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1. Introduction

The Konishi operator is defined as

K = tr
(
ΦIΦI) (1.1)

with ΦI (with I = 1, . . . ,6) in the adjoint representation of SU(Nc). It is the simplest unprotected
gauge invariant Wilson operator in N = 4 SYM, whose scaling dimension receives anomalous
contribution to all loops:

∆K = 2+ γK (a) = 2+
∞

∑̀
=1

a`γ(`)K

with a = g2Nc/(4π2) and

γK (a) = 3a−3a2 +
21
4

a3 −
(

39
4
− 9

4
ζ3 +

45
8

ζ5

)
a4

+

(
237
16

+
27
4

ζ3 −
81
16

ζ3
2 − 135

16
ζ5 +

945
32

ζ7

)
a5 +O(a6)+O(1/N2

c ) .

The five-loop correction recently evaluated in Ref. [1] has perfect agreement with calculations
based on integrability in AdS/CFT [2, 3, 4, 5].

The evaluation of Ref. [1] was based on the operator-product expansion (OPE) of two stress-
tensor multiplet operators

O(x1,y1)O(x2,y2) = cI
(Y1 ·Y2)

2

x4
12

I + cK (a)
(Y1 ·Y2)

2

(x2
12)

1−γK /2 K (x2)

+cO
(Y1 ·Y2)

x2
12

O IJ
20′(x2)+ . . . (1.2)

where x2 → x1,

O(x,y)≡ YI YJ O IJ
20′(x) = YI YJ tr

(
ΦI(x)ΦJ(x)

)
, (1.3)

O IJ
20′ = tr

(
ΦIΦJ

)
− 1

6 δ IJ tr
(
ΦKΦK

)
,

and YI are auxiliary SO(6) harmonic variables defined as (complex) null vectors, Y 2 ≡ YIYI = 0.
To obtain the Konishi anomalous dimension, the four-point correlation function of the op-

erators (1.3) in the double coincidence limit was evaluated [1]. The integrand of the four-point
correlation function was taken from the results of Refs. [6, 7] where it was constructed up to six
loops. As is typical for renormalization-group calculations, the evaluation of the Konishi anoma-
lous dimension was reduced in Ref. [1] to the evaluation of the pole part of a linear combination of
Feynman integrals.

Quite recently, the six- and seven-loop corrections to the Konishi anomalous dimension were
evaluated using integrability in AdS/CFT [8, 9]. What about extending the results of Ref. [1] to
higher loops? It is clear that the results of Refs. [6, 7] can be extended to the seven-loop level. So,
the feasibility of higher-loop quantum-field theoretical calculations depends on whether the tools
for Feynman integrals used in Ref. [1] can be applied. In the next three section, these tools are
briefly characterized and discussed, from this point of view.
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2. IRR

The pole part of the linear combination of five-loop Feynman integrals contributing to the
Konishi anomalous dimension was reduced [1] to a linear combination of four-loop integrals by
means of the coordinate-space version of the method of infrared rearrangement (IRR) [10]. The
IRR is a standard important tool in renormalization-group calculations because it provides the
possibility to reduce the number of loops by one in Feynman integrals necessary for the evaluation.
It was rediscovered several times – see, in particular, [11].

To describe the method, let us consider as an example the following four-loop integral in
Euclidean D−dimensional space-time (with D = 4−2ε)

I(x13) =
e4γε

π2D

∫
(x2

13)
4 dDx5 . . .dDx8

x2
15x2

16x2
17x2

18x2
35x2

36x2
37x2

38x2
56x2

68x2
78x2

57
, (2.1)

where xi j = xi − x j. The integral (2.1) has a simple pole in ε

I(x13) = (x2
13)

−4ε
[

C
ε
+O(ε0)

]
(2.2)

which comes from integration over the region where x5, . . . ,x8 are all close to x1 and from the
symmetrical region where x5, . . . ,x8 are all close to x3. Since the integration variables are true
coordinates in Euclidean space, the pole 1/ε has to be interpreted as an UV divergence.

In general, the UV divergences in coordinate space come from regions where the integrand
considered as a generalized function of xi (tempered distribution, i.e. linear functional on a space
of test functions) is ill-defined. In our example, the product of x2−factors in the denominator of
(2.1) turns out to be unintegrable in a vicinity of the two external points, x1 and x3. In the first case,
we consider the product

F(x1,x5, . . . ,x8) =
1

x2
15x2

16x2
17x2

18x2
56x2

68x2
78x2

57
(2.3)

as a tempered distribution. Its divergent part is described by an UV counterterm

∆(x1,x5, . . . ,x8) =
C
2ε

δ (x1 − x5) . . .δ (x1 − x8) , (2.4)

with the constant C determined below. Similar counterterm ∆(x3,x5, . . . ,x8) describes singular
behaviour of the integrand (2.1) in the vicinity of x3. Thus, the pole part of (2.1) is just twice the
factor C/(2ε) in (2.4)

I =
∫

dDx5 . . .dDx8 [∆(x1,x5, . . . ,x8)+∆(x3,x5, . . . ,x8)]+O(ε0) =
C
ε
+O(ε0) , (2.5)

leading to (2.2).
To evaluate the constant C in (2.4) we apply the infrared rearrangement (IRR) method orig-

inally proposed by Vladimirov in Ref. [10] in momentum space. It makes use of the fact that,
for an infrared finite but logarithmically UV-divergent Feynman integral without subdivergences,
the contribution of the counterterm is just a constant. The idea of IRR is to set the external mo-
menta to zero and then, in order to avoid the appearance of IR divergences, to introduce an external
momentum (or a mass) in such a way that the calculation becomes simpler.
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Let us apply the IRR method to (2.3) in coordinate space and treat the coordinates x1,x5 as
external and x6,x7,x8 as internal points. Notice that setting an external momentum to zero cor-
responds to integrating over the corresponding coordinate. Then, the constant C in (2.4) can be
obtained by integrating both sides of (2.3) with respect to internal points

F(x1,x5) =
∫ dDx5dDx6dDx7

x2
15x2

16x2
17x2

18x2
56x2

68x2
78x2

57
=

C
2ε

δ (x1 − x5)+O(ε0) . (2.6)

The integral on the left-hand side depends on the two external points and is of propagator type.
We can check it has no IR divergences, i.e. divergences at large values of coordinates, and has the
following form by dimensional arguments

F(x1,x5) = f (ε)
1

(x2
15)

2+3ε . (2.7)

Here the only source of the simple pole in ε is hidden in the second factor (which is considered as
a distribution) so that f (ε) is analytic in a vicinity of the point ε = 0. The simplest way to reveal
the 1/ε pole of the distribution 1/(x2

15)
2+3ε is to take its D-dimensional Fourier transform with a

help of the identity

F

[
1

(x2)λ

]
=

1
πD/2

∫
dDx eipx 1

(x2)λ =
4D/2−λ

Γ(λ )
Γ(D/2−λ )
(p2)D/2−λ . (2.8)

In particular, for λ = 2+3ε we find from (2.7) (for x5 = 0)

F [F(x1,0)] = f (ε)
4−4εΓ(−4ε)

Γ(2+3ε)
1

(p2)−4ε =− f (0)
4ε

+O(ε0) . (2.9)

At the same time, replacing F(x1,0) by its expression (2.6) we obtain the left-hand side of this
relation as C/(2ε)+O(ε0) leading to

C =−1
2

f (0) =−1
2

F(x1,0)
∣∣∣∣
x2

1=1,D=4
. (2.10)

It is easy to see that the integral F(x1,x5), Eq. (2.6), corresponds to a planar graph After going to
the dual momenta, one finds that it coincides with a well-known three-loop V in O graph. This
gives

C =−10ζ (5) . (2.11)

Similarly to this example, the method of IRR in coordinate space was applied in Ref. [1] to
a linear combination of five-loop integrals. As a result, the problem was reduced to four-loop
integrals. Clearly, this step is feasible also at least in six loops.

3. IBP

After applying IRR it was necessary to evaluate around seventeen thousands of integrals

G(a1, . . . ,a14) =
∫

. . .
∫ dDx6dDx7dDx8dDx9

(x2
16)

a1(x2
17)

a2(x2
18)

a3(x2
19)

a4(x2
6)

a5(x2
7)

a6(x2
8)

a7

× 1
(x2

9)
a8(x2

67)
a9(x2

68)
a10(x2

69)
a11(x2

78)
a12(x2

79)
a13(x2

89)
a14

, (3.1)
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with various integer (positive and negative) indices a1, . . . ,a14. To do this, the standard tool called
integration by parts (IBP) [12] was used with the help of the C++ version of the code FIRE [13].
As a result, every integral was reduced to a linear combination, with rational coefficients in d, of
twenty two master integrals.

This IBP reduction was not at the level of world records. The complexity is more or less equal
to the complexity of the IBP reduction of the corresponding four-loop momentum-space integrals.
So, such a reduction is feasible for the Baikov’s algorithm [14] as well for some other public and
private codes of IBP reduction.

I think, an IBP reduction of six-loop massless propagator integrals is not feasible within exist-
ing computer codes. However, at least the C++ version of the code FIRE can work with five-loop
massless propagator integrals which depend on twenty indices and are necessary for the evalua-
tion of the six-loop correction to the Konishi anomalous dimension. So, this step of the evaluation
seems to be feasible here.

4. Evaluating master integrals

Among the master integrals appeared in the calculation of Ref. [1] only two master integrals
were associated with non-planar graphs. Moreover, they belong to the same sector, i.e. a subset
in the set of the indices (a1, . . . ,a14) where certain indices are positive and other indices are non-
positive. In fact, in the family of the twenty eight master integrals for momentum-space massless
propagator integrals (see Ref. [15]), there is at most one master integral in any sector, so that the
coordinate-space family of the master integrals1 is more complicated.

The evaluation of the twenty planar master integrals was simple: we introduced the dual mo-
menta ki = xi − xi+1, represented the same integrals as four-loop propagator master (momentum)
integrals of Ref. [15] and took results from that paper in terms of ε expansions up to transcen-
dentality weight seven. For the two non-planar integrals, we applied the method of gluing of
Refs. [12, 15]. I do not believe that it will feasible to evaluate this way master integrals at the next
loop level. However, we now have a much more general method of Ref. [17] based on dimensional
recurrence relations. I think, it is indeed feasible for five-loop massless propagator integrals, both
in momentum and coordinate space. One of its useful features is that going to higher orders of the ε
expansions can be done easily. For example, the twenty eight master integrals for momentum-space
massless propagators were evaluated up to transcendentality weight twelve [16]. A new important
feature of this method which appeared quite recently and was described in Ref. [18] is that it can
now work also in situations with two and more master integrals in a given sector when one is forced
to solve matrix difference equations.

To summarize, I believe that the quantum-field theoretic evaluation of the six-loop anomalous
dimension of the Konishi operator is feasible. It would be interesting to do this and check whether
the agreement with the results based on integrability in AdS/CFT holds also at the six-loop level.

1We only considered master integrals necessary for our calculation where we met twenty two master integrals and
did not analyze the whole family.
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