (1.4)

show that W a
σ transform as scalars, called ε-scalars. Consequently the interactions

gψγσ Ra
ψW a

σ and g2 f abc f adeW b
σW c

σ ′W d
σ W e

σ ′
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are both gauge invariant by themselves. This means that in general they will not renormalise like
the corresponding gauge interactions; and in the case of the quartic coupling, different group theory
structures will be generated by radiative corrections, and require subtraction.

Moreover, a mass for the ε-scalars is itself gauge invariant. Since it is not forbidden, such a
mass will therefore be generated by loop corrections except in supersymmetric theories, where su-
persymmetry transformations connect the ε-scalar to the gauge boson, which is of course protected
from developing a mass by gauge invariance.

1.1 Evanescent Couplings and Masses

We have three classes of theories which behave differently under renormalisation using DRED.

• Supersymmetric Theories:

The ε-scalar interactions remain in step with the corresponding gauge interactions, and its
mass remains zero.

• Softly-broken supersymmetric theories:

Radiative corrections generate a mass for the ε-scalar.

• Un-supersymmetric theories:

Again a mass for the ε-scalar, and both its Yukawa coupling and the quartic interaction
renormalise differently from the gauge coupling. New quartic group theory structures are
generated.

1.2 ε-scalar quartic couplings

Let us consider QCD with gauge group SU(N) for example: a basis for tensors Kabcd in SU(N)
is given by

K1 = δ
ab

δ
cd K4 = dabedcde K7 = dabe f cde

K2 = δ
ac

δ
bd K5 = dacedbde K8 = dace f bde

K3 = δ
ad

δ
bc K6 = dadedbde K9 = dade f bce.

So for ε-scalars a natural basis is

H1 = 1
2 K1, H2 = 1

2(K2 +K3)

H3 = 1
2 K4, H4 = 1

2(K5 +K6),

reducible in SU(3) since then H3 +H4 = 1
3(H1 +H2).

This makes DRED ponderous in non-susy theories. Nevertheless, DRED and DREG are equiv-
alent. For some loop calculations where the above interactions arise, see Refs. [6], [7].
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1.3 DRED ambiguities

Siegel himself[8] drew attention to the following issue. Given D < 4, it would seem one can
define ε̂µνρσ as

ε̂
µνρσ = ĝµα ĝνβ ĝργ ĝσδ

εαβγδ (1.5)

where εαβγδ is the usual 4-dimensional tensor. Then, using Eq. (1.3), one can use the basic relation

ε
µνρσ

ε
αβγδ = gµαgνβ gργgσδ −gµβ gναgργgσδ + · · · (1.6)

to show that
ε̂

µνρσ
ε̂

αβγδ = ĝµα ĝνβ ĝργ ĝσδ − ĝµβ ĝνα ĝργ ĝσδ + · · · (1.7)

and hence by consideration of

Aµνρσ = ε̂
µνρσ

ε̂
αβγδ

ε̂αβγδ (1.8)

that
(D+1)(D−4)(D2−3D+6)ε̂µνρσ = 0 (1.9)

This indicates that for D < 4 the definition of ε̂µνρσ is problematic. Of course Eq. (1.5) is not true
if D > 4 so one cannot define ε̂µνρσ in this manner, and the problem does not arise.

1.4 γ5

From {
γµ ,γ5} = 0 (1.10)

we have, if D < 4, then {
γ̂µ ,γ5} = 0 (1.11)

and hence that
(D−4)Tr

[
γ

5
γ̂

µ
γ̂

ν
γ̂

ρ
γ̂

σ
]
= 0. (1.12)

Once again, for D > 4, there is no problem: Eq. (1.11) does not hold and so Eq. (1.12) no
longer follows. In that case you can impose[

γσ ,γ5] = 0, for 4 < σ < D (1.13)

giving an unambiguous DREG derivation of the anomaly. In Ref. [9] it was proposed that the
relation Eq. (1.13) simply be used also in DRED (effectively by analytical continuation from D > 4
to D < 4). This proposal was successful in that the authors then found that the Adler-Bardeen
theorem held, in other words that the two-loop corrections to the axial anomaly summed to zero at
two loops in both DREG and DRED.

To avoid all ambiguities we must avoid assuming relations like Eq. (1.6) and Eq. (1.10) even
though they are true in “normal" four-dimensional space. For example, in two dimensional σ

models[10] the relation
ε̂

µ
ν ε̂

νρ = (1+ cε)ĝµρ (1.14)

can be used instead without ambiguity; the dependence on the c-parameter can then be absorbed
into redefinitions of the renormalised metric and torsion. Stöckinger has formalised this[11] by
distinguishing “normal” D = 4 space, from a quasi D = 4 space, Q4S, in which Eqs. (1.6), (1.14)
are not true. By starting with our theory defined in such a space one avoids the problem.
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2. The NSVZ β -function

There is a third scheme [12],[13] which differs from both DRED and DRED, in that there exists
a particular form for βg in N = 1 supersymmetric gauge theories:

β
NSV Z
g =

g3

16π2

[
Q−2r−1Tr

[
γNSV ZC(R)

]
1−2C(G)g2(16π2)−1

]
. (2.1)

Here Q = T (R)− 3C(G), T (R)δ ab = Tr(RaRb), C(G)δ ab = f acd f bcd , r = δ aa, C(R)i
j = (RaRa)i

j

and where γNSV Z is anomalous dimension in the NSVZ scheme of the the chiral supermultiplet,
which transforms according to the representation Ra of the gauge group, which has structure con-
stants f abc.

The NSVZ scheme is like the DRED scheme in that it preserves (under renormalisation) cou-
pling constant relations that are a consequence of supersymmetry; but βg and γ calculated using
DRED begin to deviate from the NSVZ results at three loops. However, there is an analytic re-
definition of g, g → g′(g,Y ) which connects them. It is non-trivial that the redefinition exists; in
the abelian case for example, the redefinition consists of a single term, but it affects four distinct
terms (with different tensor structure) in the β -functions. Exploiting the fact that N = 2 theories
are finite beyond one loop it was possible to determine β DRED

g for N = 1 at three and four loops
for a general N = 1 theory by (comparatively) simple calculations. Subsequently, special cases of
these results were confirmed by the Karlsruhe group [14], [15].

2.1 The NSVZ↔DRED connection

In the abelian case (for simplicity)

β
(3)DRED
g = r−1g

{
3X1 +6X3 +X4−6g6QTr[C(R)2]

}
(2.2)

and
β

(3)NSV Z
g = r−1g

{
2X1 +4X3−4g6QTr[C(R)2]

}
. (2.3)

Here

X1 = g2Y klmPn
lC(R)p

mYknp

X2 = g4Y klmC(R)n
lC(R)p

mYknp

X3 = g4Tr[PC(R)2]

X4 = g2Tr[P2C(R)] (2.4)

where Pi
j = 1

2Y iklYjkl −2g2C(R)i
j and the cubic part of the superpotential is W = 1

6Y i jkφiφ jφk.
The coupling constant redefinition linking the two schemes is uniquely determined up to an

overall constant:
δg =−(16π

2)−2 1
2 r−1g3Tr [PC(R)] (2.5)

and generates just the right shift in βg:

(16π
2)3

δβg = r−1g
(
−X1−2X3−X4 +2g6QTr[C(R)2]

)
. (2.6)
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The lesson of this result is that the form of β -functions beyond one loop is not as arbitrary as
generally believed; the set of renormalisation schemes which is spanned by parameter redefinitions
does not permit arbitrary assignments of coefficients of all terms.

3. Physical quantities and the schemes

A QCD example. In DRED:

mpole
t = mDRED

t (µ)
[

1+
αDRED

3 (µ)
3π

(
5−3ln

m2
t

µ2

)]
(3.1)

whereas in DREG:

mpole
t = mDREG

t (µ)
[

1+
αDREG

3 (µ)
3π

(
4−3ln

m2
t

µ2

)]
(3.2)

from which we can deduce that

mDREG
t (µ) = mDRED

t (µ)
[
1+

α3

3π

]
. (3.3)

Thus to establish the relation between the schemes we must calculate a physical quantity in
both schemes.

4. The DRED SQCD β -function

This has been calculated through four loops[16]:

16π2β
(1)
g = (N f −3Nc)g3,

(16π2)2β
(2)
g =

([
4Nc− 2

Nc

]
N f −6N2

c

)
g5,

(16π2)3β
(3)
g =

([
3

Nc
−4Nc

]
N2

f

+
[
21N2

c − 2
N2

c
−9

]
N f −21N3

c

)
g7,

(16π2)4β
(4)
g =

(
− 2

3Nc
N3

f +
[
132N3

c −66Nc− 8
Nc
− 4

N3
c

]
N f

+
[
44+ 36ζ (3)−20

3N2
c

−
(
42+12ζ (3))N2

c

]
N2

f

− 102N4
c
)

g9.

Note that the higher order group theory invariants of the form (TrFaFbFcFd + · · ·)2 and
(TrRaRbRcRd + · · ·)2 found in the corresponding 4-loop QCD calculation (using DREG or DRED)
do not appear here; and indeed they cancel in those calculations when the fermion representation
Ra is replaced by the adjoint, Fa, thus rendering the theory supersymmetric.
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It is possible that β DRED
g for SQCD is free of such structures to all orders (manifestly so for

β NSV Z
g in the absence of chiral superfields, of course, see Eq. (2.1)).

These new terms in QCD cannot be removed by analytic coupling constant redefinitions; it
follows that the DRED↔DREG↔ NSVZ linkage described above does not extend to the QCD β -
function ansatz of Ryttov and Sannino[17]. I will return to this issue in the discussion of soft
β -functions.

5. DRED and soft breaking

In DRED the ε-scalar mass mixes with the φφ ∗ mass terms of genuine particles under renor-
malisation [18]:

βm̃2 = A(g,Y )m̃2 +∑
i

Bi(g,Y )m2
i + · · · ,

βm2
i

= Ci(g,Y )m2
i +Dim̃2 + · · · , (5.1)

where the + · · · denotes terms involving gaugino masses and A-parameters.
By an analytic redefinition of the form

m2
i |DRED′ = m2

i |DRED−Ci(g)m̃2 + · · · (5.2)

we can make βm2
i

is independent of m̃2. The DRED′ scheme can be extended to all orders [19].

5.1 The soft β -functions

Using DRED′, we can prove [20], [21] that the β -functions for the soft parameters correspond-
ing to the gaugino mass M, the φ 3 interaction h, and the φ 2 mass terms b are given by:

βM = 2O

(
βg

g

)
β

i jk
h = γ

(i
l h jk)l −2Γ

(i
l Y jk)l

β
i j
b = γ

(i
l b j)l −2Γ

(i
l µ

j)l (5.3)

where γ i
j is the chiral supermultiplet anomalous dimension in DRED. The same results hold in the

NSVZscheme, with of course γ then being the anomalous dimension in that scheme.

O =
(

Mg2 ∂

∂g2 −h
∂

∂Y

)
, (Γ)i

j = Oγ
i
j

Thus the underlying supersymmetric theory determines these soft β -functions to all orders.

5.2 The soft scalar mass β -function

The β -function for the φφ ∗ mass term m2 is a bit more tricky [22]:

βm2 =
[

2OO∗+2|M|2g2 ∂

∂g2 +
(

Ỹ
∂

∂Y
+ cc

)
+X

∂

∂g

]
γ

where Ylmn = (Y lmn)∗, and Ỹ i jk = Y l( jk(m2)i)
l

Here

X NSVZ =−2
g3

16π2
r−1Tr[m2C(R)]−MM∗C(G)

1−2C(G)g2(16π2)−1 .

XDRED′ is known through three loops, but there is no all orders form for it.

7
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6. The RS anzatz for QCD

Ref. [17] presents the following ansatz for the QCD β -function:

β
RS
g =

g3

16π2

 Q− 2
3 γmN f T (R)

1−2C(G)g2(16π2)−1
(

1+2 N f T (R)−C(G)
Q

)
 (6.1)

where γm is the fermion mass anomalous dimension. In the special case of a single fermion adjoint
multiplet (corresponding to N = 1 susy) they equate this to

β
NSV Z
g =−3

g3C(G)
16π2 /(1−2C(G)g2(16π

2)
−1

) (6.2)

to deduce that then

γm =−6
g2C(G)

16π2 /(1−2C(G)g2(16π
2)
−1

) (6.3)

But in this case the γm is precisely the β -function for the gaugino mass; a soft breaking term.
Consequently it is given in the NSVZ scheme by the formula

βM = 2O

(
βg

g

)
, (6.4)

i.e.

γ
NSV Z
m =−6

g2C(G)
16π2

1

(1−2C(G)g2(16π2)−1)2
(6.5)

which is not equal to the RS deduction Eq. (6.3) beyond one loop.
So: I can calculate in the DRED and DREG schemes, and relate the results to each other and to

the NSVZ scheme; but I don’t know how to calculate in the RS scheme. Moreover, it is unclear to
me why there should exist a scheme in which Eq. (6.1) and Eq. (6.2) are simultaneously valid.

7. Summary

The introduction of DREG was a remarkable achievement, and of crucial practical value in
making loop calculations in non-abelian gauge theories much simpler to organise than they are
with other regulators such as explicit UV cut-offs. An important part of this is the fact that DREG

preserves gauge invariance; DRED attempts to extend this advantage to encompass supersymmetry
as well. In spite of the difficulties with defining the method in a rigorous manner that we have
described above, the practical advantages mean that DRED is universally adopted for calculations
beyond one loop in supersymmetry; with DRED′ employed in the softly-broken case. For a recent
example relevant to LHC physics, with a careful discussion of the relationship between DRED and
DREG and also the matching to the MS scheme, see Ref. [23].
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