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three-loop level. At each loop order, the form factor is expressed as a linear combination of only

a handful scalar integrals, with small integer coefficients. Working in dimensional regularisation,

the expansion coefficients of each integral exhibit homogeneous transcendentality in the Riemann

ζ -function. We find that the logarithm of the form factor reproduces the correct values of the cusp

and collinear anomalous dimensions. Moreover, the form factor in N = 4 super Yang-Mills can
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1. Introduction and definition

In recent years the investigation of scattering amplitudesin gauge theories – in particular
N = 4 super Yang-Mills (SYM) theory – has experienced tremendous progress, and revealed a lot
of insight into their structure, see [1] for a review.

Quantities closely related to scattering amplitudes are form factors. For example, planar am-
plitudes can be factorised into an infrared divergent part,given by a product of form factors, and
an infrared finite remainder [2]. The relation to form factors makes it possible to give an operator
definition of the latter. In addition, one observes that bothscattering amplitudes and form factors
have uniform degree of transcendentality in their loop and/or ε-expansion.

For both, the planar four-particle amplitude and the form factor, the general form of the result
is known in principle. For the former, this is due to dual conformal symmetry, for the latter it is
due to the exponentiation of infrared divergences. However, it is a non-trivial task to obtain these a
priori known results from an explicit linear combination ofloop integrals. The final result, however,
is simple and suggests that there should be more structure hidden in the loop integral expressions.
Hence by studying them further one might gain insights into better ways of evaluating them.

Despite the apparent simpler structure of form factors compared to scattering amplitudes (the
former have a trivial scale dependence), less is known aboutthe loop expansion of form factors in
N = 4 SYM than about scattering amplitudes. For example, the calculation of the planar four-
point amplitude has been carried out to the four-loop order,see e.g. [3]. On the other hand, the
Sudakov (or scalar) form factor inN = 4 SYM has long been known only to two loops owing to
a calculation by van Neerven [4], and has only recently been extended to one higher loop [5].

Although generalisations of the Sudakov form factor to the case of more external on-shell legs
and different composite operators have been discussed recently [6, 7], we will restrict ourselves in
the present article to the perturbative expansion of the Sudakov form factor discussed in [4,5].

We start by introducing the operator

O = Tr(φ12φ12) , (1.1)

where the scalar fieldsφAB are in the representation6 of SU(4), andφAB= φa
ABTa, with Ta being the

generators ofSU(N) in the fundamental representation. The operatorO is a colour singlet and has
zero anomalous dimension. In terms ofO the form factor is given by

FS = 〈φa
34(p1)φb

34(p2)O〉 ≡ Tr(TaTb)FS. (1.2)

The statesφa
34(p1) and φb

34(p2) are in the adjoint representation, and the outgoing momentap1

and p2 are massless and on-shell, i.e.p2
1 = p2

2 = 0, andq2 ≡ (p1 + p2)
2. In order to regularise

IR divergences associated with the on-shell legs we work in dimensional regularisation withD =

4−2ε . In order to facilitate the presentation of the results in sections 3 and 4 we introduce two more
quantities, the first one being the dimensionless variablex = µ2/(−q2 − iη) , with infinitesimal
η > 0. The second quantity is the ’t Hooft couplinga = (g2 N)/(8π2)(4π)ε e−εγE , whereg is
the gauge coupling ofN = 4 SYM, N is the number of colours, andγE ≈ 0.5772 is the Euler-
Mascheroni constant. The loop-expansion of the form factornow assumes the following form,

FS = 1+axε F(1)
S +a2x2ε F(2)

S +a3 x3ε F (3)
S +O(a4) . (1.3)
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Figure 1: Two-particle cuts up to three loops. The numbers inside the circles indicate the respective number
of loops in the form factors and four-particle scattering amplitudes.

The superscripts denote the loop-order, and we normalised the tree-level contribution to unity.

Up to the three-loop level, theL-loop form factorF(L)
S is strictly proportional toNL, i.e. there

is only the leading-in-colour contribution. This changes at four loops since the quartic Casimir
(dabcd)

2 can appear. Whether or not the latter will actually be present at four loops is another very
interesting related question, and has to do with the colour dependence of infrared divergences in
gauge theories, see e.g. [8] and references therein.

2. Derivation of the form factor from unitarity cuts

We will use the method of unitarity cuts [9, 10] to derive an expression for the Sudakov form
factor inN = 4 SYM in terms of scalar loop integrals. We will apply two-particle cuts, as well
as generalised cuts. The two-particle cuts are displayed schematically in Fig. 1. At a given loop
order L ≥ 1 one has to consider all contributions from cuts of them-loop form factor with the
(L−1−m)-loop four-particle scattering amplitude, withm= 0, . . . ,L−1. The respective values
are shown inside the circles in Fig. 1.

Let us derive the one-loop result explicitly. We follow the notations for unitarity cuts of
ref. [11]. We have to compute the two-particle cut (1a) shownin Fig. 1. It is given by

F
1−loop
S

∣

∣

∣

cut(1a)
=

∫

∑
P1,P2

dDk
(2π)D

i

ℓ2
2

F
tree
S (−ℓ1,−ℓ2)

i

ℓ2
1

A
tree
4 (ℓ2, ℓ1, p1, p2)

∣

∣

∣

ℓ2
1=ℓ2

2=0
, (2.1)

whereℓ1 andℓ2 are the momenta of the cut legs, and the sum runs over all possible particles across
the cut. The four-particle tree ampliutdeA tree

4 (ℓ2, ℓ1, p1, p2) is given by

A
tree

4 = g2µ2ε ∑
σ∈S4/Z4

Tr(Taσ(1)Taσ(2)Taσ(3)Taσ(4))Atree
4;1;1(σ(1),σ(2),σ(3),σ(4)) , (2.2)
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with the ‘partial amplitudes’Atree
4;1,1(φ12(1),φ12(2),φ34(3),φ34(4)) =−is12/s23 . The tree-level form

factor is simply given by

F
tree
S (−ℓ1,−ℓ2) = Tr(TaTb) . (2.3)

With our choice of external states, only scalars can appear as intermediate particles, and we do not
need the spinor helicity formalism. With this, Eq. (2.1) becomes

F
1−loop
S

∣

∣

∣

cut(1a)
= −2g2µ2ε N q2 Tr(TaTb)

∫

dDk
i(2π)D

1
k2(k+ p1)2(k− p2)2

∣

∣

∣

cut(1a)

= −2g2µ2ε N q2 Tr(TaTb)D1

∣

∣

∣

cut(1a)
, (2.4)

where we have identified the cut of the one-loop form factor with the cut of the one-loop triangle
integralD1, see Fig. 2. It turns out that this result is exact, i.e. that we can remove the “cut (1a)” in
Eq. (2.4) and get

F1−loop
S = g2Nµ2ε(−q2)2D1 . (2.5)

At two loops, following analogous steps, the result for the form factor is given by [4],

F2−loop
S = g4N2µ4ε (−q2)2[4E1+E2

]

, (2.6)

where the diagramsE1 andE2 are also shown in Fig. 2. The unitarity cut (2b) of Fig. 1 detects only
the presence of the planar integralE1. The unitarity cut (2a) of Fig. 1 reveals – besidesE1 – the
non-planar integralE2. The appearance of the latter stems from the fact that we haveto use the full
one-loop four-point amplitude

A
1−loop

4 = g4µ4ε ∑
σ∈S4/Z4

NTr(Taσ(1)Taσ(2)Taσ(3)Taσ(4))A1−loop
4;1,1 (σ(1),σ(2),σ(3),σ(4))

+g4µ4ε ∑
σ∈S4/Z3

2

Tr(Taσ(1)Taσ(2))Tr(Taσ(3)Taσ(4))A1−loop
4;1,3 (σ(1),σ(2),σ(3),σ(4)) , (2.7)

which in addition to single trace terms also contains doubletrace terms. The latter are subleading
in the number of coloursN. However, the colour algebra gives rise to another factor ofN for those
terms, so that they contribute to the form factor at the leading colour, just like the single trace terms.

Finally, at three loops the two-particle cuts are given by cuts (3a) – (3c) of Fig. 1. One finds
for their total contribution

F3−loop
S

∣

∣

∣

2−part. cut
= g6 µ6ε N3(−q2)2[8(−q2)F1−2F2+4F3+4F4−4F5−4F6−4F8

]

∣

∣

∣

2−part. cut
.

(2.8)
The integralsFi are given in Fig. 3. It is remarkable that the coefficients of all integrals are small
integer numbers. In order to detect also integrals not having any two-particle cuts we study gener-
alised cuts, where we cut all or all but one propagator. This serves as a cross-check on the results
already obtained above and detects further integrals such as F9. The total result at three loops then
assumes the form

F3−loop
S = g6 µ6ε N3(−q2)2[8(−q2)F1−2F2+4F3+4F4−4F5−4F6−4F8+2F9

]

. (2.9)
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D1 E1 E2

Figure 2: Diagrams that contribute to the one-loop and two-loop form factor inN = 4 SYM. All internal
lines are massless.

3. Final result for the form factor up to three loops

Using unitarity cut methods described in the previous section we obtain the following result
for theN = 4 SYM form factor up to three loops [5].

FS = 1+g2N µ2ε · (−q2) ·2D1+g4N2 µ4ε · (−q2)2 · [4E1+E2]

+g6 N3 µ6ε · (−q2)2 ·
[

8(−q2)F1−2F2+4F3+4F4−4F5−4F6−4F8+2F9
]

+O(g8) . (3.1)

All diagrams are shown in Figs. 2 and 3. It is remarkable that the form factor up to three loops is
given by a small number of scalar loop integrals, each havinga small integer coefficient. Working
in dimensional regularisation withD = 4− 2ε , the Laurent-series expansions of all diagrams are
known from the calculation of the QCD quark and gluon form factor [12–18]. They yield for the
Sudakov form factor inN = 4 SYM

F(1)
S = −

1
ε2 +

π2

12
+

7ζ3

3
ε +

47π4

1440
ε2+ ε3

(

31ζ5

5
−

7π2ζ3

36

)

+ ε4
(

949π6

120960
−

49ζ 2
3

18

)

+ε5
(

−
329π4ζ3

4320
−

31π2ζ5

60
+

127ζ7

7

)

+ ε6
(

49π2ζ 2
3

216
−

217ζ3ζ5

15
+

18593π8

9676800

)

+O(ε7) , (3.2)

F(2)
S = +

1
2ε4 −

π2

24ε2 −
25ζ3

12ε
−

7π4

240
+ ε

(

23π2ζ3

72
+

71ζ5

20

)

+ ε2
(

901ζ 2
3

36
+

257π6

6720

)

+ε3
(

1291π4ζ3

1440
−

313π2ζ5

120
+

3169ζ7

14

)

+ε4
(

−66ζ5,3+
845ζ3ζ5

6
−

1547π2ζ 2
3

216
+

50419π8

518400

)

+O(ε5) , (3.3)

F(3)
S = −

1
6ε6 +

11ζ3

12ε3 +
247π4

25920ε2 +
1
ε

(

−
85π2ζ3

432
−

439ζ5

60

)

−
883ζ 2

3

36
−

22523π6

466560
+ ε

(

−
47803π4ζ3

51840
+

2449π2ζ5

432
−

385579ζ7

1008

)

+ε2
(

1549
45

ζ5,3−
22499ζ3ζ5

30
+

496π2ζ 2
3

27
−

1183759981π8

7838208000

)

+O(ε3) . (3.4)
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F1
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pb

F2

pa

pb

F3

pa

pb

F4

pa

pb

F5

pa

pb

F6 F8 F9

Figure 3: Diagrams that contribute to the three-loop form factor inN = 4 SYM. All internal lines are
massless.pa andpb on arrow lines denote an irreducible scalar product(pa+ pb)

2 in the numerator.

The coefficients of theε-expansions are of increasing transcendentality (or weight) in the Riemann
ζ -function1. One recognizes that each coefficient in the above formulas has homogeneous weight;
a property that does not only hold true for the final result, but for each of the diagrams in Eq. (3.1)
contributing to it. We also remark that in order to obtain allfinite pieces of the logarithm of the
form factor (see section 4) we need theε-expansion through terms of transcendental weight six.
We emphasize that our expressions contain two more orders inε and therefore contain already all
information required for exponentiation at four loops.

Let us elaborate here on yet another very interesting observation, namely the leading transcen-
dentality principle [19]. To this end, let us specify the QCDquark and gluon form factor – which
do not have the homogeneous-weight property – to a supersymmetricYang-Mills theory with a
bosonic and fermionic degree of freedom in the same colour representation. This is achieved by
settingCA =CF = 2TF andnf = 1 in the QCD result [14]. We find that with this adjustment the
leading (i.e. highest) transcendentality pieces of the quark and gluon form factor become equal,
and moreover coincide with the Sudakov form factor inN = 4 SYM presented here. This equality
holds true at one, two, and three loops and in all coefficientsup to transcendental weight eight, and
it serves as an important check of our result.

4. Logarithm of the form factor

The logarithm of the form factor is given by

ln(FS) = ln
(

1+axε F(1)
S +a2 x2ε F (2)

S +a3x3ε F(3)
S +O(a4)

)

1One assigns toπ i the weighti and toζk the weightk. Their product has weighti+k.

6
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= axε F (1)
S +a2x2ε

[

F(2)
S −

1
2

(

F(1)
S

)2
]

+a3x3ε
[

F(3)
S −F(1)

S F(2)
S +

1
3

(

F (1)
S

)3
]

+O(a4) . (4.1)

Plugging in the results from Eqs. (3.2) – (3.4) we verify the cancellation of all poles higher than
1/ε2, as expected from exponentiation of infrared divergences.The logarithm of the form factor
therefore has the generic structure [20]

ln(FS) =
∞

∑
L=1

aL xLε

[

−
γ(L)

4(Lε)2 −
G

(L)
0

2Lε

]

+O(ε0) , (4.2)

and we confirm up toL = 3 theL-loop cuspγ(L) and collinearG (L)
0 anomalous dimensions [21]

γ(a) =
∞

∑
L=1

aLγ(L) = 4a−4ζ2a2+22ζ4a3+O(a4) , (4.3)

G0(a) =
∞

∑
L=1

aL
G

(L)
0 =−ζ3a2+

(

4ζ5+
10
3

ζ2ζ3

)

a3+O(a4) . (4.4)

5. Ultraviolet divergences in higher dimensions

The Sudakov form factor is ultraviolet (UV) finite inD = 4 dimensions. One can now study
the form factor as a function of the numberD of space-time dimensions and investigate at whichD
it first develops UV divergences. This particularD is called “critical dimension” and depends on
the number of loops. Hence we denote it byDc(L). The knowledge ofDc at a given loop order is
useful since it can allow for a cross-check of computations,or constrain the types of loop integrals
that can appear (or, even more important, thatcannotappear). There is a bound onDc based on
power counting for supergraphs and the background field method which reads [22,23],

Dc(L) ≥ 4+
2(N −1)

L
= 4+

4
L
, L > 1. (5.1)

The formula is valid forL > 1 only. ForD < Dc the theory is UV finite. We plugged inN = 3
in (5.1) since hereN denotes on the number of supersymmetries that can be realized off-shell.

We will now investigate whether the lower bound (5.1) forDc is saturated, or if the formula
gives a bound that is too conservative. There is no statementfrom Eq. (5.1) for the one-loop case,
but one can easily see from Fig. 2 thatDc(L = 1) = 6. From the same Figure, one can see that also
at two-loops we haveDc(L = 2) = 6, which follows from naïve power counting. Hence at two-
loops the bound (5.1) is indeed saturated. At three loops, Eq. (5.1) becomesDc ≥ 16/3. We will
now investigate if we haveDc(L = 3) = 16/3 or if the form factor at three loops is better behaved
in the UV than expected from (5.1). To this end we take the UV limit of the three-loop term of
Eq. (3.1) by giving all propagators (and also all numerators) a common massm and by nullifying
the external momenta. This is possible since there are no sub-divergences inD = 16/3. In this
limit we get [5]

F3−loop
S ∝ (−q2) [8F1+2F∗

3 +2F∗
4 ]−2F2+4F∗

5 −2F9 . (5.2)

where the asterisk onF3 andF4 indicates the respective integral with unit numerator.F∗
5 is obtained

from F5 by replacing in the numerator(pF5
a + pF5

b )2 −→ (pF6
a + pF6

b − pF5
a + pF5

b )2. The first three

7
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integrals are finite by naïve power counting, and the last three integrals become equal in the afore-
mentioned UV limit, and cancel due to their pre-factors. This renders the three-loop form factor
finite in D= 16/3 dimensions. It is therefore better behaved in the UV than suggested by Eq. (5.1).

The next value ofD where the form factor can – and indeed does – develop UV divergences
is Dc(L = 3) = 6. We have therefore foundDc(L) = 6 for L = 1, 2, 3. We now take a closer
look at the UV properties of the form factor in six dimensions. SpecifyingD = 6−2ε and taking
the aforementioned UV limit we find that the leading UV pole atL loops is 1/εL. Moreover, the
leading pole is always produced by theL-loop planar ladder diagram. All other diagrams start at
most at a subleading pole inε . When considering log(FS) in the UV limit all higher poles cancel
and there are only simple 1/ε poles up to three loops.

An equation similar to (5.1) holds also for scattering amplitudes in the UV limit. In this case
one even finds the stronger boundDc(L)≥ 4+6/L, which is saturated at two and three loops [3]. At
one loop one findsDc(L = 1) = 8 for the four-particle scattering amplitude. So despite the fact that
the form factor is better behaved in the UV than expected, four-particle scattering amplitudes are
even better behaved in the UV than the form factor. One reasonfor this is the fact that amplitudes,
at least in the planar limit, are dual conformal invariant, whereas form factors are not. Another
reason is the fact that inD = 6 the operatorO in (1.1) has the countertermg2

� tr (φ2), and other
operators having the same quantum numbers; and operator mixing can occur at one loop.

6. Conclusion

We presented the results for the Sudakov form factor inN = 4 super Yang-Mills theory up
to the three-loop level. We employed the unitarity-based method to derive the answer in terms of
both, planar and non-planar loop integrals. At each loop order, the form factor is expressed as a
linear combination of only a handful scalar integrals, withsmall integer coefficients. We evaluated
the form factor in dimensional regularisation toO(ε8−2L) (L is the number of loops) and found that
the expansion coefficients of each integral exhibit homogeneous transcendentality in the Riemann
ζ -function. Moreover, we verified the exponentiation of infrared divergences, and reproduced the
correct values of the cusp and collinear anomalous dimensions.

In addition, we observed that the heuristic leading transcendentality principle that relates
anomalous dimensions in QCD with those inN = 4 SYM also holds for the form factor. We
verified this principle to three loops, and through to terms of transcendentality eight.

Finally, we studied the UV behaviour of the form factor in higher dimensions, and found that
the critical dimension ist given byDc(L) = 6 up to three loops. This means that the three-loop
result is better behaved in the UV than suggested by Eq. (5.1). In particular, it is finite inD = 16/3
dimensions.

An interesting further direction of the present calculation would be its extension to four loops,
since it would allow to get insight into the non-planar colour structure. Whether the anomalous
dimension associated with the quartic Casimir(dabcd)

2 vanishes is a hot topic and has to do with
the general question of colour dependence of infrared divergences in gauge theories [8].
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