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1. Introduction

The discovery of a new particle with a mass of about 125 GeV at the LHC [1, 2] may be
explained as discovery of the Standard Model (SM) Higgs boson. But it is also possible that the
lightest MSSM Higgs boson h0 has been found. The identification of the new particle as SM
or MSSM Higgs boson requires precise theoretical predictions for its production and decay. A
lot of work has already gone into the more and more improved predictions of production cross
sections and decay rates, which goes hand in hand with including effects arising at higher orders in
perturbation theory. A short review of the current status concerning the production cross sections
of the Higgs boson has been given in the talk connected to this proceedings contribution. It was
mainly based on the information given in the comprehensive reviews [3] and [4]. Such a review will
be skipped here in order to be able to focus on the new contributions presented at the conference,
which have been published in [5, 6].

In detail this concerns the calculations of the total production cross section of h0 via gluon
fusion at next-to-next-to-leading order (NNLO) within the effective theory framework. In more
detail this calculation is enabled by the determination of the effective Higgs gluon coupling C1 up
to three loops in the strong coupling constant αs in the MSSM.

In the SM it is well known that radiative Quantum Chromodynamics (QCD) corrections to the
loop induced gluon fusion process do play an important role. The next-to-leading order (NLO)
QCD corrections can increase the leading order (LO) cross section up to +100% [7, 8, 9, 10]
including a large uncertainty due to the variation of the cross section in dependence of the renor-
malization and factorization scale µ . The corrections appearing at NNLO further increases the
cross section up to +30% [11, 12, 13] compared to the NLO predictions. They have first been
calculated using the effective field theory approach, where the mass of the top quark is infinitely
heavy. It turned out that after including these NNLO corrections the scale variation is strongly re-
duced and one can obtain a trustable prediction using perturbation theory. By taking finite top mass
effects at the NNLO level into account, it has been checked, that the used effective field theory
(EFT) leads to reliable predictions [14, 15, 16, 17, 18, 19] as long as the Higgs mass stays below
about 200 GeV.

The calculations of the production cross sections of h0 in the MSSM at NLO has been accom-
plished by many groups using different methods including bottom induced contributions, which
can be large compared to the SM ones [10] due to a tanβ enhanced bottom Yukawa coupling [20,
21, 22, 23, 24, 25, 26, 27, 28].

Before the publication of Refs. [5, 6] the NNLO corrections had to be approximated by the
corresponding SM corrections [21, 29], because the three loop part of the effective Higgs coupling
C1 was not known in the MSSM. In a first step this missing piece has been calculated with degen-
erated masses for supersymmetric particles (sparticles) in Ref. [5]. Ref. [6] extends this calculation
to apply to more general supersymmetric mass spectra.

The layout of this proceedings contribution will be as follows: In chapter two we shortly
review the calculation of the effective Higgs gluon coupling at three loop order. In chapter three we
show the connection between C1 and the production cross section of h0, which will be evaluated
numerically in chapter four in certain scenarios at NNLO. The last chapter contains summary and
conclusions.
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2. Effective Higgs gluon coupling

The effective Higgs gluon coupling arises when one integrates out all particles heavier than
the Higgs boson H/h0 (SM/MSSM) from the SM/MSSM Lagrange density. Thus in the SM one
has to integrate out the top quark only. In the MSSM in addition all supersymmetric particles have
to be integrated out. The only relevant remnant of those particles in the Lagrange density is the first
term on the r.h.s. of the following equation:

LY,eff = −
h0

v0 C0
1O

0
1 +L

(5)
QCD , (2.1)

where the Operator O0
1 is built up by the gluonic field strength tensor G0,µν as follows:

O0
1 =

1
4

G0
µνG0,µν , (2.2)

and L
(5)

QCD is the well-known five flavour QCD Lagrange density. To ensure the agreement of
the predictions of the effective Lagrange density LY,eff and the the supersymmetric QCD (SQCD)
Lagrange density in the limit where the mass Mh of the Higgs boson is much smaller than the mass
of the top quark and all supersymmetric particles, one has to determine the effective coupling C0

1
by comparing equivalent Green’s functions of both Lagrange densities incorporating a single Higgs
boson and gluons. As simplest Green’s function one can consider the transition of two gluons to
the Higgs boson like depicted for the SM case in Fig. 1(a-b). The comparison of the two Green’s

particles sparticles
g gluon g̃ gluino
t top quark t̃i top squark
q light quarks q̃i light squarks

auxiliary particles
c ghost
ε epsilon scalar

(a) (b) (c)

Figure 1: (a-b) LO Feynman diagrams for the process gg→ H in the SM. (a) In the full theory the Higgs
boson couples via a top quark loop to the Higgs boson. (b) In the EFT a direct coupling of gluons and the
Higgs boson emerges. (c) Particles appearing in the loops during the calculation of C1 in the MSSM.

functions is performed in the on-shell (OS) production kinematics. That means (p1 + p2)
2 = M2

H

holds for the four momenta p1 and p2 of the two gluons with p2
1 = p2

2 = 0. In order to determine C1

in the SM at LO one has to calculate the Feynman diagram in Fig. 1(a) (and the one with reversed
fermion lines) in the Limit MH � mt , where mt is the top quark mass. C1 is directly given as
the first term in the corresponding expansion for a small Higgs masses and is proportional to αs

at LO. For a more detailed description how to extract C1 the reader may be referred to Ref. [30].
In the MSSM case additional diagrams including sparticles have to be considered. A list of all
particles appearing inside loops can be found in Fig. 1(c). For a determination of C1 at NLO/NNLO
all relevant two/three loop diagrams contributing to this process have to be calculated. Example
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diagrams for the MSSM case are shown in Fig. 2. Due to the expansion in the hierarchy MH � mt

the problem is reduced to the calculation of two/three loop tadpole integrals with more than one
scale. At two loops the analytic results of the integrals for arbitrary masses are known [31] and C1

g
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Figure 2: Feynman diagrams contributing to C1 in the MSSM.

can be calculated exactly to this order. At three loops this is not the case and one has to reduce
the number of scales in one diagram to one. This can be achieved assuming nearly degenerated
and/or very different (hierarchic) masses. In the first case one can Taylor expand in small mass
differences in the second case one can apply an asymptotic expansion. Combinations of both
methods are possible, too. Once the number of scales has been reduced to one, the appearing
integrals can be solved completely automatically with the FORM program MATAD [32]. Because of
the large number of diagrams, which have to be calculated, an automatic setup is mandatory. For
the generation of Feynman diagrams we have used QGRAF [33], followed by q2e and exp [34],
which provide an automatic application of asymptotic expansions.

Besides the problem of multiple scales in MSSM diagrams, additional subtleties arise, when
one uses Dimensional Reduction (DRED) as regulator, in order not to spoil supersymmetry (SUSY):

Because the EFT cross section [35, 11, 36] was calculated using Dimensional Regularization
(DREG), one has to ensure, that the epsilon scalars (which are the 2ε-dimensional components
of gluon in DRED) are integrated out, so that the EFT remains regulated in DREG. This can be
achieved by giving the epsilon scalars a mass which is formally much larger than the Higgs boson
mass. Due to the fact that SUSY is softly broken in the MSSM, the epsilon scalars do acquire a
non vanishing mass via radiative corrections anyway. This mass has to be understood as evanescent
parameter in the Lagrange density.

In addition to that an evanescent coupling Λ2
ε of the epsilon scalars to the Higgs boson does

appear via radiative corrections. This coupling has to be properly renormalized1 at the two-loop
level when one considers C1 at three loops.

Apart from these subtleties one has to renormalize all particle masses for the three-loop cal-
culation of C1 at the two-loop level, which are well known in the DR scheme [37]. Except for the
gluino and epsilon scalar mass, where only the one loop renormalization constants are required.

1for more details the reader shall be referred to Refs. [5, 6]

4



P
o
S
(
L
L
2
0
1
2
)
0
4
2

Precision calculations for Higgs-boson production at hadron colliders Nikolai Zerf

To arrive at a finite result for C1 one requires the MS renormalization constant of the effective
Operator Z11, the decoupling constant of the gluon field ζ 0

3 and the decoupling constants of αs ζαs

at the two loop level.
Up to now C1 has been calculated at the NNLO assuming the following hierarchies:

(h1) mq̃ ≈ mt̃1 ≈ mt̃2 ≈ mg̃� mt ,

(h2) mq̃ ≈ mt̃2 ≈ mg̃� mt̃1 � mt ,

(h3) mq̃ ≈ mt̃2 ≈ mg̃� mt̃1 ≈ mt , (2.3)

Where the mass of the epsilon scalar was treated like being much smaller than the masses appearing
above. The renormalization was done in the OS scheme, so that in the final expression of C1 the
limit Mε → 0 can be taken.

To ensure that the described procedure consistently leads to C1, it has been applied in the SM
case. That means instead of using the common DREG regulator, DRED has been used like written
above. Although the application of DRED to non supersymmetric theories leads to additional
evanescent couplings, the well known SM (QCD) result was obtained when C1 was expressed in
terms of the five flavour QCD coupling α

(5)
s [5].

Another check for the calculation of C1 was enabled by the three loop calculation of ζαs and its
connection to C1 via the Low Energy Theorem (LET) [38]. It turned out that with the renormalized
version of the LET one is able to calculate C1 from ζαs without even knowing the renormalization
constant δΛ2

ε of the evanescent coupling of the epsilon scalars to the Higgs boson. However, both
ways lead, of course, to the same result for C1.

Explicit results for C1 can be found in Ref. [6] and Ref. [39].

3. Calculating Cross Sections

The calculation of the production cross section of a light Higgs boson using the effective
Lagrangian LY,eff could be done [11] completely independent of the calculation of C1, because the
effective coupling factorizes in the formula for the total cross section:

σt(µ) = σ0

( 3π

c(0)1

)2
C2

1(µ)Σ
′(µ) . (3.1)

Where C1 = −α
(5)
s

3π
∑

∞
n=0

(
α
(5)
s
π

)n
c(n)1 and Σ′(µ) contains the sum over all channels which in turn

are obtained by convolutions of the partonic cross sections with the particle distribution functions
(PDFs). Since σ0 contains the full Higgs mass dependence2 at LO, σ0α

(5),2
s

[
Σ′(µ)

]
LO

gives the
exact LO cross section. Thus in Eq. (3.1) higher order corrections obtained in the EFT are added
relative to the factorized, exact leading order cross section, which improves the EFT prediction.

A further improvement of this prediction can be achieved via a separation of hard µh and soft
scale µs: It is known that only the combination C1(µ)O1(µ) is independent of the scale µ (up to
neglected higher order corrections). Introducing the factor3 B(5), which depends on the coefficient

2For the explicit formula in the MSSM see for e.g. Eq. (29) in Ref. [6].
3The explicit definition is given in Eq. (32) Ref. [6].
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ΜS=Mh�2 ΜH=Mt

EFT: t+t
�

mh
maxH+L

s =8TeV

Σt
SQCD
HpbL, NNLO

6.82 8.48 10.4 12.3 13.9 15.3 16.2 16.9 17.4 17.8 18.1

5.27 7.01 9.23 11.6 13.6 15.1 16.1 16.8 17.3 17.6 17.8

4.17 5.92 8.37 11.1 13.5 15.1 16.2 16.8 17.2 17.5 17.7

3.37 5.06 7.69 10.9 13.5 15.3 16.3 16.9 17.2 17.5 17.6

2.77 4.35 7.10 10.7 13.7 15.4 16.4 16.9 17.3 17.5 17.6

2.31 3.77 6.57 10.5 13.8 15.6 16.5 17.0 17.3 17.5 17.6

1.95 3.29 6.10 10.4 14.0 15.8 16.7 17.1 17.3 17.5 17.6

1.66 2.88 5.66 10.3 14.2 16.0 16.7 17.1 17.3 17.5 17.5

1.43 2.54 5.25 10.3 14.3 16.1 16.8 17.2 17.4 17.5 17.5

1.24 2.24 4.87 10.2 14.5 16.2 16.9 17.2 17.4 17.5 17.5

1.08 1.99 4.52 10.1 14.6 16.3 17.0 17.3 17.4 17.5 17.5

0.955 1.78 4.19 10.0 14.8 16.4 17.0 17.3 17.4 17.5 17.5

0.847 1.59 3.88 9.94 14.9 16.5 17.1 17.3 17.4 17.5 17.5

0.756 1.43 3.59 9.84 15.0 16.6 17.1 17.3 17.4 17.5 17.5

0.678 1.28 3.31 9.73 15.1 16.7 17.1 17.3 17.4 17.5 17.5

0.611 1.16 3.06 9.61 15.2 16.7 17.2 17.4 17.4 17.5 17.5

0.553 1.05 2.83 9.48 15.3 16.8 17.2 17.4 17.5 17.5 17.5

16.14.12.
10.8.
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QCD, NNLO

0.17 0.25 0.34 0.45 0.54 0.62 0.69 0.74 0.78 0.81 0.83

0.14 0.22 0.33 0.46 0.57 0.67 0.73 0.78 0.82 0.84 0.86

0.12 0.20 0.32 0.46 0.60 0.70 0.77 0.82 0.85 0.87 0.89

0.098 0.17 0.30 0.47 0.63 0.73 0.80 0.84 0.87 0.89 0.90

0.082 0.15 0.29 0.48 0.65 0.76 0.83 0.86 0.89 0.90 0.91

0.069 0.13 0.27 0.48 0.67 0.79 0.85 0.88 0.90 0.91 0.92

0.059 0.12 0.25 0.49 0.69 0.81 0.86 0.89 0.91 0.92 0.93

0.050 0.10 0.24 0.49 0.71 0.82 0.87 0.90 0.92 0.93 0.93

0.044 0.093 0.22 0.49 0.73 0.84 0.89 0.91 0.92 0.93 0.94
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0.026 0.059 0.17 0.49 0.78 0.88 0.91 0.93 0.94 0.94 0.95

0.023 0.053 0.16 0.49 0.79 0.88 0.92 0.93 0.94 0.94 0.95

0.021 0.048 0.15 0.49 0.80 0.89 0.92 0.93 0.94 0.95 0.95

0.019 0.044 0.14 0.48 0.80 0.90 0.92 0.94 0.94 0.95 0.95

0.017 0.040 0.13 0.48 0.81 0.90 0.93 0.94 0.94 0.95 0.95
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Figure 3: (a) σ
SQCD
t (µs,µh) and (b) σ

SQCD
t /σ

QCD
t as a function of MA and tanβ in the mmax

h scenario.

of the beta function and α
(5)
s enables the definition of a separately scale invariant matching co-

efficient Cg and effective operator Og, which do only depend on µ due to neglected higher order
corrections. Thus one can choose a hard scale µh in the matching coefficient and a soft scale µs

in the matrix elements of the effective Operator in order to avoid large logarithms. In that case the
cross section formula becomes:

σt(µs,µh) = σ0C2
g(µh)Σ(µs) . (3.2)

Where Cg = − 3π

c(0)1

1
B(5)C1 and Σ =

(
B(5)

)2
Σ′. Note that in the limit µh = µs the B-Factor cancels

and one obtains Eq. (3.1). Eq. (3.2) holds for SM and MSSM predictions, as long as one uses the
corresponding expressions for σ0 and Cg. However there is only one expression for Σ(µs). Thus, as
soon as the matching coefficient in the MSSM CSQCD

1 is known, it is straightforward to determine
the cross section σ

SQCD
t (µs,µh) in the MSSM using Σ(µs) extracted from the SM cross section

σ
QCD
t (µs,µh). The predictions in the next section are based on the predictions of the SM cross

section σ
QCD
t (µs,µh) obtained by the program Xsection, which was used to produce the SM

predictions of Ref. [19].

4. Numerical Results

In Fig. 3(a) the NNLO EFT cross section σ
SQCD
t (µs,µh) for a hadronic center of mass energy

of 8 TeV at the LHC is shown in pico barn assuming the mmax
h scenario [40]. For the calculation

the MSTW2008 PDFs set [41] and the result for CSQCD
1 obtained in the hierarchy (h1) has been

used. The Higgs boson mass Mh between the red dotted (lower) line and red dashed (upper) line
varies between 123 and 129 GeV. The strong decrease of the cross section for small values of MA

and large values of tanβ results mainly from a decrease of the top quark Higgs boson coupling due
to the factor ∝

cosα

sinβ
, which is also present in the corresponding top squark Higgs coupling.
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ΜS=Mh�2 ΜH=Mt

mh
maxH+L

s =8TeV

ΣSQCDHpbL, NNLO

6.16 6.92 8.49 10.4 12.1 13.7 14.9 15.8 16.4 16.9 17.3

5.63 5.90 7.38 9.51 11.6 13.4 14.7 15.6 16.2 16.7 17.1

5.86 5.39 6.65 8.98 11.4 13.4 14.7 15.6 16.2 16.6 16.9

6.71 5.31 6.20 8.65 11.4 13.4 14.8 15.7 16.2 16.6 16.9

8.05 5.60 5.91 8.41 11.4 13.5 14.9 15.7 16.2 16.6 16.9

9.79 6.20 5.81 8.24 11.4 13.7 15.0 15.8 16.3 16.6 16.9

12.0 7.09 5.87 8.13 11.5 13.8 15.1 15.8 16.3 16.6 16.9

14.5 8.25 6.08 8.05 11.6 13.9 15.2 15.9 16.3 16.6 16.9

17.2 9.63 6.46 8.01 11.6 14.0 15.2 15.9 16.4 16.7 16.9

20.3 11.2 6.97 8.01 11.7 14.1 15.3 15.9 16.4 16.7 16.9

23.6 13.0 7.62 8.01 11.7 14.1 15.3 15.9 16.4 16.7 16.9

27.1 15.1 8.42 8.06 11.8 14.2 15.4 16.0 16.4 16.7 16.9

31.0 17.2 9.37 8.16 11.9 14.3 15.4 16.0 16.4 16.7 16.9

35.0 19.5 10.4 8.26 11.9 14.3 15.4 16.0 16.4 16.7 16.9

39.2 22.1 11.6 8.39 12.0 14.4 15.5 16.0 16.5 16.7 16.9

43.6 24.7 13.0 8.57 12.0 14.4 15.5 16.0 16.5 16.7 16.9

48.2 27.5 14.5 8.78 12.1 14.4 15.5 16.1 16.5 16.7 16.9
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Figure 4: (a) σSQCD including electroweak and finite bottom mass induced contribution at NLO. (b) Be-
haviour of σ

SQCD
t under scale variation in the modified mmax

h scenario.

The ratio of the SM EFT cross section and the MSSM one is shown in Fig. 3(b). Here the
SM cross section depends only via the mass of the Higgs boson on the parameters MA and tanβ .
That means for each point both cross section have been calculated using the mass of the lightest
MSSM Higgs boson at this point. The gray shaded areas are already excluded by LEP [42] and
CMS [43]. Only the parameter sets corresponding to the unshaded area between the two red curves
are in agreement with current experiments. From the figure one can clearly see, that for growing
values of MA the cross section becomes more and more SM like. For small values of tanβ and MA

σ
SQCD
t (µs,µh) can be much smaller than σ

QCD
t (µs,µh).

At this point it is very important to note that in the used EFT approach no finite bottom mass
effects have been considered. That means the bottom quark is treated as massless particle and
does not couple to the Higgs boson. However for large tanβ values (and small MA values) it is
know that the bottom Yukawa coupling to the Higgs boson can be enhanced. Thus one can expect
large bottom quark induced contributions in this parameter region. In fact this is what other groups
confirmed at NLO [24, 25, 22] and in order not to miss those contributions they have been included
in Fig. 4(a). In addition the contributions of the known electroweak NLO corrections have been
included. More details about how to combine σ

SQCD
t with the mentioned contributions to obtain

σSQCD can be found in Ref. [6].
We want to note that the usual estimation of the NNLO part of CSQCD

1 by the one of CQCD
1

results in a good approximation of the cross section in the mmax
h scenario. Where the error is clearly

below the one percent level.
In Fig. 4 σt(µ) is shown in dependence of the common scale µ = µs = µh in the modified mmax

h
scenario, which was introduced in Ref. [6]. The dotted/solid curves represent the SM/MSSM result,
where from bottom to top the blue/green/red lines show the LO/NLO/NNLO predictions. One can
see a reduction of scale dependence when one increases the order of perturbation theory. The
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observation that at NNLO there is a clearly visible difference between the QCD and SQCD curve
makes clear, that the above statement concerning the estimation of the NNLO part of CSQCD

1 given
for mmax

h scenario does not hold for this scenario. In fact the scenario was constructed in such a
way, that besides providing a Higgs mass in the current LHC range, we have a light top squark mass
of about 370 GeV, whereas all other sparticles have masses around 1 TeV. This enables diagrams
including the light top squark t̃1 to give sizable contributions to CSQCD

1 , leading to a strong deviation
from the NNLO contribution in the SM.

5. Summary

In this proceedings contribution a short introduction concerning the Higgs boson production
via gluon fusion was given. Furthermore the calculation of the NNLO contributions to the effective
Higgs gluon coupling CSQCD

1 in the MSSM was presented in a compact form. Selected numerical
results implementing this contributions were shown.

In the mmax
h scenario the SM NNLO part of CQCD

1 can be used to estimate the NNLO part of
CSQCD

1 . However, it has been shown that in the presents of light sparticles like light top squarks,
this estimation can fail.
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