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1. Introduction

The need for precise predictions for many-particle processes at the Large Hadron Collider
stimulated a series of recent theoretical developments which led to the completion of various multi-
particle next-to-leading-order (NLO) calculations [1–17]. By using tensor-integral reduction and
Feynman diagrams, it became possible to handle multi-particle processes with high efficiency and
numerical stability [1, 2]. Alternatively, new reductionsof on-shell type which avoid tensor inte-
grals and reduce all process-dependent aspects of one-loopcalculations to a leading order (LO)
problem were introduced [18–20]. In particular, the OPP method lead to a high degree of automa-
tion of one-loop generators [21–23].

Here we report on the open loops algorithm [24], which is based on the recursive numerical
construction of numerator functions of one-loop amplitudes as polynomials in the loop momentum.
This representation naturally adapts to both, tensor integral and OPP reduction. The algorithm
permits us to perform NLO calculations in a highly efficient and numerically stable way by a fully
automated program. A recursive algorithm based on tensor integrals was first introduced in the
framework of a one-loop Dyson-Schwinger recursion [25].

In section 2 of this contribution we recapitulate the open loops algorithm, followed by a study
of the performance and the numerical stability of our implementation in section 3. We perform
various internal consistency checks as well as comparisonsto independent code. In section 4 we
conclude with a summary and a brief outlook.

2. The open loops Algorithm

Leading-order transition amplitudesM and virtual NLO correctionsδM are handled as sums
of tree and one-loop Feynman diagrams,

M= ∑
d

M(d), δM= ∑
d

δM(d). (2.1)

The corresponding scattering probability densitiesW and virtual one-loop correctionsδW are

W = ∑
hel,col

|M|2, δW = ∑
hel,col

2Re(M∗δM) . (2.2)

The sums run over colour and helicity states of each externalparticle. Colour sums are performed
at zero cost by exploiting thefactorisation of individual diagrams into colour factorsC(d) and
colour-stripped amplitudes

M(d) = C(d)A(d), δM(d) = C(d)δA(d). (2.3)

Four-gluon vertices are split into three contributions forwhich the factorisation property holds.
After algebraic reduction of the colour factors to a standard basis{Ci}, all colour sums are encoded
in the matrixKi j = ∑colC∗

i C j , which is computed only once per process (see [26] for details).
Colour-stripped tree diagramsA(d) are computed by a numerical algorithm that recursively

merges sub-trees. We call a sub-tree a subdiagram obtained by cutting a tree. Sub-tree amplitudes
are complex n-tupleswβ (i), whereβ is the spinor or Lorentz index of the cut line. The labeli
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represents the topology, momentum and particle content of the sub-tree. Sub-trees are recursively
merged by connecting their cut lines to vertices and propagators:

wβ (i) = i =

k

j

. (2.4)

The sub-treesi, j andk involve off-shell momenta, but in contrast to off-shell currents they repre-
sent individual topologies. Cut lines are marked by dots, and external lines are not depicted. For
brevity, quartic vertices are not shown explicitly, but their inclusion is straightforward. In terms of
n-tuples, the recursion step reads

wβ (i) =
Xβ

γδ (i, j,k) wγ( j) wδ (k)

p2
i −m2

i + iε
, (2.5)

whereXβ
γδ/(p

2
i −m2

i + iε) describes a vertex connectingi, j, k, and a propagator attached toi. The
recursion starts with the external lines of a tree, i. e. the wave functions of the scattering particles,
and terminates when the sub-trees which are needed to build all tree diagrams have been generated.
The algorithm is based on numerical routines that implementall wave functions, propagators and
vertices. These building blocks depend only on the theoretical model and are easily obtained from
its Feynman rules. Its strength lies in the efficiency of colour sums and the systematicrecycling of
sub-treesappearing in different diagrams.

Let us now consider one-loop amplitudes. A colour-strippedn-point loop diagram is an or-
dered set ofn sub-trees,In = {i1, . . . , in}, connected by loop propagators:

δA(d) =
∫

dDqN (In;q)
D0D1 . . .Dn−1

=

n−1

0

1

in−1in

i2i1

. (2.6)

The denominatorsDi = (q+ pi)
2 −m2

i + iε depend on the loop momentumq, external momenta
pi , and internal massesmi. All other contributions from loop propagators, vertices,and external
sub-trees are summarised in the numerator, which is a polynomial of degreeR≤ n in the loop
momentum,

N (In;q) =
R

∑
r=0

Nµ1...µr (In) qµ1 . . .qµr . (2.7)

Momentum-shift ambiguities are eliminated by settingp0 = 0. This singles out theD0 propagator,
and the loop momentumq flowing through this propagator is marked by an arrow in (2.6). In tradi-
tional one-loop calculations, the coefficientsNµ1...µr are explicitly constructed from the Feynman
rules, and the amplitude (2.6) is expressed as a linear combination of tensor integrals,

δA(d) =
R

∑
r=0

Nµ1...µr (In) Tµ1...µr
n,r with Tµ1...µr

n,r =

∫

dDq qµ1 . . .qµr

D0D1 . . .Dn−1
. (2.8)
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The tensor integralsTµ1...µr
n,r are subsequently reduced tom-point scalar integralsTm,0 with m=

1,2,3,4. Alternatively, the OPP method [18] avoids tensor integrals through a direct connection
between the numeratorN (In;q) and the scalar-integral representation of the amplitude. The coef-
ficients of the scalar-integrals are determined by evaluatingN (In;q) at loop momentaq that satisfy
multiple-cut conditions of the formDi = D j = · · · = 0. In this framework, the numerator can be
computed with tree-level techniques. Let us consider thecut loopthat results from (2.6) by cutting
theD0 propagator and removing denominators,

N β
α (In;q) = In =

in

In−1 . (2.9)

The indicesα andβ are associated with the arrows that mark the ends of the cut line, and the trace
of the cut loop corresponds to the numeratorN (In;q). As depicted in (2.9),n-point cut loops can
be constructed by recursively merging lower-point cut loops and sub-trees. More explicitly,

N β
α (In;q) = Xβ

γδ (In, in,In−1)N γ
α(In−1;q) wδ (in), (2.10)

whereXβ
γδ and wδ are the same vertices and sub-trees that enter the tree algorithm. It is thus

possible, within the OPP framework, to reduce the calculation of scalar-integral coefficients to a
tree-level problem. Highly automatic tree generators can be upgraded to loop generators [21, 22],
thereby reducing the human power needed for NLO calculations by orders of magnitude. However,
when applied to non-trivial processes, this approach can require massive computing resources.
The reason is that OPP reduction requires repeated evaluations ofN (In;q) for a large number of
momentaq.

This is related to the nature of loop calculations, which requires the knowledge of the numer-
ators asfunctionsof the loop momentumq. It is thus natural to handle the building blocks of the
recursion (2.10) as functions ofq. Accordingly, the cut loop (2.9) is expressed as a polynomial

N β
α (In;q) =

R

∑
r=0

N β
µ1...µr ;α(In) qµ1 . . .qµr (2.11)

in the loop momentumq. This representation is called anopen loop. In renormalisable gauge
theories, splitting theX tensor in (2.10) into a constant and a linear part,Xβ

γδ =Yβ
γδ +qν Zβ

ν ;γδ , leads
to recursion relations forn-point open loops in terms of lower-point open loops and sub-trees:

N β
µ1...µr ;α(In) =

[

Yβ
γδ N γ

µ1...µr ;α(In−1)+Zβ
µ1;γδ N γ

µ2...µr ;α(In−1)
]

wδ (in). (2.12)

Lower point open loops can be reused if they appear in more than one diagram. E. g. when a(n−1)-
point diagram can be obtained from an-point diagram by pinching one of the loop propagators the
diagrams will share a(n−2)-point open loop.

The number of coefficients grows with the polynomial degree,which corresponds to the ten-
sorial rankr. However, symmetrising open loop tensorial indicesµ1 . . .µr keeps the number of
components well under control [25]. Once the coefficients are known, multiple evaluations of the
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polynomial (2.7) can be performed at a negligible CPU cost [27]. This strongly boosts OPP reduc-
tion. Moreover, the same coefficients can be used for a tensor-integral representation of the loop
amplitude (2.8). Open loops can thus be interfaced with bothOPP and tensor-integral reduction in
a natural way.

A key feature of open loops is the possibility ofhighly efficient helicity sums. Unpolarised
transition probabilities require multiple evaluations ofthe polarised amplitudes (2.6). The num-
ber of helicity configurations grows exponentially with theparticle multiplicity, and the result-
ing CPU cost can be very large. This can be avoided by exploiting the decomposition (2.8) into
helicity-dependent coefficientsNµ1...µr and helicity-independent tensor integrals. The CPU expen-
sive evaluation of tensor integrals is performed only once,and helicity sums—when restricted to
the coefficients—become very fast. More explicitly, the contribution of (2.8) to the unpolarised
transition probability is handled as a linear combination

δW(d) = Re
R

∑
r=0

δW(d)
µ1...µr Tµ1...µr

n,r , (2.13)

with helicity- and colour-summed coefficients

δW(d)
µ1...µr = 2∑

hel

(

∑
col

M∗C(d)

)

Nµ1...µr (In). (2.14)

The unpolarised representation (2.13) can be reduced to scalar integrals with any method, including
OPP. Within the OPP framework, the reduction is performed bystarting from the unpolarised nu-
merator functionδW(d)(In;q) = ∑r δW(d)

µ1...µr q
µ1 . . .qµr ; in this way open loops lead to extremely

fast helicity sums as compared to traditional tree generators. The OPP reduction is further im-
proved by combining sets of loop diagrams with identical loop propagators but different external
sub-trees.

3. Implementation and Benchmarks

We realised a fully automatic generator of QCD corrections to Standard-Model processes.
Diagrams are generated with FEYNARTS [28]; sub-tree and open loop topologies are processed by
a MATHEMATICA program, which concatenates them in a recursive way, reduces colour factors,
and returns FORTRAN 90 code. Generalising the setup to other theories than QCD ismerely a
matter of implementing the corresponding additional vertices and propagators. The reduction to
scalar integrals is performed in terms of tensor integrals and, alternatively, with the OPP method.
For tensor integrals we use COLLIER, a private library by A. Denner and S. Dittmaier, which
implements the scalar integrals of Ref. [29] and reduction methods that avoid instabilities from
spurious singularities [30]. The library calculates the coefficients of a covariant decomposition
of the tensor integrals and uses them to construct explicit tensor components. OPP reduction is
performed with CUTTOOLS [31] and, alternatively, with SAMURAI [32]. Ultraviolet and infrared
divergences are dimensionally regularised. While loop denominators are consistently treated in
D = 4−2ε dimensions, the momentaqµ and the coefficientsNµ1...µr in (2.8) are handled inD = 4.
Their D− 4 dimensional contributions, which yield so-calledR2 rational terms, are restored via
process-independent counterterms [33] using the tree generator.
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Figure 1: left: CPU cost of colour and helicity summed one-loop probabilities δW versus number of
diagrams. Runtimes per phase space point, with tensor-integral (tTI) and OPP reduction with CUTTOOLS

(tOPP), on a single Intel i5-750 core compiled with ifort 10.1.right: Accuracy ofδW using tensor integral
reduction in double precision. The probability of accuracyworse than∆, in samples of 106 uniformly
distributed phase-space points with

√
s= 1TeV, pT > 50GeV,∆Ri j > 0.5, is plotted versus∆.

To assess the performance and numerical stability of the method, we considered the 2→ 2,3,4
reactions u ū→ W+W−+ ng, ud̄ → W+g+ ng, u ū→ tt̄+ ng, and gg→ tt̄+ ng, with n = 0,1,2
gluons. This covers all non-trivial processes of the Les Houches priority list [34]. The time to
generate and compile the code for a process typically rangesfrom seconds to a few minutes for
processes with up to 6 external particles while the size of the code is at most of the order of 1 MB.
In Fig. 1 (left) the CPU cost to evaluate one-loop scattering probabilities per phase space point is
plotted versus the number of diagrams. Sums over colours andhelicities are always included. For
W bosons and top quarks we include a single helicity, assuming decays into massless left-handed
fermions. For the 12 considered processes, involvingO(10) to O(104) diagrams, the CPU cost
scales almost linearly with the number of diagrams. This unexpected feature indicates that the
increase of tensorial rank does not represent an additionalpenalty at large particle multiplicity.
With tensor-integral reduction (upper frame), the runtimeper phase-space point is typically below
1 ms for 2→ 2 processes; for the most involved 2→ 4 process it never exceeds one second. The
ratio of timings obtained with CUTTOOLS and tensor integrals (lower frame) shows that, when
combined with open loops, OPP reduction permits to achieve similarly high speed. While always
slightly lower, the relative OPP efficiency seems to improvewith particle multiplicity. This holds
also for SAMURAI . It is instructive to study the relative CPU cost needed for the tensor integrals
and the open loops coefficients separately. While the tensorintegrals dominate the runtime for
simple processes, in complicated cases their contributionreduces to around 50%.

To estimate the numerical accuracy all dimensionful parameters are multiplied by a scale fac-
tor ξ . This results in scaled scattering probability densitiesδW ′ = ξ KδW whereK is the mass
dimension ofδW. After dividing out the scale factor an estimate for the numerical precision is
given by the agreement with the original (unscaled) result.Using tensor integral reduction we find
an average number of correct digits that ranges from 11 to 15 for the 12 considered processes. For
the most involved processes, precision lower than 10−5 and 10−3 occurs with less than 2 and 0.1
permille probability, respectively. Fig. 1 (right) shows the distribution of the numerical precision
for the 12 processes in samples of 106 homogeneously distributed phase space points.
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Figure 2: Pointwise numerical agreement of open loops and independedalgebraic code for the two processes
ud̄→ e+ν̄eg and ūd→ e+ν̄egg in samples of 106 uniformly distributed phase space points. The probability
to find numerical agreement worse than∆ between the two programs is plotted against∆ along with the
accuracy of the individual codes.

The correctness of the construction of open loops is verifiedby a consistency check against
our generator for tree amplitudes. By fixing the momentum of the cut propagator in the loop and
attaching external wave functionsεα

1 andε2β to the open loop we obtain pseudo-tree amplitudes

P = εα
1

(

N β
µ1...µr ;α qµ1 . . .qµr

)

ε2β . (3.1)

Agreement between the amplitudeP and the value which is computed independently by evaluating
the same diagram with a tree generator confirms the consistent implementation of the routines for
the numerical construction and evaluation of open loops as well as the organisation of the recursion
and recycling procedures. Further internal consistency checks include the cancellation of UV and
IR divergences, the statisfaction of Ward identities as well as comparing tensor-integral versus OPP
reduction.

As an independent check of the entire open loops implementation we compare numerical re-
sults for matrix elements obtained with open loops to an in-house generator for one-loop matrix
elements which employs algebraic techniques. The high performance of both programs allows us
to survey the numerical agreement across 106 phase space points for each process. Fig. 2 visu-
alises the agreement for the two processes ud̄→ e+ν̄eg and ūd→ e+ν̄egg. As of now more than 40
non-trivial processes with four or five external particles were successfully checked.

4. Summary and Outlook

The combination of the open loops algorithm with tensor integral and OPP reduction results
in a fully flexible generator for one-loop amplitudes. With its excellent CPU speed the method has
the potential to handle multi-particle processes with up toO(105) diagrams. Our implementation
has proven its reliability by thorough verification of a widerange of processes. As the next step to-
wards an integrated setup for NLO accurate predictions it isnecessary to connect theOpenLoops
program to a Monte Carlo event generator. In order to provideeasy access toOpenLoopswe are
working on an interface toSherpa [35] such that the NLO matrix element generation can be con-
trolled via theSherpa user interface. This will open the route to the fully automated generation
of NLO predictions for any Standard Model process at the LHC.
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