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The multi-loop integral is an indispensable component for the perturbative calculation, because
the high statistics and high energy collider-physics like the large hadron collider (LHC) and the
international linear collider (ILC) requires the theoretical predictions with enough high-accuracy.
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1. Introduction

High energy physics at the current and future colliders like the LHC and the ILC requires
theorists to carry out large-scale calculations with multi-body productions. In the perturbative
approach, the number of Feynman graphs to be calculated grows rapidly as the number of produced
particles increases and as the order of perturbation becomes higher. For example, several tens of
diagrams typically appear in the final four-body processes at the tree level, but a few thousand
diagrams emerge in the 1-loop correction. Performing such computation is absolutely beyond the
human power if it should be done by hand. Since the procedure of a perturbation calculation is well
established, computers must be able to take the place of the human hand. In the past decade, several
groups have developed computer programs which generate Feynman diagrams and calculate cross
sections automatically. The GRACE[1, 2] system is such a program package for the automatic
calculation of the amplitudes, based on the Feynman rules of the standard model (SM) and also of
the minimal supersymmetric extension of the standard model (MSSM), which has also a capability
to generate the higher order diagrams beyond the 1-loop level.

For simplicity we consider scalar loop integrals throughout the paper. The general expression
of scalar loop integrals in Feynman parametric representation is

(−1)N Γ(N−ωL/2)
(4π)ωL/2

∫ 1

0

N

∏
i=1

dxi δ (1−
N

∑
i=1

xi)
CN−ω(L+1)/2

(D− iεC)N−ωL/2 (1.1)

where L is the number of loops, N is the number of internal particles and ω is the number of space-
time dimensions. Here, C and D are polynomials of the Feynman parameters (xi, i = 1, · · · ,N) and
they are determined by the topology of the corresponding diagram. An infinitesimal parameter, ε ,
is introduced to make the denominator non-zero throughout the integration domain.

However, the analytical expressions of the integration of the Eq.(1.1) are only known restrict-
edly except for the one-loop case[3]. In this paper, we discuss the application of the theory of the
ring of differential operators with polynomial to analyze the structure of the multi-loop integral of
Eq.(1.1).

2. b-function and P-operator

Let f (x) ∈ K[x] = K[x1, · · · ,xn] be a polynomial of n variables with coefficients in a field K of
characteristic zero. Let us denote Dn(K) := K[x1, · · · ,xn] < ∂1, · · · ,∂n >, the rings of differential
operators with polynomial and formal power series coefficients respectively with ∂i = ∂/∂xi and
∂ = (∂1, · · · ,∂n). (Dn(K) is called the Weyl algebra over K.) Let s be a parameter. Then the b-
function (or the Bernstein-Sato polynomial) b(s) associated with f (x) is the monic polynomial of
the least degree b(s) ∈ K[s] satisfying

P(s,x,∂ ) f (x)s+1 = b(s) f (x)s (2.1)

with some P(s,x,∂ ) ∈ Dn(K)[s], P-operators.
The b-function was introduced in the theory of prehomogeneous vector spaces by M. Sato in

early1970s. Simultaneously and independently, the existence of b(s) was proved by I. N. Bernstein
in 1971[4] . The background of introduction of b-functions is related to the analytical continuation
of the hyperfunctions f (x)s

+.
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3. Application of b-function to the loop integrals

The application of this equation was first introduced by F. Tkachov[5] to one-loop integrals
with the closed form as follows;.

I =
∫

d(x)D(x)s =
∫

d(x)
1

b(s)
P(s,x,∂ )D(x)s+1, (3.1)

where D(x) is a quadratic form of x = (x1, · · · ,xn),

D(x) = xTV x+2RT x+Z, (3.2)

with

P =
1
∆

((1+ s)− (xT +AT )∂
2

), A = V−1R, ∆ = (Z−RTV−1R), b(s) = (s+1), (3.3)

where V is a n×n matrix and R is a n vector.
The extensive application of this equation and even the numerical application were discussed

in Refs.[6, 7].
On the other hand, in the case of multi-loop integrals, the P-operators generally consist of

higher derivatives on x. In order to avoid cumbersome studying of the linear system of equations to
derive the P-operators, the papers [8], [9], [10] and [11], proposed to apply the functional relation
Eq.(3.1) to the one-loop sub-diagram which has the largest number of internal lines in a 2-loop dia-
gram. As the results, the integrand can be made smooth, apart from a factor b(s) of Eq.(1.1) which
is now a polynomial in xs, the Feynman parameters needed for the complementary sub-diagram
with the smallest number of internal lines. This is called ”Minimal B-T(Bernstein-Tkachov) ap-
proach”.

Minimal B-T approach works well for the numerical integration of the 2-loop integrals. Even
though, b-functions themselves are still interesting in order to analyze the structure of the multi-
loop integrals. For example, it is known that all roots of the b-functions are negative rational
number[12]. Furthermore,there exists an algorithm to compute b-functions and to construct P-
operators by T. Oaku[13], using Gröbner bases for rings of differential operators.

4. Outline of the algorithm by T. Oaku

According to [13], we summarize the algorithm to determine b-functions and P-operators.

1. Find annihilation ideal AnnD on f s for rings with differential operators such as

AnnD f s = {P(s) ∈ Dn(K)[s] | P(s) f s = 0}. (4.1)

2. Because of b(s)−P(s) f ∈AnnD f s, b(s) should be an element of B f , which is the intersection
of AnnD f s +Dn(K)[s] f and K[s],

b(s) ∈ B f = (AnnD f s +Dn(K)[s] f )∩K[s]. (4.2)
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3. During getting B f , Qi(s) and P(s) can also be obtained as

b(s) = Q1(s)P1(s)+ · · ·+Qk(s)Pk(s)+P(s) f , (4.3)

where Pi(s) is a generator of AnnD f s.

4. Because of Pj f s = 0, this P(s) satisfies P(s) f s+1 = b(s) f s.

It is necessary to use the symbolic manipulation system to realize the above algorithm. The
system should equip with the Gröbner bases engine and also can treat the Wyle algebra, [∂i,x j] = δi j

like Maple[14], Singular[15], Macaulay2[16], etc. Here we have used Risa/Asir [17]
and OpenXM(Kan/Sm1)[18].

5. Example for 2-loop non-planar vertex diagrams

We have examined to apply the symbolic manipulation system to construct b-functions and
P-operators to the 2-loop diagrams. Here we only show the results for some cases of 2-loop non-
planar vertex diagrams depicted in Fig.1. The corresponding Feynman parameter integral is as
follows;

I =
∫

dx1 · · ·dx6δ (1−
6

∑
i=1

xi)
1

D2 , (5.1)

where
D = f1 p2

1 + f2 p2
2 + f3 p2

3−C∑
j

x jm2
j , (5.2)

C = (x1 + x2)(x3 + x4 + x5 + x6)+(x3 + x4)(x5 + x6), (5.3)

and
f1 = (x1 + x2 + x5 + x6)x3x4 + x1x3x6 + x2x4x5, (5.4)

f2 = (x1 + x2 + x3 + x4)x5x6 + x2x3x6 + x1x4x5, (5.5)

f3 = (x3 + x4 + x5 + x6)x1x2 + x2x4x6 + x1x3x5. (5.6)
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Figure 1: 2-loop non-planar vertex diagram.

After we set kinematical values of pi and mi as p2
1 = p2

3 = 10, p2
2 = 0, m2

1 = 1, m2
2 = 2, m2

3 = 3,
m2

4 = 4, m2
5 = 5 and m2

6 = 6, and x6 was eliminated with the δ function, the symbolic manipulation
was applied, then we find the b-function for this D as

b(s) = (s+1)(2s+3), (5.7)
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which means the P-operator consists from the second derivatives at most, because b-function is
represented in the quadratic form on s.

Actually the P-operator for this D has the following form;

P:= - 8457445293636043504800000*s*Dx5

+ 8457445293636043504800000*x1*Dx25

+ 8457445293636043504800000*x2*Dx25

+ 8457445293636043504800000*x3*Dx35

+ 8457445293636043504800000*x4*Dx35

- 160691460579084826591200000*x1*Dx55

- 67659562349088348038400000*x2*Dx55

- 50744671761816261028800000*x3*Dx55

- 126861679404540652572000000*x4*Dx55

- 8457445293636043504800000*x5*Dx55

+ 140957421560600725080000*Dx11

- 281914843121201450160000*Dx12

+ 140957421560600725080000*Dx22

+ 140957421560600725080000*Dx13

- 140957421560600725080000*Dx23

+ 140957421560600725080000*Dx33

- 140957421560600725080000*Dx14

+ 140957421560600725080000*Dx24

- 281914843121201450160000*Dx34

+ 140957421560600725080000*Dx44

- 1832446480287809426040000*Dx15

- 986701950924205075560000*Dx25

- 1832446480287809426040000*Dx35

- 986701950924205075560000*Dx45

+ 84997325201042237223240000*Dx55

- 16914890587272087009600000*Dx5$

where differential operators are defined as Dx5=∂5, Dx25=∂2∂5, Dx55=(∂5)2, and so on.

6. Summary

The b-functions might be useful to analyze the structure of the Feynman multi-loop integrals.
There exists a general algorithm to derive b-functions and P-operators by T. Oaku. We have exam-
ined to construct b-functions and P-operators for some cases of 2-loop diagrams using symbolic-
systems which treat the Gröbner bases engine with Wyle algebra. Application of P-operators to the
numerical integration of the multi-loop integrals are still open questions.
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