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1. Introduction

The need for precise predictions for many-particle praegesd the Large Hadron Collider
stimulated a series of recent theoretical developmentstwail to the completion of various multi-
particle next-to-leading-order (NLO) calculations [1}1By using tensor-integral reduction and
Feynman diagrams, it became possible to handle multigaprocesses with high efficiency and
numerical stability [1, 2]. Alternatively, new reduction$ on-shell type which avoid tensor inte-
grals and reduce all process-dependent aspects of onesddogations to a leading order (LO)
problem were introduced [18-20]. In particular, the OPPhoétiead to a high degree of automa-
tion of one-loop generators [21-23)].

Here we report on the open loops algorithm [24], which is Has®e the recursive numerical
construction of numerator functions of one-loop amplitude polynomials in the loop momentum.
This representation naturally adapts to both, tensor iateand OPP reduction. The algorithm
permits us to perform NLO calculations in a highly efficientdanumerically stable way by a fully
automated program. A recursive algorithm based on tensegrals was first introduced in the
framework of a one-loop Dyson-Schwinger recursion [25].

In section 2 of this contribution we recapitulate the opapkalgorithm, followed by a study
of the performance and the numerical stability of our impetation in section 3. We perform
various internal consistency checks as well as comparispimgiependent code. In section 4 we
conclude with a summary and a brief outlook.

2. The open loops Algorithm

Leading-order transition amplitudég! and virtual NLO correction® M are handled as sums
of tree and one-loop Feynman diagrams,

M= Z’_M(d), OM = ZréM(d)' (2.1)

The corresponding scattering probability densitiésand virtual one-loop corrections)V are

W= Z M2, W= 2Re(M*SM). (2.2)
hel,col hel,col

The sums run over colour and helicity states of each extgandicle. Colour sums are performed

at zero cost by exploiting théactorisation of individual diagrams into colour factoré® and

colour-stripped amplitudes

MO Z @@ s o)A@ (2.3)

Four-gluon vertices are split into three contributions fdrich the factorisation property holds.
After algebraic reduction of the colour factors to a staddzasis{C; }, all colour sums are encoded
in the matrixCi; = 5 c0/C{"C;, which is computed only once per process (see [26] for dgtail
Colour-stripped tree diagram4(® are computed by a numerical algorithm that recursively
merges sub-trees. We call a sub-tree a subdiagram obtajnadtng a tree. Sub-tree amplitudes
are complex n-tuples/® (i), wheref is the spinor or Lorentz index of the cut line. The label
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represents the topology, momentum and particle contettea$tib-tree. Sub-trees are recursively
merged by connecting their cut lines to vertices and prajoasia

wh (i) :@ — . (2.4)

The sub-treeg, j andk involve off-shell momenta, but in contrast to off-shell @nts they repre-
sent individual topologies. Cut lines are marked by dots, external lines are not depicted. For
brevity, quartic vertices are not shown explicitly, butithaclusion is straightforward. In terms of
n-tuples, the recursion step reads
ﬁ .. V(i
Wﬁ(i)zxya(uz,k)w (J?W‘S(k)7 25)
PP —mf+ie

wherexfé /(p? —m? +i€) describes a vertex connecting, k, and a propagator attacheditdhe
recursion starts with the external lines of a tree, i. e. tagenfunctions of the scattering particles,
and terminates when the sub-trees which are needed to Hufeleadiagrams have been generated.
The algorithm is based on numerical routines that impleraéintave functions, propagators and
vertices. These building blocks depend only on the themakthodel and are easily obtained from
its Feynman rules. Its strength lies in the efficiency of aolsums and the systematecycling of
sub-treesappearing in different diagrams.

Let us now consider one-loop amplitudes. A colour-strippgubint loop diagram is an or-
dered set oh sub-treesZ, = {i1,...,in}, connected by loop propagators:

(2.6)

The denominator®; = (q+ p;)2 — m? +ie depend on the loop momentuegn external momenta
pi, and internal massas,. All other contributions from loop propagators, verticasd external
sub-trees are summarised in the numerator, which is a paligh@f degreeR < n in the loop

momentum,

R
N(Zn;q) = Z)J\/’,llm,lr (Zn) ... gt (2.7)

Momentum-shift ambiguities are eliminated by settmg= 0. This singles out thBq propagator,
and the loop momentuipflowing through this propagator is marked by an arrow in (2®}radi-
tional one-loop calculations, the coefficiedts, ., are explicitly constructed from the Feynman
rules, and the amplitude (2.6) is expressed as a linear catidnn of tensor integrals,

R - dP 1 Hr
oA = Z)NM““'(I”) T with b = dggt...q
r=

Y B e B 2.8
DoD1...Dn_1 (2.8)
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The tensor integralé’n‘fﬁ“'“' are subsequently reduced rtepoint scalar integral3y,o with m=
1,2,3,4. Alternatively, the OPP method [18] avoids tensor integgtArough a direct connection
between the numeratav (Z,; q) and the scalar-integral representation of the amplitudie. cbef-
ficients of the scalar-integrals are determined by evalgali(Z,; q) at loop momenta that satisfy
multiple-cut conditions of the fornd; = D; = --- = 0. In this framework, the numerator can be
computed with tree-level techniques. Let us considecthidoopthat results from (2.6) by cutting
the Do propagator and removing denominators,

NE(Tn:q) ::GD = ‘ . 2.9)

The indicesa and are associated with the arrows that mark the ends of theraytdind the trace
of the cut loop corresponds to the numerat6(Z,;q). As depicted in (2.9)n-point cut loops can
be constructed by recursively merging lower-point cut bbapd sub-trees. More explicitly,

NE (Tn;6) = X5(Zn,in, Zn-1) N (Tn-10) WO(in), (2.10)

where Xfé andw? are the same vertices and sub-trees that enter the treéthagorlt is thus
possible, within the OPP framework, to reduce the calauatif scalar-integral coefficients to a
tree-level problem. Highly automatic tree generators canpigraded to loop generators [21, 22],
thereby reducing the human power needed for NLO calculstigrorders of magnitude. However,
when applied to non-trivial processes, this approach cquoime massive computing resources.
The reason is that OPP reduction requires repeated ewailsaif N (Z,;q) for a large number of
momentag.

This is related to the nature of loop calculations, whicturexs the knowledge of the numer-
ators adunctionsof the loop momentung. It is thus natural to handle the building blocks of the
recursion (2.10) as functions gf Accordingly, the cut loop (2.9) is expressed as a polynbmia

R
NE(Tniq) = Z}Nﬁlmm;a(m g gt (2.11)

in the loop momentuny. This representation is called apen loop In renormalisable gauge
theories, splitting th& tensor in (2.10) into a constant and a linear p)éfg,:YﬁS+q" Zf;yé, leads
to recursion relations fam-point open loops in terms of lower-point open loops and tsebs:

N iia (@) = Y8 M o (Ta) + 26,5 N pisa (Tn-2)| W (in). (2.12)
Lower point open loops can be reused if they appear in moredha diagram. E. g. whena—1)-
point diagram can be obtained frormgooint diagram by pinching one of the loop propagators the
diagrams will share &n — 2)-point open loop.
The number of coefficients grows with the polynomial degweleich corresponds to the ten-
sorial rankr. However, symmetrising open loop tensorial indigas.. i, keeps the number of
components well under control [25]. Once the coefficiengskawown, multiple evaluations of the
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polynomial (2.7) can be performed at a negligible CPU cog}.[Zhis strongly boosts OPP reduc-
tion. Moreover, the same coefficients can be used for a tentegral representation of the loop
amplitude (2.8). Open loops can thus be interfaced with R#RIP and tensor-integral reduction in
a natural way.

A key feature of open loops is the possibility lighly efficient helicity sumsUnpolarised
transition probabilities require multiple evaluationsté polarised amplitudes (2.6). The num-
ber of helicity configurations grows exponentially with tparticle multiplicity, and the result-
ing CPU cost can be very large. This can be avoided by expipitie decomposition (2.8) into
helicity-dependent coefficients),, ., and helicity-independent tensor integrals. The CPU expen-
sive evaluation of tensor integrals is performed only omagl helicity sums—when restricted to
the coefficients—become very fast. More explicitly, the tcimation of (2.8) to the unpolarised
transition probability is handled as a linear combination

R
awd — Rezjawfjj?“ iy Tt (2.13)
r=

with helicity- and colour-summed coefficients

S = 2; (ZM*C(")> N (Zn).- (2.14)
e Cco

The unpolarised representation (2.13) can be reduced Iy g@grals with any method, including
OPP. Within the OPP framework, the reduction is performedtayting from the unpolarised nu-
merator functiordW@ (Z;q) = 5, 6W,(ff‘)“urq“l ...g*; in this way open loops lead to extremely
fast helicity sums as compared to traditional tree genesatd@he OPP reduction is further im-
proved by combining sets of loop diagrams with identicalplgoopagators but different external
sub-trees.

3. Implementation and Benchmarks

We realised a fully automatic generator of QCD correctiomsStandard-Model processes.
Diagrams are generated witlEFNARTS [28]; sub-tree and open loop topologies are processed by
a MATHEMATICA program, which concatenates them in a recursive way, redcmeur factors,
and returns BRTRAN90 code. Generalising the setup to other theories than QQCierely a
matter of implementing the corresponding additional ¢ediand propagators. The reduction to
scalar integrals is performed in terms of tensor integraty alternatively, with the OPP method.
For tensor integrals we useoCLIER, a private library by A. Denner and S. Dittmaier, which
implements the scalar integrals of Ref. [29] and reductiethods that avoid instabilities from
spurious singularities [30]. The library calculates thefioients of a covariant decomposition
of the tensor integrals and uses them to construct expdiogdr components. OPP reduction is
performed with @TTooLS [31] and, alternatively, with SmURAI [32]. Ultraviolet and infrared
divergences are dimensionally regularised. While loopod@nators are consistently treated in
D = 4—2¢ dimensions, the moment# and the coefficientd/,, , in (2.8) are handled iD = 4.
Their D — 4 dimensional contributions, which yield so-callgg rational terms, are restored via
process-independent counterterms [33] using the treaaene
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Figure 1: left: CPU cost of colour and helicity summed one-loop probabgiti)V versus number of
diagrams. Runtimes per phase space point, with tensagraitér;) and OPP reduction with €@ TooLs
(topp), on a single Intel i5-750 core compiled with ifort 10.tight: Accuracy ofd)V using tensor integral
reduction in double precision. The probability of accuraayrse thand, in samples of 19 uniformly
distributed phase-space points wiffs = 1 TeV, pr > 50GeV,AR;j > 0.5, is plotted versuA.

To assess the performance and numerical stability of theadetve considered the-2 2,3,4
reactions uss WW~ +ng, ud — W*g+ng, ut— tt+ng, and gg— tt+ ng, with n = 0,1,2
gluons. This covers all non-trivial processes of the Lesdhes priority list [34]. The time to
generate and compile the code for a process typically rafigesseconds to a few minutes for
processes with up to 6 external particles while the size@ttde is at most of the order of 1 MB.
In Fig. 1 (eft) the CPU cost to evaluate one-loop scattering probatsilpper phase space point is
plotted versus the number of diagrams. Sums over colour$eliities are always included. For
W bosons and top quarks we include a single helicity, assyikétays into massless left-handed
fermions. For the 12 considered processes, invohd{d0) to O(10*) diagrams, the CPU cost
scales almost linearly with the number of diagrams. Thisxpeeted feature indicates that the
increase of tensorial rank does not represent an additjperadlty at large particle multiplicity.
With tensor-integral reduction (upper frame), the runtipee phase-space point is typically below
1 ms for 2— 2 processes; for the most involved-24 process it never exceeds one second. The
ratio of timings obtained with GTTooLs and tensor integrals (lower frame) shows that, when
combined with open loops, OPP reduction permits to achiewgasly high speed. While always
slightly lower, the relative OPP efficiency seems to imprexth particle multiplicity. This holds
also for S\MURAI. It is instructive to study the relative CPU cost needed ffiertensor integrals
and the open loops coefficients separately. While the teinsegrals dominate the runtime for
simple processes, in complicated cases their contribuédaces to around 50%.

To estimate the numerical accuracy all dimensionful patareeare multiplied by a scale fac-
tor &. This results in scaled scattering probability densites’ = EK5W whereK is the mass
dimension ofd)V. After dividing out the scale factor an estimate for the ntioa precision is
given by the agreement with the original (unscaled) resiging tensor integral reduction we find
an average number of correct digits that ranges from 11 tod#hé 12 considered processes. For
the most involved processes, precision lower thanPdhd 102 occurs with less than 2 and 0.1
permille probability, respectively. Fig. Zight) shows the distribution of the numerical precision
for the 12 processes in samples of hdmogeneously distributed phase space points.
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Figure2: Pointwise numerical agreement of open loops and indepeaddelraic code for the two processes
ud — e+ Veg and w — et vegg in samples of 10uniformly distributed phase space points. The probability
to find numerical agreement worse thArbetween the two programs is plotted agaifisilong with the
accuracy of the individual codes.

The correctness of the construction of open loops is verbiied consistency check against
our generator for tree amplitudes. By fixing the momentunmhefdut propagator in the loop and
attaching external wave functios§ andéeyg to the open loop we obtain pseudo-tree amplitudes

P =& (Mo 0.0 £5p. 3.1)

Agreement between the amplituffeand the value which is computed independently by evaluating
the same diagram with a tree generator confirms the consistplementation of the routines for
the numerical construction and evaluation of open loopsedkas the organisation of the recursion
and recycling procedures. Further internal consistenegkdinclude the cancellation of UV and
IR divergences, the statisfaction of Ward identities ad asetomparing tensor-integral versus OPP
reduction.

As an independent check of the entire open loops implenientate compare numerical re-
sults for matrix elements obtained with open loops to andudge generator for one-loop matrix
elements which employs algebraic techniques. The higlopeence of both programs allows us
to survey the numerical agreement acros$ (lfiase space points for each process. Fig. 2 visu-
alises the agreement for the two processﬂas»ua+ Veg and a— et Vedg. As of now more than 40
non-trivial processes with four or five external particlesrgvsuccessfully checked.

4. Summary and Outlook

The combination of the open loops algorithm with tensorgraéand OPP reduction results
in a fully flexible generator for one-loop amplitudes. Witk €xcellent CPU speed the method has
the potential to handle multi-particle processes with u@{a0°) diagrams. Our implementation
has proven its reliability by thorough verification of a widange of processes. As the next step to-
wards an integrated setup for NLO accurate predictionsiigéessary to connect tldpenLoops
program to a Monte Carlo event generator. In order to progasy access tOpenLoops we are
working on an interface t8her pa [35] such that the NLO matrix element generation can be con-
trolled via theSher pa user interface. This will open the route to the fully autoatageneration
of NLO predictions for any Standard Model process at the LHC.
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