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1. Introduction

These days the amount and the precision of high energy collider physics data is increasing
rapidly, and the properties of a new discovery have to be studied as detailed as possible. Therefore
precise theory predictions are of major importance. While for many observables next-to-leading-
order (NLO) precision is sufficient, there is a considerable number of examples where corrections
beyond NLO are required. In these proceedings we present the program SECDEC[1, 2], which
can assist the numerical calculation of such corrections in a process independent way, providing
examples for multi-loop integrals as well as dimensionally regularised phase space integrals. The
program is based on the method of sector decomposition [3 – 5], which is an algorithm to factorise
the poles in the regularisation parameter ε from complicated multi-parameter integrals. Other
public implementations of sector decomposition can be found in [6 – 9].

While the program SECDEC-1.0 [1] and the public programs mentioned above are limited to
kinematics where the values of the Mandelstam invariants and masses have to be such that the de-
nominator of the integrand is guaranteed to be of definite sign, this restriction is lifted in SECDEC-
2.0 [2]. Integrable singularities located on the real axis are avoided by an automated deformation
of the integration contour into the complex plane. The method of contour deformation in a multi-
dimensional parameter space has been pioneered in [10] and later has been refined and applied to
various calculations at one loop [11 – 17] and at two loops [18 – 21].
Numerical methods using dispersion relations, numerical extrapolation, differential equations and/or
numerical integration of Mellin-Barnes representations also have been worked out, see e.g. [22 –
28]. However, most of these methods or programs are limited either to specific classes of integrals,
or the parameters tuning the numerical integration have to be adapted carefully by the authors in
an iterative procedure.

For the program SECDEC-2, the aim was to offer a package which is “multi-purpose", i.e.
which can handle very different types of multi-loop/multi-scale integrals in a uniform setup. This
universality may come at the expense of sub-optimal performance as compared to dedicated pro-
grams for specific classes of diagrams, but on the other hand offers a tool of very wide applicability.

2. Main features of the program SECDEC

The program performs the following task: it turns a parameter integral, which can contain ul-
traviolet and/or infrared singularities regulated by a parameter ε , into a Laurent series in ε , where
the coefficients are calculated numerically. For multi-loop integrals, integrable singularities (e.g.
due to kinematic thresholds) can also be handled. To start with, the program turns the user informa-
tion about a Feynman graph (i.e. number of legs, loops, propagators, vertices, on-shell conditions)
automatically into the corresponding Feynman parameter representation. The extraction of the
poles in 1/ε is purely algebraic. The coefficients of the poles are sets of finite parameter integrals,
which are integrated numerically.

2.1 General form of multi-loop integrals

Here we will focus on applications of SECDEC-2 to multi-loop integrals, for details about more
general parameter integrals we refer to [1, 2]. After Feynman parametrisation, a scalar Feynman
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integral G in D dimensions at L loops with N propagators, where the propagators can have arbitrary,
not necessarily integer powers ν j, can be written as

G =
(−1)Nν

∏
N
j=1 Γ(ν j)

Γ(Nν −LD/2)
∞∫

0

N

∏
j=1

dx j xν j−1
j δ (1−

N

∑
l=1

xl)
U (~x)Nν−(L+1)D/2

F (~x)Nν−LD/2 , (2.1)

with Nν = ∑
N
j=1 ν j. The functions U and F can be constructed either directly from the momentum

representation or from the topology of the corresponding Feynman graph [29, 30]. The implemen-
tation of the construction based on the topology only, without the need to specify the propagators
in terms of loop momenta, is one of the new features of SECDEC-2. U is a positive semi-definite
function, whose vanishing is related to the UV subdivergences of the graph. In the region where all
Lorentz invariants formed from external momenta are negative, which we will call the Euclidean
region, F is also a positive semi-definite function of the Feynman parameters x j and the invariants.
If some of the invariants are zero, for example if some of the external momenta are light-like, the
vanishing of F may induce an IR divergence. Thus it depends on the kinematics and not only on
the topology (like in the UV case) whether a zero of F leads to a divergence or not. Therefore
general theorems about the IR singularity structure of multi-loop integrals are sparse, but for prac-
tical purposes sector decomposition can provide information about the singularity structure and
numerical results, because it offers a constructive algorithm to extract the poles in 1/ε .

2.2 Deformation of the integration contour

As mentioned already, the integrand in eq. (2.1) can diverge for certain values of kinematical
invariants and Feynman parameters. In cases where this corresponds to an integrable singularity
of logarithmic or square root type, related to normal thresholds, we can make use of Cauchy’s
theorem to avoid the poles on the real axis by a deformation of the integration contour into the
complex plane. As long as the deformation is in accordance with the causal iδ prescription of the
Feynman propagators, and no poles are crossed while changing the integration path, the integration
contour can be altered such that the convergence of the numerical integration is assured. The iδ
prescription tells us that the contour deformation should be such that the imaginary part of F is
always negative. For real masses and Mandelstam invariants si j, the following ansatz [10, 12] is
therefore convenient:

~z(~x) =~x− i~τ(~x) , τk = λ xk(1− xk)
∂F (~x)

∂xk
. (2.2)

Unless we are faced with a leading Landau singularity where both F and its derivatives with
respect to xi vanish, the deformation leads to a well behaved integral at the points where the function
F vanishes. In terms of the new variables, we thus obtain

F (~z(~x)) = F (~x)− iλ ∑
j

x j(1− x j)

(
∂F

∂x j

)2

+O(λ 2) , (2.3)

such that F acquires a negative imaginary part of order λ . The size of λ determines the scale
of the deformation. The initial value for the parameter λ can be given by the user; however, the
program tries to optimise the value for λ for each subsector function and may overwrite the user’s
choice if the latter is found to be inconvenient.
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2.3 Installation and usage of the program

The program can be downloaded from http://secdec.hepforge.org. Unpacking the
tar archive via tar xzvf SecDec.tar.gz will create a directory called SecDec. Running ./install in
the SecDec directory will install the package. Prerequisites are Mathematica, version 6 or above,
Perl (installed by default on most Unix/Linux systems), a Fortran compiler, or a C++ compiler if
the C++ option is used. If contour deformation is required, the C++ option must be used. The
libraries CUBA [31, 32] and BASES [33] which are used for the numerical integration come with
the package SECDEC.

Usage

1. Change to the subdirectory loop or general, depending on whether you would like to
calculate a loop integral or a more general parameter integral.

2. Copy the files param.input and template.m to create your own parameter and tem-
plate files myparamfile.input, mytemplatefile.m.

3. Set the desired parameters in myparamfile.input and specify the Feynman graph or
the function to evaluate in mytemplatefile.m.

4. Execute the command ./launch -p myparamfile.input -t mytemplatefile.m in the shell.
If you omit the option -p myparamfile.input, the file param.input will be taken as default.
Likewise, if you omit the option -t mytemplatefile.m, the file template.m will be taken as
default. If your files myparamfile.input, mytemplatefile.m are in a different
directory, say, myworkingdir, use the option -d myworkingdir, i.e. the full command then
looks like ./launch -d myworkingdir -p myparamfile.input -t mytemplatefile.m, executed from
the directory SecDec/loop or SecDec/general.

5. Collect the results. If the calculations are done sequentially on a single machine, the results
will be collected automatically. If the jobs have been submitted to a cluster, when all jobs
have finished, use the command ./results.pl [-d myworkingdir -p myparamfile]. In both cases,
the files containing the final results will be located in the graph subdirectory specified in
the input file.

3. New features of the program

Version 2 of SECDEC contains the following new features.

1. The most important new feature is the fact that multi-scale loop integrals can now be evalu-
ated without restricting the kinematics to the Euclidean region.

2. For scalar multi-loop integrals, the integrand can be constructed from the topology of the
diagram, so the user only has to provide the vertices and the propagator masses, but does not
have to provide the momentum flow anymore.

3. The files for the numerical integration of multi-scale loop diagrams with contour deformation
are written in C++ rather than Fortran.
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4. A parallelisation of the algebraic part for Mathematica versions 7 and higher is possible if
several cores are available. Parallelisation of the numerical part is also possible.

5. The so-called primary sector decomposition [3] to eliminate the constraint δ (1−∑i xi) on
the Feynman parameters, see eq. (2.1), can be skipped using the -n option, i.e. ./launch -p
param.input -t template.m -n. In this case the program will not assume that such a constraint
is present, but immediately proceed to the iterated sector decomposition. This option can be
very useful for cases where the user already has done some modifications to the integrand,
for example variable transformations which are convenient for a specific integral at hand,
or where one or several Feynman parameters already have been integrated out analytically,
or for other non-standard integrals. The implementation of this option is very recent and
extends the applicability of the program to a much wider class of integrals.

6. The possibility to loop over ranges of numerical values for the Mandelstam invariants, masses
(loop case) or user-defined parameters (general case) is automated.

7. To evaluate parametric functions in the subdirectory general, the user can define additional
(finite) functions at a symbolic level and specify them only later, after the integrand has been
transformed into a set of finite coefficient integrals for each order in ε .

For examples and results, we refer the reader to [2] and the demos directories coming with
the program.

4. Conclusions

We have presented SECDEC version 2, an automated program which can be applied to multi-
loop integrals and more general parameter integrals to perform two tasks: factorise dimensionally
regulated singularities as poles in 1/ε and numerically calculate the coefficients of the resulting
Laurent series in ε . The program is publicly available at http://secdec.hepforge.org.

An important new feature of the program is the fact that it now can deal with fully physical
kinematics, i.e. is not restricted to one-scale problems or Euclidean kinematics anymore. A new
construction of the integrand, based entirely on topological rules, is also included, along with other
very useful new features which extend the range of applicability of the program.

To calculate full two-loop amplitudes involving several mass scales, the timings still leave
room for improvement. However, the program offers the possibility of major parallelisation if
several processors are available. An interface to programs performing the reduction to master
integrals (not necessarily scalar integrals), which then are fed directly into SECDEC , is under
construction.
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