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1. INTRODUCTION

Wilson loops are very fundamental and important quantities in gauge theories [1]. They are
essential for defining nonlocal gauge invariant quantities. They also contain information about
local operators via the operator product expansion. Moreover, it turns out that certain Wilson loops
defined for specific contours appear as an effective description of certain physical processes.

The velocity-dependent cusp anomalous dimension is a case in point. It is defined as the
ultraviolet (UV) anomalous dimension of a Wilson loop with a cusp. It appears in many physi-
cally interesting situations. For example, in heavy quark effective theory (HQET), it describes the
infrared (IR) divergences of massive form factors and scattering amplitudes, see e.g. [2, 3, 4, 5].

In a N = 4 super Yang-Mills (SYM), it is natural to define the locally supersymmetric Wilson
loop operator [6, 7]

W ∼ Tr
[

Pexp
(

i
∮

Aµ ẋµ +
∮
|dx|~n ·~Φ

)]
, (1.1)

where ~n is a vector on S5. It parametrizes the coupling of the Wilson loop to the six scalars ~Φ of
the theory. We consider as the integration contour a cusp formed by two segments along directions
(momenta) pµ and qµ , and allow the two segments to couple to the scalars through vectors~n and~n′,
see Fig. 1. Then, the vacuum expectation value 〈W 〉 of the Wilson loop will depend on the angles

cosφ =
p ·q√
p2q2

, cosθ =~n ·~n′ , (1.2)

as well as on the ‘t Hooft coupling λ = g2N, and the rank of the gauge group N.

!n

qµ

pµ

!n′

φ

Figure 1: A Wilson line that makes a turn by an angle φ in Euclidean space. The two segments are directed
along pµ and qµ , respectively. The vectors ~n and ~n′ are internal vectors that determine the coupling to the
scalars ~Φ.

If ΛUV and ΛIR are short and large distance cutoffs, respectively, then the divergent part of the
vacuum expectation value of the Wilson loop takes the form [1, 8]

〈W 〉 ∼ exp
[
− log

ΛUV

ΛIR
Γcusp + . . .

]
. (1.3)

This defines the cusp anomalous dimension Γcusp(φ ,θ ,λ ,N).
We will begin by describing the dependence of Γcusp on the angles φ and θ in section 2, and

then introduce, in section 3, the set of integral functions needed to express loop-level results. We
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will then review perturbative results to two loops, and present the new three-loop result. We present
the light-like limit as a check in section 5, and describe our method of calculation in 6. We then
present an exact result for Γcusp at small angles in section 7. In section 8, we discuss a new scaling
limit. Finally, we conclude and present future directions in section 9.

2. KINEMATICS AND LIMITS

For reasons that will become apparent presently, we will mostly be interested in the φ depen-
dence of the Wilson loop. It is convenient to introduce a new variable x = eiφ . The computation we
are considering is invariant under φ →−φ . This corresponds to an inversion symmetry in x.

Note that the dependence of Γcusp on θ is simple. It can only occur through Wick contractions
of scalars, and because of SO(6) invariance it appears only through ~n ·~n′ = cosθ . Therefore, at L
loops, Γcusp is a polynomial in cosθ , of maximal degree L. Having made this observation, we find
that it convenient to introduce the variable ξ = (cosθ − cosφ)/(isinφ). Two important cases are
θ = 0 (constant coupling to scalars) and θ = π/2 (scalars on opposite edges are orthogonal to each
other), which lead to ξ = (1− x)/(1+ x) and ξ = (1+ x2)/(1− x2), respectively.

There are several special cases of the angles that are of particular interest. When the geometric
angle φ and internal angle θ satisfy φ = ±θ , the anomalous dimension vanishes. Note that ξ

vanishes in this case. For θ = 0, this corresponds to φ → 0, i.e. x→ 1, the case of a straight
line. The small angle limit is related to energy loss of an accelerated quark, and is known exactly
[10, 11]. The limit φ → π , i.e. x→−1, is related to the quark-antiquark potential. This limit is
subtle and requires a resummation of certain diagrams, see [12, 13, 14, 15].

The above limits can be defined in Euclidean space. There is an intrinsically Minkowskian
limit that is also of interest. When φ →−iϕ , ϕ � 1, i.e. x→ 0, the cusp anomalous dimension
diverges linearly in the ϕ , to all orders in the coupling constant [9]. The coefficient of the linear
divergence is the well-studied light-light cusp anomalous dimension; the latter can also be obtained
from the anomalous dimension of high spin operators [16, 17, 18]. The Wilson loop approach
considered here is a very efficient way of computing this quantity.

3. INTEGRAL FUNCTIONS

Let us discuss the different kinematical regions for complex x. It is useful to recall the rela-
tionship of Γcusp to IR divergences of massive form factors, such as γ∗ → e+e−, which have the
same analytical structure.

Γcusp is real in the Euclidean region 0 < x < 1, and in the physical region below threshold (of
creating two massive particles), which is the unit circle (i.e. for φ real). The threshold is at x =−1,
and the physical region above threshold goes from −1 to 0 along the negative real axis. See Fig. 2.

We find that all results can be expressed in terms of harmonic polylogarithms (HPL) [19].
These functions are generalizations of classical polylogarithms, and appear naturally in this prob-
lem. They are defined iteratively by

Ha1,a2,...,an(x) =
∫ x

0
fa1(t)Ha2,...,an(t)dt , (3.1)

3



P
o
S
(
L
L
2
0
1
2
)
0
1
2

Multiloop scattering amplitudes J. M. Henn

x = eiφ

−1 0 1

Figure 2: Γcusp is real for 0 < x < 1, and below threshold, where x = eiφ is a phase. Above threshold, we
have −1 < x < 0, with x having an infinitesimal imaginary part. The zigzag line denotes a branch cut along
the negative real axis. Recall that Γcusp has is an inversion symmetry x→ 1/x.

where the integration kernels are defined as

f1(x) = (1− x)−1 , f0(x) = x−1 , f−1(x) = (1+ x)−1 , (3.2)

The degree (or weight) one functions needed to start the recursion are defined as

H1(x) = − log(1− x) , H0(x) = log(x) ,H−1(x) = log(1+ x) .

The subscript of H is called the weight vector. A common abbreviation is to replace occurrences
of m zeros to the left of ±1 by ±(m+1). For example, H0,0,1,0,−1(x) = H3,−2(x).

HPLs have simple properties under certain argument transformations, and one can use their
algebraic properties in order to make their asymptotic behavior manifest. We refer the interested
reader to ref. [19]. A very useful computer algebraic implementation has been given in ref. [20].

The perturbative results given in section 4 can be straight forwardly evaluated numerically in
the region 0 < x < 1. Other regions can be reached by analytical continuation, respecting the above
branch cut properties. A related discussion is given in ref. [21] for the process gg→ h via a massive
quark loop.

4. RESULTS UP TO THREE LOOPS

The cusp anomalous dimension of the standard bosonic Wilson loop operator was computed in
QCD at two loops in the pioneering paper [9]. This result was later simplified [22], and recomputed
in N = 4 SYM for the supersymmetric loop operator defined in eq. (1.1) in refs. [23, 24]. The
answer in N = 4 SYM can be written as an expansion in the ‘t Hooft coupling λ ,

Γcusp = ∑
L≥1

(
λ

8π2

)L

Γ
(L)
cusp . (4.1)

To two loops it is given by,

Γ
(1)
cusp = −ξ logx , (4.2)

Γ
(2)
cusp =

1
3

ξ
[
logx

(
log2 x+π

2)]+ 1
4

ξ
2 [H1,1,1 +2H1,2] . (4.3)
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Here and in the following, the HPLs are understood to have argument 1− x2. In ref. [14], we
computed the three-loop value Γ

(3)
cusp. Before outlining the method of calculation in section 6, let us

present the result. Here we write it in a very compact form, due to [25],

Γ
(3)
cusp = −1

6
ξ logx

(
log2 x+π

2)2

−1
2

ξ
2[3ζ3H1,1 +ζ2(2H1,2 +4H2,1 +3H1,1,1)+2H1,1,1,2 +

3
2

H1,2,1,1 +2H2,1,1,1 +
11
4

H1,1,1,1,1]

+
1
4

ξ
3[4H1,1,3 +4H1,2,2 +4H1,1,1,2 +2H1,1,2,1 +2H1,2,1,1 +3H1,1,1,1,1] . (4.4)

Let us now discuss these formulas.
It is not hard to verify the expected inversion symmetry x→ 1/x, i.e. φ →−φ , using stan-

dard relations between HPLs of related arguments [19]. Note that ξ is antisymmetric under this
transformation.

We see that at each loop order, we have functions of uniform degree of transcendentality (i.e.
weight of harmonic polylogarithms) (2L−1).

It is remarkable that the result can be written using argument 1− x2 (or x2) only. This is not
the case in general for individual Feynman integrals. Moreover, we see that there are no relative
signs within the coefficients of the different powers of ξ in the expressions above. This property
also holds at least up to L = 6 for the ξ L terms at L loops, which have recently been computed
analytically [25].

5. RELATION TO LIGHT-LIKE CUSP ANOMALOUS DIMENSION

Let us use the above three-loop result to analytically verify the relation

lim
x→0

Γcusp =−
1
2

logxΓ
∞
cusp +O(x0) , (5.1)

where Γ∞
cusp is the anomalous dimension of a light-like cusped Wilson loop [26]. The asymptotic

limit x→ 0 is easy to perform on our results, since the logarithmic behavior of HPLs can always be
made manifest [19]. From eqs. (4.2), (4.3) and (4.4) it is easy to verify its correct three-loop value
[27]

Γ
∞
cusp = 2

(
λ

8π2

)
−2ζ2

(
λ

8π2

)2

+11ζ4

(
λ

8π2

)3

+O(λ 4) . (5.2)

6. RELATION TO MASSIVE SCATTERING AMPLITUDES IN N=4 SYM

The velocity-dependent cusp anomalous dimension governs the infrared divergences of mas-
sive scattering amplitudes. In N = 4 super Yang-Mills, one can introduce masses by giving a
vacuum expectation value to some of the scalar particles. In this way, at the planar level, one can
define finite four-dimensional scattering amplitudes which have an exact dual conformal symmetry
[28]. The simplest case is the four-particle scattering amplitude M4(u,v), which is a function of
two conformally invariant variables u and v, which in turn are defined in terms of the momenta and
masses.
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x4

x3x1

x2

xj

xi

xk

(a) (b)

Figure 3: The form factor (or Wilson loop) integrand is obtained by taking the limit where all dual inte-
gration points, xi,x j,xk in (a), come close to the external point x2. Here we show a three-loop integral for
the four-particle amplitude (a) giving rise to contribution for the Wilson loop, shown in (b). Thick lines
represent massive (or eikonal) propagators, and thin lines represent massless propagators.

It was argued in [29, 30, 14] that the limit u� 1 of this function is determined by the cusp
anomalous dimension in the following way,

lim
u→0

logM4(u,v) = loguΓcusp(v)+O(u0) . (6.1)

The relation between v and the previously used variables is v = x/(1− x)2.
Let us explain how we used this limit to compute Γcusp at three loops [14], starting from a

known representation of the three-loop scattering amplitude [27, 29]. We observed that all known
form factor and Wilson line integrals of this type could be expressed in terms of harmonic poly-
logarithms of argument x. Assuming that this holds for Γcusp at three loops reduced the calculation
to the problem of determining a number of coefficients. We used Mellin-Barnes techniques [29] to
compute the asymptotic limit x→ 0, keeping not only powers of logx, but also terms suppressed
by powers of x. In this way, we were able to fix our ansatz completely.

We note that recently, our assumption was proven for two infinite classes of integrals, and
moreover that it is possible to directly evaluate the corresponding integrals [25].

We wish to emphasize that the relation to the four-particle amplitude discussed above can also
be used at the level of the integrand, where the dominant region of integration as u→ 0 corresponds
to all dual loop momenta1 approaching one of the external dual variables, say xµ

2 . In that region,
one can simplify the integrand (to logarithmic accuracy) to obtain integrals of form factor type. In
the same spirit, one can further approximate them in order to get a Wilson line representation. We
illustrate this simplification in Fig. 3.

In summary, this means that the integrand of the Wilson line calculation can straightforwardly
be obtained at higher loop orders from the corresponding integrand of massless scattering ampli-
tudes [31, 32, 33], extended properly to the massive case [28, 29]. This should represent a useful
starting point for calculations at higher loop orders, as well as for finding and proving conjectures
about the structure of Γcusp, see e.g. section 8.

1Here we are using the notion of dual (or region) variables for a planar graph.
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7. EXACT RESULT FOR SMALL ANGLES

It turns out that there is a special limit of Γcusp, namely the small angle limit |θ 2− φ 2| � 1,
which can be computed exactly in φ , λ and N. Here we simply quote the result and refer the
interested reader to [10] for more details. Specifying to the planar case N� 1, we have

Γcusp = (φ 2−θ
2)

1
1−φ 2/π2 B(λ̃ )+ . . . , (7.1)

with λ̃ = λ (1−φ 2/π2), and

B(λ ) =
1

4π2

√
λ I2(
√

λ )

I1(
√

λ )
+O(1/N2) , (7.2)

where I j is the modified Bessel function.
Expanding this exact result to the third order in λ , one reproduces the coefficient of ξ in eqs.

(4.2), (4.3) and (4.4), respectively.
One can also expand our exact result at strong coupling. This can be compared against taking

the limit |φ −θ | � 1 of the formulas in [24]. In both cases, we find

Γcusp = (θ −φ)

√
λ

2π

φ√
π2−φ 2

+ . . . . (7.3)

5 10 15 20 25 30
Λ

0.02

0.04

0.06

0.08

0.10

BHΛL

Figure 4: Bremsstrahlung function B(λ ) (solid black line) given in the main text. The dotted green lines
on the left denote two-loop and three-loop approximations, respectively, and the dotted red line on the right
corresponds to the first two terms of the strong coupling approximation.

For a constant coupling of the Wilson loop to scalars, i.e. θ = 0, eq. (7.1) becomes

Γcusp = −φ
2 B(λ )+O(φ 4) , θ = 0 . (7.4)

This is related to the radiation emitted by a quark undergoing a small change in direction [10]. The
“Bremsstrahlung” function B(λ ) is plotted in Fig. 4.
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8. SCALING LIMIT

The existence of the parameter θ allows us to define a new scaling limit. Recall that Γcusp

depends on cosθ in a polynomial way. It is easy to see that the terms with the highest power cosL θ

at L loops come from a diagram with L scalar propagators ending on each Wilson line. We can
isolate such terms by taking the limit [14]

λ → 0 , eiθ → ∞ , κ =
1

4π2 λeiθ fixed . (8.1)

In this way, we get a non-trivial function of φ , κ and N. We see that at leading order (LO) in the
limit, only ladder diagrams remain. We will denote the leading order approximation by ΓLO

cusp.
The sum of the ladder integrals satisfies a Bethe-Salpeter equation. Since we are only in-

terested in the leading UV divergence (of the sum of the ladder integrals), we can simplify the
equation to a one-dimensional Schrödinger problem,[

−∂
2
y −

κ

8
1

coshy+ cosφ

]
Ψ(y) =−Ω2

4
Ψ(y) . (8.2)

Here y is a variable in an auxiliary space (related to relative positions on the two edges of the
Wilson lines), and ΓLO

cusp =−Ω0, where Ω0 is computed for the ground state of the system.
In the case of zero angle, the potential in eq. (8.2) becomes the integrable Pöschl-Teller po-

tential cosh−2(y/2), and one can solve for ΓLO
cusp in closed form. One finds [14]

Γ
LO
cusp =

1−
√

1+κ

2
− φ 2

16
κ

(
1+
√

1+κ

1+κ +2
√

1+κ

)
+O(φ 4) .

Moreover, for general angle, the problem can be solved perturbatively. One can show that to
any order L, the LO answer for Γcusp can be written in terms of harmonic polylogarithms of degree
(2L−1), and an algorithm to compute the solution was given [25]. Moreover, the result was given
explicitly up to six loops. This calculation also confirmed analytically the ξ 3 term at three loops
that was given in equation (4.4).

There are a number of interesting properties of these results [25]. A study of the explicit
results to six loops shows that in fact only a subset of harmonic polylogarithms is needed. We
already mentioned in section 4 the absence of relative signs. Finally, when studying the limit x→ 0
discussed in section 5, one finds, at least up to six loops, that the asymptotic expansion of ΓLO

cusp

does not require multiple zeta values [34] of depth two or higher.
One can also compare the solution of the Schrödinger equation to what one obtains from taking

the scaling limit of the corresponding string theory result. A priori, the answer obtained does not
have to be the same, since the order of limits could be important. However, the explicit calculation
showed agreement [14].

This analysis has recently been extended to the next-to-leading order (NLO) in the scaling limit
[25]. (See also ref. [35] for an analysis of the special case φ → π .) One finds that at NLO there
are two infinite classes of scalar integrals, shown in Fig. 5. They satisfy modified Bethe-Salpeter
equations and can be computed algorithmically [25].
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.
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Figure 5: The two infinite classes of scalar integrals the contribute to Γcusp at NLO in the scaling limit.
discussed in the main text.The integral on the right contains a numerator factor (k1 + k2)

2, where k1 and k2

are the momenta flowing along the propagators with the arrows, respectively.

9. DISCUSSION

We have reviewed various new results for the cusp anomalous dimension in N = 4 super
Yang-Mills.

Recently, it was shown how to apply integrability techniques to this problem [36, 37, 38]. It
would be interesting to reproduce the results obtained here using these methods.

While the results presented here are valid for supersymmetric gauge theories, the structures
found are also be relevant for QCD. Interesting extensions of our work would be the calculation
of the three-loop value of the cusp anomalous dimension in QCD, as well as the first non-planar
correction, which appears for the first time at four loops.
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