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Dedicated studies of high energy physics by both experimentalists and theorists have lead to
a better understanding of physics at high scales. The Standard Model (SM) of particle physics,
based on the gauge symmetrySU(3)C × SU(2)L ×U(1)Y , has been enormously successful in ex-
plaining decades of data from various high energy experiments and other sources. The stringent
tests of the SM have been going on for a long time in various high energy facilities and they will
continue at the Large Hadron Collider (LHC) at CERN, Geneva.Precise predictions of most of
the important observables that can test the SM are now available due to significant advances in
theoretical high energy physics. Of course the SM is not expected to explain all of high energy
physics and it is known that it has shortcomings. For example, the observed neutrino mass, the
dark matter content and the baryon number asymmetry of our universe are a few of the well known
examples of observables that the SM has no explanation so far. These issues have been addressed
for quite sometime which lead to various extensions of the SMmostly based on enlarged symme-
try groups and/or space time dimensions. Like the SM, these extensions have to pass similar tests
to establish their relevance to high energy physics. In the electroweak sector of the SM and also
in the beyond the SM (BSM) obtaining non-zero masses for the electroweak gauge bosons and
the fermionic particles is a hard task because the gauge symmetry that governs the interaction of
gauge particles and fermions puts severe restrictions on the their allowed mass terms. The symme-
try breaking mechanism plays an important role to achieve this task. In the SM, the weak gauge
bosonsW±,Z and fermions obtain non-zero masses through the introduction of a complex scalar
SU(2)L doublet, called the Higgs field which acquires a non-zero vacuum expectation value. In
other words, spontaneous breaking of theSU(2)L ×U(1)Y symmetry toU(1)em generates masses
for weak bosons and fermions. In some of the extensions of SM,similar mechanisms require more
than one complex scalar doublet to get the right mass spectrum. This mechanism, often called the
Higgs mechanism, is not the only way to achieve this task and there exist several other mechanisms
to obtain the required mass spectrum without introducing complex scalar fields. Needless to say all
of them have many other predictions which serve as tests for the correctness of these mechanisms.

In the SM the spontaneous symmetry breaking mechanism through a complex scalar doublet
not only generates non-zero masses for weak bosons and fermions but also introduces a massive
scalar particle, namely the Higgs boson. The Higgs boson hasdefinite couplings to weak bosons
and fermions as well as with themselves. The vacuum expectation value of the Higgs field and the
mass of the Higgs boson completely determine the scalar sector of the SM. The value of the vac-
uum expectation value has been known from the observation ofweak bosons and their electroweak
properties. The only unknown parameter to date is the mass ofthe Higgs boson, which also deter-
mines its coupling to weak bosons and fermions that get theirmass through the Higgs mechanism.
Direct searches and precision studies of various SM parameters at the LEP and the Tevatron have
already provided a wealth of information on where to find the Higgs boson at the LHC. One of
the prime goals of the LHC is to look for the the Higgs boson so that the mechanism responsible
for the generation of masses for the weak bosons and fermionscan be tested. The earlier bounds
on the mass reveal that the Higgs boson is not too heavy and it can decay to various SM particles.
These decay modes can be used to search for the Higgs boson andalso determine its couplings to
SM particles. Such an effort has already gone into various studies in earlier experiments and it is
underway at the LHC.

Searches for the Higgs boson in collider experiments have been very successful due to dedi-
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cated efforts in searching for observables resulting from various production and decay modes and
precise predictions from the theory for these observables.At the LHC Higgs bosons are produced
dominantly through gluon-gluon fusion via a top quark loop at leading order in perturbation the-
ory. Due to the non-zero Yukawa coupling for the Higgs boson to top quarks and large gluon flux
at the LHC, this dominant production mode can be used in the earlier stages of searches for the
Higgs boson. When the energy of the LHC is increased to its designed value and runs with large
luminosity over several years then the other subdominant production modes such as vector boson
fusion and the associated production of Higgs boson with weak vector bosons and top quarks will
be important. In this note, we restrict ourselves to the dominant production mode and the related
theoretical developments which lead to a precise prediction for the Higgs production cross section
beyond leading order in perturbation theory. This means that the theory of strong interactions,
namely Quantum Chromodynamics (QCD) plays an important role in predictions. The Higgs pro-
duction cross section at the LHC can be computed in QCD using the parton distribution functions
fa(w,µ2

F) of partons in the incoming protons and the parton level scattering cross sections∆H
ab to

produce the Higgs boson:

σ H(S,m2
H) =

πG2
B

8(N2−1) ∑
a,b=q,q,g

∫ 1

x
dy Φab(y,µ2

F ) ∆H
ab

(

x
y
,m2

H ,µ2
F ,µ2

R

)

, (1)

wherex = m2
H/S, N = 3 and the factorGB can be found in [1]. The fluxΦab(y,µ2

F ) is given by

Φab(y,µ2
F) =

∫ 1

y

dw
w

fa(w,µ2
F) fb

( y
w
,µ2

F

)

. (2)

The factorisation and renormalisation scales are given byµF and µR respectively. The partonic
cross section∆H

ab contains both soft-plus-virtual (sv) as well as hard contributions:

∆H
ab(z,m

2
H ,µ2

R,µ2
F) = ∆sv

g,S(z,m
2
H ,µ2

R,µ2
F)+∆H,hard

ab (z,m2
H ,µ2

R,µ2
F) . (3)

The soft-plus-virtual contributions, as the name suggests, come from all the subprocesses where
real gluons in the final states as well as virtual gluons in theloops become soft. The hard part of
the partonic cross section is the remaining contribution from these subprocesses.

In perturbative QCD (pQCD), the partonic cross section for Higgs boson production resulting
from the dominant production mechanism, namely gluon-gluon fusion, is known up to next-to-next
to leading order (NNLO) level in QCD [2, 3, 4, 5, 6, 7, 8, 9]. Beyond NLO, the Higgs production
cross sections are known only in the large top quark mass limit but the corrections due to finite top
quark mass are now available in [10]. Two loop electroweak corrections at leading order inα are
available, see [11]. One loop corrections to the real radiation processesqq → gh andqg → qh are
known, see [12] and for mixed QCD and electroweak contributions with a light quark, see [13]. It
is well known that the NLO cross section computed with finite top and bottom quark masses agrees
to within rescaled by the LO order cross section computed with finite top and bottom quark masses
even at high Higgs masses. Inclusion of the exact bottom quark loop and its interference with the
top quark loop up to NLO level and to resummation upto NLL level can reduce the cross section
by about 1.5% for low Higgs mass. Two loop electroweak corrections can be included either by
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multiplying the full NNLO corrected cross section or by multiplying only LO cross section. In
the former case there is an increase in cross section by 5% while the later gives the variations of
the cross section from−3% to+2% for Higgs mass ranging from 115 to 800 GeV. Sub leading
terms in the largemt limit give 1% correction to the NNLO corrected cross sectioncomputed in
themt → ∞ limit for the Higgs mass,mH < 300GeV .

Due to several important results at three loop level that areavailable [14, 15, 16, 17, 18, 19], the
resummation up to N3LL has also become a reality, for resummation exponents see [20, 21, 22, 23].
In [20, 23], the dominant soft gluon contributions to N3LO contributions have been computed for
the Higgs production cross sections using the form factors and splitting functions that are known
up to N3LO. In [23], this approach has been extended to N4LO to get most of the dominant terms
that result from soft gluons. In this article, we discuss theimpact of these contributions, i.e.,
soft-plus-virtual contributions at N3LO level on the Higgs production cross sections. We will also
study the uncertainties resulting from various choices of parton distributions. We do not include
electroweak and mixed QCD-electroweak effects in this study because they do not significantly
affect the estimates of the error resulting from QCD perturbative results and parton distribution
functions. Such effects are well documented in [24, 25] which discusses an update on Higgs cross
sections at 8 TeV.

Before we present our numerical results, we give a brief overview of how the soft-plus-virtual
part of the Higgs cross section is obtained. Thanks to a) factorisation of ultraviolet, soft and
collinear contributions in the QCD amplitudes and in the parton level cross sections and b) renor-
malisation group invariance, we can systematically exponentiate the resulting finite contributions
coming from soft gluons present in real and virtual subprocesses after taking into account UV
renormalisation and mass factorisation. Note that variousUV and infrared singularities cancel
among themselves leaving the exponent finite order-by-order in perturbation theory. Hence, the
soft-plus-virtual part of the cross section (∆sv

g,S(z,q
2,µ2

R,µ2
F )) can be written as

∆sv
g,S(z,q

2,µ2
R,µ2

F ) = C exp

(

Ψg
S(z,q

2,µ2
R,µ2

F ,ε)

)
∣

∣

∣

∣

∣

ε=0

, (4)

whereΨg
S(z,q

2,µ2
R,µ2

F ,ε) is a finite distribution. HereΨg
S(z,q

2,µ2
R,µ2

F ,ε) is computed in 4+ ε
dimensions via

Ψg
S(z,q

2,µ2
R,µ2

F ,ε) =

(

ln
(

Zg(âs,µ2
R,µ2,ε)

)2
+ ln

∣

∣F̂g(âs,Q
2,µ2,ε)

∣

∣

2

)

δ (1− z)

+2 Φ g
S (âs,q

2,µ2,z,ε)−2 C lnΓgg(âs,µ2,µ2
F ,z,ε) . (5)

The symbol "C " means convolution. For example,C acting on an exponential of a function
f (z) has the following expansion:

C e f (z) = δ (1− z)+
1
1!

f (z)+
1
2!

f (z)⊗ f (z)+
1
3!

f (z)⊗ f (z)⊗ f (z)+ · · · . (6)

In our casef (z) is a distribution such asδ (1− z) andDi, where

Di =

[

lni(1− z)
(1− z)

]

+

i = 0,1, · · · (7)
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and the symbol⊗ is nothing but the Mellin convolution. Here, we drop all the regular functions
after all the convolutions are done as we are only interestedin the soft-plus-virtual parts of the cross
sections.

In the following we explain the various terms that appear in eqn.(5). Since we work in the
large top quark mass limit, the top quark degrees of freedom can be safely integrated out. This
gives us an effective theory where the Higgs boson can directly couple to the massless gauge
bosons, namely the gluons. Because of this an additional renormalisation constantZg(âs,µ2

R,µ2,ε)
is required to remove the UV divergences. In theMS scheme, this contains only poles inε . We have
expanded this renormalisation constant in terms of the unrenormalised strong coupling constant
âs = ĝ2

s/(16π2) and the scaleµ2 appears in order to keep the coupling constant ˆgs dimensionless
in n dimensions.µR is the UV renormalisation scale at which the parameters and fields of QCD
are renormalised.F̂g(âs,Q2,µ2) is the form factor that describes the Higgs-gluon-gluon vertex
expanded in terms of ˆas. The scale is given byQ2 = −q2 = −m2

H , with mH the mass of the Higgs
boson. The scaling variablez is the ratio ofm2

H/ŝ, where ˆs is the center-of-mass of the partonic
system. This functionΦ g

S (âs,q2,µ2,z) is called the soft distribution function. The distribution
Φ g

S (âs,q2,µ2,z,ε) contains all the soft gluon contributions resulting from parton subprocesses
where at least one of the outgoing partons becomes soft. The contributions can come from tree
level partonic subprocesses as well as from the virtual processes with at least one or more soft
partons in the final state. These can be evaluated again in perturbation theory in terms of ˆas.

Both real emission and virtual subprocesses are sensitive to collinear partons which give sin-
gular contributions when they are massless. The final state collinear singularities cancel among
themselves when they are summed in an infrared safe way. On the other hand, the initial state
collinear singularities do not cancel and are removed by mass factorisation. The universal kernel
Γgg(âs,µ2,µ2

F ,z,ε) does this task: it removes the initial state collinear singularities from the par-
tonic subprocesses and renormalises the bare parton distribution functions at the factorisation scale
µF .

The fact that∆sv
g,S is finite in the limitε → 0 implies that the singular terms in one of the four

functionsZg, F̂g,Φg
s andΓgg can be obtained if the rest are known to sufficiently high orders in

ε . While this sounds very simple, in practice one is guided to achieve this by various principles
like renormalisation group invariance and factorisation properties of various terms in perturbation
theory. BothΦg

S andΓgg are dependent on the variablez and hence it is not very straightforward to
reconstruct thez dependence of one from the others. Note that the pQCD resultsup to three loop
level are known forZg, F̂g andΓgg but only two loop results are known forΦg

S from the fixed order
computations. Here we extract the three loop QCD contribution with the correctz dependence
from Zg, F̂g andΓgg by observing thatΦg satisfies the following Sudakov type differential equation
similar to those for the form factorŝFg:

q2 d
dq2 Φ g

S (âs,q
2,µ2,z,ε) =

1
2

[

K
g

S

(

âs,
µ2

R

µ2 ,z,ε
)

+G
g

H

(

âs,
q2

µ2
R

,
µ2

R

µ2 ,z,ε
)

]

, (8)

where the constantsK
g

H contain all the singular terms and theG
g

H terms are finite functions ofε .
We can solve the above equation in powers of ˆas andε . The particular solution that has the right
singular structure and correctz dependence is found to be
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Φ I
P (âs,q

2,µ2,z,ε) = Φ I
P (âs,q

2(1− z)2,µ2,ε)

=
∞

∑
i=1

âi
s

(

q2(1− z)2

µ2

)i ε
2

Si
ε

(

i ε
1− z

)

φ̂ I,(i)
P (ε) , (9)

where

φ̂ I,(i)
P (ε) =

1
iε

[

K
I,(i)

(ε)+G
I,(i)

P (ε)

]

. (10)

Note thatΨg
S or equivalently∆sv

g,S is finite asε → 0 (see eqn.(5)). The constantsK
g,(i)

(ε) are
determined by expanding theK

g
S in powers of the bare coupling constant ˆas as

K
g
S

(

âs,
µ2

R

µ2 ,z,ε
)

= δ (1− z)
∞

∑
i=1

âi
s

(

µ2
R

µ2

)i ε
2

Si
ε K

g,(i)
(ε) . (11)

The constantsG
g,(i)

S (ε) are related to the finite functionG
g
S(as(q2),1,z,ε) through the distri-

butionsδ (1−z) andD j. G
g,(i)

S (ε) can be expressed in terms of the renormalised coupling constant
as with the argumentq2(1− z)2 as

∞

∑
i=1

âi
s

(

q2(1− z)2

µ2

)i ε
2

Si
ε G

g,(i)
S (ε) =

∞

∑
i=1

ai
s

(

q2(1− z)2)
G

g
S,i(ε) (12)

The constantsK
g,(i)

(ε) andG
g
Si
(ε) can be obtained by demanding the finiteness of∆sv

g,S. For exam-

ple, theε dependent terms inG
g

S,i(ε) are determined from the fixed order (inas) computations of
cross sections and the finite parts of the form factors.G

g
S,1(ε) is known to all orders inε , G

g
S,2(ε) to

orderε andG
g

S,3(ε) to orderε0. The lowest order termG
g

S,1(ε) is known to all orders inε because
it is often straightforward to compute the fixed order soft contribution at lowest order. On the other
hand, it is technically hard to determineε dependent parts of soft cross sections beyond the lowest
orderas. The available constantsK

I,(i)
(ε) andG

g
Si
(ε) can be found in [26]. Using all this informa-

tion, the fixed order N2LO soft-plus-virtual contribution to Higgs production canbe obtained up to
terms proportional toδ (1− z). In other words, we can determine the contributions coming from
the distributionsD i at order N2LO.

In the following, we will present our numerical results for Higgs production at NNLO as well
as soft-plus-virtual contributions at N2LO in perturbative QCD. We will examine the factorisation
and the renormalisation scale dependence of the cross sections and the dependence coming from
the choice of parton density sets. We choose the center-of-mass energy to be

√
S = 8 TeV for

the LHC. The standard model parameters that enter our computation are the Fermi constantGF =

4541.68pb= 1.16637×10−5GeV−2 and the top quark massmt = 172.5 GeV. We use LHAPDF to
obtain various parton distribution sets and the corresponding strong coupling constants.

In table.1 we present NNLO and N3LOsv corrected Higgs production cross sections for
√

S = 8
TeV using MSTW parton distribution functions [27] and the correspondingαs. We present the
percentage variation when factorisation and renormalisation scales are independently as well as

6
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mH NNLO µR µR,3 µF µ NNLOµ PDF N3LOsv µR

120 19.98 +10.89
−10.46

+16.81
−16.13

−0.50
+0.58

+10.47
−9.93 22.07 +2.49

−3.12 20.83 +0.12
−2.46

121 19.64 +10.87
−10.45

+16.77
−16.10

−0.48
+0.57

+10.46
−9.93 21.69 +2.49

−3.12 20.47 +0.11
−2.41

122 19.31 +10.84
−10.43

+16.73
−16.07

−0.46
+0.55

+10.45
−9.93 21.33 +2.50

−3.12 20.13 +0.10
−2.37

123 18.99 +10.82
−10.41

+16.70
−16.04

−0.43
+0.53

+10.44
−9.93 20.97 +2.50

−3.12 19.79 +0.10
−2.32

124 18.68 +10.80
−10.39

+16.66
−16.01

−0.41
+0.51

+10.43
−9.94 20.62 +2.51

−3.12 19.46 +0.09
−2.28

125 18.37 +10.77
−10.37

+16.63
−15.99

−0.39
+0.50

+10.43
−9.94 20.28 +2.51

−3.13 19.13 +0.08
−2.24

126 18.07 +10.75
−10.35

+16.59
−15.96

−0.37
+0.47

+10.42
−9.94 19.95 +2.52

−3.13 18.82 +0.07
−2.19

127 17.78 +10.73
−10.33

+16.56
−15.93

−0.35
+0.45

+10.41
−9.95 19.63 +2.52

−3.13 18.51 +0.06
−2.15

128 17.49 +10.71
−10.31

+16.52
−15.91

−0.33
+0.42

+10.41
−9.96 19.31 +2.53

−3.13 18.21 +0.05
−2.10

129 17.21 +10.68
−10.29

+16.47
−15.88

−0.30
+0.34

+10.40
−10.01 19.00 +2.53

−3.13 17.91 +0.04
−2.06

Table 1: NNLO and N3LOsv corrected Higgs production cross sections for
√

S = 8 TeV as a function of
Higgs massmH using MSTW parton distribution functions. The percentage variations when factorisation
and renormalisation scales which are independently as wellas simultaneously varied betweenmH/2 and
2mH andmH/3 and 3mH (denoted byµR,3) are presented. Those due to the choice of the parton distribution
functions within MSTW are also given.

mH NNLO µR µR,3 µF µ NNLOµ PDF N3LOsv µR

120 18.51 +10.18
−9.91

+15.67
−15.32

−0.24
+0.37

+9.93
−9.63 20.35 ±4.27 21.04 +0.06

−2.39

121 18.18 +10.13
−9.88

+15.58
−15.28

−0.10
+0.40

+10.05
−9.58 20.00 ±4.25 20.62 +0.17

−2.28

122 17.89 +10.15
−9.88

+15.62
−15.28

−0.20
+0.34

+9.91
−9.63 19.66 ±4.35 20.32 +0.09

−2.29

123 17.58 +10.13
−9.86

+15.59
−15.25

−0.18
+0.33

+9.91
−9.63 19.33 ±4.40 19.97 +0.10

−2.25

124 17.29 +10.11
−9.85

+15.57
−15.23

−0.16
+0.31

+9.90
−9.64 19.00 ±4.43 19.63 +0.09

−2.21

125 16.99 +10.08
−9.83

+15.52
−15.20

−0.12
+0.28

+9.91
−9.65 18.67 ±4.75 19.28 +0.12

−2.15

126 16.71 +10.06
−9.81

+15.49
−15.17

−0.13
+0.25

+9.87
−9.66 18.36 ±4.54 18.96 +0.13

−2.11

127 16.43 +10.04
−9.79

+15.46
−15.15

−0.03
+0.27

+9.96
−9.63 18.07 ±4.26 18.64 +0.14

−2.06

128 16.16 +10.01
−9.77

+15.41
−15.12

−0.01
+0.26

+9.99
−9.63 17.77 ±4.69 18.32 +0.14

−2.02

129 15.91 +10.02
−9.77

+15.42
−15.11

−0.08
+0.05

+9.85
−9.79 17.48 ±4.62 18.04 +0.15

−1.98

Table 2: Same as table.1 but with ABM parton distribution functions

simultaneously varied betweenmH/2 and 2mH (named byµR,µF ,µ respectively). The column
denoted byµR,3 is obtained by varying the renormalisation scale in the range mH/3≤ µR ≤ 3mH .
In the column denoted by NNLOµ , the cross sections are obtained for a fixed scaleµR = µF =mH/2
which is supposed to mimic the NNLL threshold resummed results. Also we have presented the
percentage variation of the cross sections due to the choiceof the parton distribution functions
within MSTW (denoted by PDF). In the last column, we have listed the percentage variation of
the cross section when the renormalisation scale is in the rangemH/2≤ µR ≤ 2mH . For N3LOsv,
we have used NNLO PDFs but four loop correctedαs because N3LOsv PDFs are not yet available.
This approximation is still okay because only mildµF dependence is seen at NNLO level. In
table.2 we present similar results using ABM11 parton distribution functions [28]. We find that
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mH NNLO N3LOsv

MSTW ABM CT NNPDF MSTW ABM CT NNPDF

120 19.98 18.51 19.86 21.00 20.83 21.04 20.26 20.91

121 19.64 18.18 19.52 20.65 20.47 20.62 19.91 20.56

122 19.31 17.89 19.20 20.30 20.13 20.32 19.57 20.21

123 18.99 17.58 18.88 19.96 19.79 19.97 19.24 19.87

124 18.68 17.29 18.57 19.63 19.46 19.63 18.92 19.54

125 18.37 16.99 18.27 19.31 19.13 19.28 18.61 19.21

126 18.07 16.71 17.97 18.99 18.82 18.96 18.31 18.89

127 17.78 16.43 17.68 18.66 18.51 18.64 18.01 18.53

128 17.49 16.16 17.39 18.52 18.21 18.32 17.72 18.61

129 17.21 15.91 17.12 18.09 17.91 18.04 17.43 17.99

Table 3: Higgs production cross section as a function ofmH using MSTW,ABM, CT and NNPDF parton
distribution functions (in particular their central pdfs).

the renormalisation scale gives 10% variation ifµR is varied in the rangemH/2≤ µR ≤ 2mH and
increases to 16% in the rangemH/3≤ µR ≤ 3mH indicating that the NNLO corrected cross section
does not sufficiently stabilise the cross section warrenting a full N3LO corrected results. As is clear
from the last column, the N3LOsv corrected results show significant reduction inµR dependence. In
table.3 we present NNLO and N3LOsv corrected Higgs production cross sections using CT10 [29]
and NNPDF [30] along with results obtained with MSTW and ABM PDFs to compare the results
from various PDF groups. We have chosenµR = µF = mH . With respect to the MSTW predictions,
ABM gives 7.5% smaller cross sections, CT gives 0.5% smaller cross sections and NNPDF gives
5% larger cross sections. At N3LOsv level, we find that ABM give 0.8% larger cross sections while
CT gives 2.7% smaller cross sections and NNPDF gives 0.41% larger cross sections. Surprisingly
they are all very close to each other over the entire mass range considered here.

In this article, we have updated the Higgs production cross sections at NNLO level computed
in the large top mass limit using recent parton density sets.We have also studied the role of
N3LO soft-plus-virtual effects to reduce the renormalisation scale uncertainty. We find that the
renormalisation scale dependence is much larger than the factorisation scale dependence at NNLO
level and the N3LO (soft-plus-virtual) corrections reduce the renormalisation scale dependence
considerably. We also find that the PDF uncertainty is significant not only within a given PDF set,
but also among various sets.

Acknowledgement: We thank S. Alekhin and J. Blümlein for their help on ABM PDF sets.
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