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1. Introduction and definition

In recent years the investigation of scattering amplituilegauge theories — in particular
A =4 super Yang-Mills (SYM) theory — has experienced tremesdwogress, and revealed a lot
of insight into their structure, see [1] for a review.

Quantities closely related to scattering amplitudes ana flactors. For example, planar am-
plitudes can be factorised into an infrared divergent maven by a product of form factors, and
an infrared finite remainder [2]. The relation to form fastonakes it possible to give an operator
definition of the latter. In addition, one observes that ksatattering amplitudes and form factors
have uniform degree of transcendentality in their loop ane/expansion.

For both, the planar four-particle amplitude and the foratdg the general form of the result
is known in principle. For the former, this is due to dual confial symmetry, for the latter it is
due to the exponentiation of infrared divergences. Howétisra non-trivial task to obtain these a
priori known results from an explicit linear combinationlodp integrals. The final result, however,
is simple and suggests that there should be more structdderin the loop integral expressions.
Hence by studying them further one might gain insights irgtidy ways of evaluating them.

Despite the apparent simpler structure of form factors @megbto scattering amplitudes (the
former have a trivial scale dependence), less is known aheudbop expansion of form factors in
A =4 SYM than about scattering amplitudes. For example, theutation of the planar four-
point amplitude has been carried out to the four-loop orsleg, e.g. [3]. On the other hand, the
Sudakov (or scalar) form factor in” = 4 SYM has long been known only to two loops owing to
a calculation by van Neerven [4], and has only recently be&meed to one higher loop [5].

Although generalisations of the Sudakov form factor to theecof more external on-shell legs
and different composite operators have been discussedtief® 7], we will restrict ourselves in
the present article to the perturbative expansion of theludform factor discussed in [4, 5].

We start by introducing the operator

O = Tr(@u2¢12) , (1.1)

where the scalar fieldgg are in the representatidof SU(4), andgng = @Rz Ta, With T, being the
generators o8U(N) in the fundamental representation. The operatas a colour singlet and has
zero anomalous dimension. In terms@the form factor is given by

T.7 = (Ga(PL)Pu(P2) O) = Tr(TTP)Fs. (1.2)

The statesg,(p1) and q&(pz) are in the adjoint representation, and the outgoing mompnta
and p, are massless and on-shell, ig.= p3 = 0, andg? = (py + p2)2. In order to regularise
IR divergences associated with the on-shell legs we worknredsional regularisation with =
4—2¢. Inorder to facilitate the presentation of the results rtisas 3 and 4 we introduce two more
quantities, the first one being the dimensionless variableu?/(—g? —in), with infinitesimal

n > 0. The second quantity is the 't Hooft couplirmg= (g°N)/(8m) (4m)¢ e %, whereg is
the gauge coupling of#” = 4 SYM, N is the number of colours, angt ~ 0.5772 is the Euler-
Mascheroni constant. The loop-expansion of the form fawtov assumes the following form,

Fs = 1+axX R + @& F? +aF F + o(a%) . (1.3)



The Sudakov form factor to three loops.ifi = 4 super Yang-Mills Tobias Huber

Ll :
pl ‘x Ge
P2
1 Z 1 1

]:trcc e Aircc ]:tree I A}l—lfmp ]_-l—lovp I Af{"ee
(1a) (2a) (20)

OHO

Ftree I Ai*lm’l’ Fl-loop I Ai*loo}” F2—loop I _AZTEE
(30) (3h) (3¢)

Figure 1: Two-particle cuts up to three loops. The numbers insideiticées indicate the respective number
of loops in the form factors and four-particle scatteringoéitndes.

The superscripts denote the loop-order, and we normalmetde-level contribution to unity.

Up to the three-loop level, the-loop form factorFS(L) is strictly proportional td\', i.e. there
is only the leading-in-colour contribution. This changégaaur loops since the quartic Casimir
(dapcd)? can appear. Whether or not the latter will actually be preaefour loops is another very
interesting related question, and has to do with the coleypeddence of infrared divergences in
gauge theories, see e.g. [8] and references therein.

2. Derivation of the form factor from unitarity cuts

We will use the method of unitarity cuts [9, 10] to derive aprssion for the Sudakov form
factor in.#" =4 SYM in terms of scalar loop integrals. We will apply two-pele cuts, as well
as generalised cuts. The two-particle cuts are displayeensatically in Fig. 1. At a given loop
orderL > 1 one has to consider all contributions from cuts of thdoop form factor with the
(L —1— m)-loop four-particle scattering amplitude, with=0,...,L — 1. The respective values
are shown inside the circles in Fig. 1.

Let us derive the one-loop result explicitly. We follow thetations for unitarity cuts of
ref. [11]. We have to compute the two-particle cut (1a) shawig. 1. It is given by

de I ftree I
- —0o) — oytree 21
cut1a) / Z 7)D gz (—l1,—L2) 2% (€2,01, P1, P2) A0’ (2.1)

o1-loop
Z

where/, and/, are the momenta of the cut legs, and the sum runs over allp@gsrticles across
the cut. The four-particle tree ampliutdg™®(¢,, £1, p1, p2) is given by

A =gy Tr(TRoToa T Tow)AS (0(1),0(2),0(3),0(4)), (2.2)
0€S/Zy
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with the ‘partial amplitudesAH?fl((plz(l), ©2(2), 134(3), @34(4)) = —is12/S3. The tree-level form
factor is simply given by
FYEE(—L1,—lp) = Tr(T2TP). (2.3)

With our choice of external states, only scalars can appeertermediate particles, and we do not
need the spinor helicity formalism. With this, Eq. (2.1) bews

dPk 1

(2m)P k2(k+ p1)2(k— p2)2 leut(1a)

g -loop = 20PN Tr(TATP /
Jy cut(1a) gH Q2 I’( ) i

— 2PUEN@THTATY) Dl‘ (2.4)

cut(1a) ’
where we have identified the cut of the one-loop form factdhwhe cut of the one-loop triangle
integralD1, see Fig. 2. It turns out that this result is exact, i.e. thaican remove the “cut (1a)” in
Eq. (2.4) and get

Fo P = ®’Nu%(—¢?)2D;. (2.5)

At two loops, following analogous steps, the result for thwrf factor is given by [4],
FS P = o N* (—?)*[4E1 + Eo] (2.6)

where the diagrami&; andE; are also shown in Fig. 2. The unitarity cut (2b) of Fig. 1 detemly
the presence of the planar integEl. The unitarity cut (2a) of Fig. 1 reveals — besides— the
non-planar integrdk,. The appearance of the latter stems from the fact that wetbawse the full
one-loop four-point amplitude

oy 0P = ghu® S NTHTR0 T T T6 ) Ay 2P (0 (1), 0(2),0(3), 0(4))
0ES/2y
+gtu® Y Tr(TwT%e ) Tr(T%e T )AL 8P(0(1),0(2),0(3),0(4),  (2.7)
0€S%/Z3

which in addition to single trace terms also contains dotitalee terms. The latter are subleading
in the number of colourbl. However, the colour algebra gives rise to another factd fafr those
terms, so that they contribute to the form factor at the legqdblour, just like the single trace terms.

Finally, at three loops the two-particle cuts are given bis¢8a) — (3c) of Fig. 1. One finds
for their total contribution

S = P U N3 (—q?)?[8(—P) FL — 2F> + 4F3 + 4F4 — 4Fs — 4F — 4F] (

2—part cut 2—part cut’

(2.8)
The integralds are given in Fig. 3. It is remarkable that the coefficientsIbindegrals are small
integer numbers. In order to detect also integrals not lgaaity two-particle cuts we study gener-
alised cuts, where we cut all or all but one propagator. Téiges as a cross-check on the results
already obtained above and detects further integrals s dhe total result at three loops then
assumes the form

FS3—|oop _ gsuse N3(—q2)2 [8(—(]2)F]_—2F2+4F3+4F4_4F5_4F6_4F8+2F9] . (2.9)
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Figure 2: Diagrams that contribute to the one-loop and two-loop faastdr in.#" = 4 SYM. All internal
lines are massless.

3. Final result for the form factor up to three loops

Using unitarity cut methods described in the previous eacive obtain the following result
for the 4" =4 SYM form factor up to three loops [5].

Fs = 1+ @ Npu® - (—f) - 2D+ g*N?p* - (—0?)?- [4E1 + E))
+ N3 % - (—0?)?- [8(—0%) FL— 2Fo + 4F3+ 4F, — 4Fs — 4Fs — 4Fg+ 2y
+0(dP). (3.1)

All diagrams are shown in Figs. 2 and 3. It is remarkable thatform factor up to three loops is
given by a small number of scalar loop integrals, each haaismall integer coefficient. Working

in dimensional regularisation with = 4 — 2¢, the Laurent-series expansions of all diagrams are
known from the calculation of the QCD quark and gluon forntda¢12—18]. They yield for the
Sudakov form factor int” =4 SYM

) 1 m 7 At , (31 TP o[ 9490 4972
SR I LUSA - P LLLN 2365 it
s 2 1273 1220 TE\ 5 36 )¢ (120080 18

LS (_ 329'{z  31¢s N 127z7> e (49112(32 | 217385 N 18593n8>

4320 60 7 216 15 9676800
+0(e7), (3.2)

2) 1 w253 7 e 2323 N 715 g2 90172 N 257m°
2e4  24e2  12¢ 240 72 20 36 6720
£ (1291;1453 B 31325 N 3169{7>

1440 120 14

8450575 1547m°2 504197
41 _ 3 5
+€ ( 66{53+ 5 516 18400 +0(€), (3.3)
E® _ _i+ 1175 N 247 +} _85rr2(3 _ 43%s
S 66 ' 123 ' 2502G¢2 ' ¢ 432 60
882 22523 e 4780373 N 2449705 3855747
36 466560 51840 432 1008
1549 22499375 496r?¢? 11837599818
2 3 3
g A — (€% . 3.4
¢ ( 25 3 30 27 7838208000 (£°) (34)
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Figure 3: Diagrams that contribute to the three-loop form factorih =4 SYM. All internal lines are
masslessp, andpy, on arrow lines denote an irreducible scalar prodpgt+ py)? in the numerator.

The coefficients of the-expansions are of increasing transcendentality (or vigigithe Riemann
{-function'. One recognizes that each coefficient in the above formaasibmogeneous weight;
a property that does not only hold true for the final result,foueach of the diagrams in Eq. (3.1)
contributing to it. We also remark that in order to obtainfallte pieces of the logarithm of the
form factor (see section 4) we need thwexpansion through terms of transcendental weight six.
We emphasize that our expressions contain two more orderaiil therefore contain already all
information required for exponentiation at four loops.

Let us elaborate here on yet another very interesting oagery namely the leading transcen-
dentality principle [19]. To this end, let us specify the Q@Dark and gluon form factor — which
do not have the homogeneous-weight property — to a supersymmérig-Mills theory with a
bosonic and fermionic degree of freedom in the same colquesentation. This is achieved by
settingCa = Cg = 2TF andn; = 1 in the QCD result [14]. We find that with this adjustment the
leading (i.e. highest) transcendentality pieces of thelgaad gluon form factor become equal,
and moreover coincide with the Sudakov form factorih= 4 SYM presented here. This equality
holds true at one, two, and three loops and in all coefficiept® transcendental weight eight, and
it serves as an important check of our result.

4. Logarithm of the form factor

The logarithm of the form factor is given by

In(Fs) = In (1+ axX R + a2 xR + a3 R + ﬁ(a“))

10ne assigns ta' the weighti and toZ, the weightk. Their product has weiglit+ k.
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2 3
— axX RV +alx® {FSQ) - % G ] +aix [F§3> ~FIRP + % (FS) }

+o(a% . (4.1)
Plugging in the results from Egs. (3.2) — (3.4) we verify tlamaellation of all poles higher than

1/€2, as expected from exponentiation of infrared divergenddse logarithm of the form factor
therefore has the generic structure [20]

0 L) g('—)
Lyl Y
In(Fs) = Lzla x-€ [— 2o 2e

+0(£% , (4.2)

and we confirm up th. = 3 theL-loop cuspy") and collineal%(L> anomalous dimensions [21]

00

v(@) = Y ay" = da—4aka’+ 220+ 0(a?) (4.3)
L=1

Ho(a) = 3 Ao = —geal+ <4z5 n 1—306263) 2+ 0(at) (4.9)
L=1

5. Ultraviolet divergences in higher dimensions

The Sudakov form factor is ultraviolet (UV) finite iD = 4 dimensions. One can now study
the form factor as a function of the numti2iof space-time dimensions and investigate at witich
it first develops UV divergences. This particularis called “critical dimension” and depends on
the number of loops. Hence we denote ity(L). The knowledge oD, at a given loop order is
useful since it can allow for a cross-check of computatiengonstrain the types of loop integrals
that can appear (or, even more important, tainotappear). There is a bound @ based on
power counting for supergraphs and the background fieldadethich reads [22, 23],

Dc(L) > 4+w = 4+§, L>1. (5.1)
The formula is valid forL > 1 only. ForD < D, the theory is UV finite. We plugged in/" = 3
in (5.1) since here/” denotes on the number of supersymmetries that can be kalizehell.

We will now investigate whether the lower bound (5.1) By is saturated, or if the formula
gives a bound that is too conservative. There is no statefrantEqg. (5.1) for the one-loop case,
but one can easily see from Fig. 2 tiat(L = 1) = 6. From the same Figure, one can see that also
at two-loops we hav®¢(L = 2) = 6, which follows from naive power counting. Hence at two-
loops the bound (5.1) is indeed saturated. At three loops(%Et) become®, > 16/3. We will
now investigate if we havB¢(L = 3) = 16/3 or if the form factor at three loops is better behaved
in the UV than expected from (5.1). To this end we take the UMtliof the three-loop term of
Eq. (3.1) by giving all propagators (and also all numergtarsommon massi and by nullifying
the external momenta. This is possible since there are nalisalmences irD = 16/3. In this
limit we get [5]

FS1°°P [ (—cP) [8F1 + 2F3 4 2F;] — 2Fa + 4F¢ — 2Fy. (5.2)

where the asterisk dfs andF, indicates the respective integral with unit numerakgris obtained
from Fs by replacing in the numeratdipf® + pi*)2 — (pfe + pi¥ — plF + pi°)2. The first three
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integrals are finite by naive power counting, and the lagietlmtegrals become equal in the afore-
mentioned UV limit, and cancel due to their pre-factors. sTit@nders the three-loop form factor
finite in D = 16/3 dimensions. It is therefore better behaved in the UV thagssted by Eq. (5.1).

The next value oD where the form factor can — and indeed does — develop UV divess
is D¢(L = 3) = 6. We have therefore founb¢(L) = 6 for L =1, 2, 3. We now take a closer
look at the UV properties of the form factor in six dimensioSpecifyingD = 6 — 2¢ and taking
the aforementioned UV limit we find that the leading UV pole.dbops is ¥&-. Moreover, the
leading pole is always produced by thdoop planar ladder diagram. All other diagrams start at
most at a subleading pole .1 When considering logd-s) in the UV limit all higher poles cancel
and there are only simple/& poles up to three loops.

An equation similar to (5.1) holds also for scattering amoples in the UV limit. In this case
one even finds the stronger boudg L) > 4+ 6/L, which is saturated at two and three loops [3]. At
one loop one find®¢(L = 1) = 8 for the four-particle scattering amplitude. So despiteféttt that
the form factor is better behaved in the UV than expected;-pauticle scattering amplitudes are
even better behaved in the UV than the form factor. One refsdhis is the fact that amplitudes,
at least in the planar limit, are dual conformal invarianheneas form factors are not. Another
reason is the fact that ib = 6 the operator’ in (1.1) has the counterterg? Otr (¢?), and other
operators having the same quantum numbers; and operatimrgnaian occur at one loop.

6. Conclusion

We presented the results for the Sudakov form factartin= 4 super Yang-Mills theory up
to the three-loop level. We employed the unitarity-basethogkbto derive the answer in terms of
both, planar and non-planar loop integrals. At each loogmrthe form factor is expressed as a
linear combination of only a handful scalar integrals, veithall integer coefficients. We evaluated
the form factor in dimensional regularisationd@ge®-2") (L is the number of loops) and found that
the expansion coefficients of each integral exhibit homeges transcendentality in the Riemann
{-function. Moreover, we verified the exponentiation of arrd divergences, and reproduced the
correct values of the cusp and collinear anomalous dimegsio

In addition, we observed that the heuristic leading tramdertality principle that relates
anomalous dimensions in QCD with those.ifi = 4 SYM also holds for the form factor. We
verified this principle to three loops, and through to terrhsanscendentality eight.

Finally, we studied the UV behaviour of the form factor in g dimensions, and found that
the critical dimension ist given bp;(L) = 6 up to three loops. This means that the three-loop
result is better behaved in the UV than suggested by Eq.. (B particular, it is finite inD = 16/3
dimensions.

An interesting further direction of the present calculatiwould be its extension to four loops,
since it would allow to get insight into the non-planar colstructure. Whether the anomalous
dimension associated with the quartic Casi(nli{bcd)z vanishes is a hot topic and has to do with
the general question of colour dependence of infrared girares in gauge theories [8].
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