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1. Introduction

For the calculation and numerical evaluation of QCD observables at hadron colliders, one has
to deal with the occurring divergences, ultra–violet (UV) and infra–red (IR) (soft and collinear).
The former can be removed by renormalization. The latter cancel in observables, however, they
have to be dealt with at intermediate steps of the calculation, in particular in numerical integrations
where they have to be regularized and treated appropriately. In this talk, a method for handling
these singularities to next–to–next–to leading order (NNLO) in the case of massive fermions is
described, which was derived in [1].

At next–to leading order (NLO), several subtraction schemes in the massless and massive case
have been proposed for this issue [2, 3, 4, 5, 6, 7]. The idea is to construct an approximation to
the corresponding real emission partonic amplitude, which is simple enough to analytically extract
the IR singularities and calculate this quantity. The remaining difference of the full amplitude and
its approximation is then IR finite and can therefore be integrated numerically in a straightforward
manner.

To construct a subtraction scheme at NNLO, one needs to know, among other ingredients, the
limiting behavior of one–loop amplitudes when one of the external on–shell gluons becomes soft.
The massless case at NNLO has been addressed in Refs. [8, 9, 10]. In [1], we generalized the
process–independent approach of Catani and Grazzini, [10], to the case of massive fermions which
will be explained in the following. Details about our calculation and all mathematical expressions
can be found in [1].

The calculation of the massive one–loop soft–gluon current was performed as one contribution
to the project of the calculation of the full NNLO top–quark pair production for which first results
are given in [11, 12], making use of the soft one–loop current calculated here. Different other
groups have approached the topic of NNLO heavy quark production, either at the level of the
full (two–loop) amplitude or subtraction terms. More details concerning the various ingredients
for the above–mentioned calculation as well as the work of other groups, can be found, e.g., in
[11, 12, 13, 14] and references therein.

2. Factorization of the amplitude in the soft limit

Let Ma(n +1;q) be the amplitude for the production of n +1 on–shell partons, where at least
one final–state parton is a gluon. Here, a = 1, . . . ,N2

c is its color index and q its momentum, with
q2 = 0. In general we do not make the distinction between initial and final state partons, unless
stated otherwise. We are considering the limit when the external gluon becomes soft, meaning that
q→ 0, or, more precisely, its momentum scales as q→ λq, λ → 0. In this limit, the amplitude
satisfies the following factorization property:

Ma(n+1;q) = Ja(q)M(n)+O(λ ) . (2.1)

The n–parton amplitude M(n) denotes the remaining amplitude after removing the external gluon
with momentum q from Ma(n + 1;q), while Ja(q) is the soft–gluon (eikonal) current, the main
subject to be calculated to one–loop order here. Note that this current is process–independent and
therefore, calculated once and for all, can be used in different contexts. Each factor in Eq. (2.1)
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has a loop expansion in powers of the strong coupling constant αS indicated by a superscript, (n),
n ∈ N, and depends on the dimensional regularization parameter ε , in d = 4−2ε dimensions:

Ma(n+1;q) = M(0)
a (n+1;q)+M(1)

a (n+1;q)+ . . . ,

M(n) = M(0)(n)+M(1)(n)+ . . . ,

Ja(q) = gSµ
ε

(
J(0)

a (q)+ J(1)
a (q)+ . . .

)
. (2.2)

The dots indicate terms at higher orders in αS. Since the leading–order amplitude M(0)(n) contains
a process–dependent power of the strong coupling constant, the powers are not put explicitly in
this notation. The index (0) thus always names the leading order, (1) the next–to leading order in
αS, and so on, such that J(0)

a denotes the leading order result for the soft current given explicitly in
Eq. (2.3), J(1)

a stands for its next–to leading order in αS, etc.
Since the same considerations apply for UV unrenormalized as well as renormalized ampli-

tudes, the concentration in the following will be on bare amplitudes and the reader is referred to [1]
for questions concerning UV renormalization.

Except for the soft external gluon with momentum q, external momenta of the remaining
external on–shell partons are denoted by pi. The massive case is then given by p2

i = m2
i > 0, the

massless by p2
i = 0. In both cases, the tree–level soft–gluon current reads:

Jµ(0)
a (q) =

n

∑
i=1

T a
i

pµ

i
pi ·q

≡
n

∑
i=1

T a
i eµ

i , (2.3)

with J(n)
a (q)≡ εµ(q)Jµ(n)

a (q). Throughout the following, the conventions of Ref. [10] for the signs
of color generators are applied. We will also follow the general strategy developed in Ref. [10]
for the calculation of the one–loop soft–gluon current in Eq. (2.4). The approach consists in the
evaluation of all appearing one–loop diagrams connecting (on–shell) external legs and attaching
a real gluon to either the external legs or the gluon propagator of the virtual gluon in the loop.
The calculation is performed in the eikonal approximation. The diagrams are split into 1P and 2P
contributions, where the 1P contributions are defined as the ones that depend on a single external
hard momentum pi, while the 2P contributions involve two external hard momenta pi and p j. In
Ref. [10] it is shown that the calculation of the one–loop soft–gluon current is reduced to the calcu-
lation of the sum of two (non–abelian) 2P–contribution diagrams (cf. Fig. 4 in Ref. [10]). Looking
at these diagrams more closely, one realizes that at the integrand level the eikonal approximation
is identical for the massive and the massless case and hence we can simply use the sum of the
expressions given in Eqs. (46), (47) of Ref. [10]. However, for the massive case, which we are con-
sidering here, the subsequent reduction differs from the one done there, because it produces terms
that explicitly depend on the masses m2

i, j, which can be non–zero for the cases at hand. Applying
partial fractioning and omitting scaleless integrals, the following expression for the the one–loop
UV–unrenormalized soft–gluon current Jµ(1)

a (q) is derived:

Jµ(1)
a (q) = i fabc

n

∑
i 6= j=1

T b
i T c

j

(
eµ

i − eµ

j

)
g(1)

i j (ε,q, pi, p j) . (2.4)

The function g(1)
i j (ε,q, pi, p j) in Eq. (2.4) reads:
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g(1)
i j = ab

Sµ
2ε

pi · p j

m2
i (p j ·q)2−2(pi · p j)(pi ·q)(p j ·q)+m2

j(pi ·q)2

×

{
(pi ·q)(p j ·q)

[
(p j ·q)M1 +(pi ·q)M̂1

]
+

1
2
(p j ·q)

[
(pi · p j)(pi ·q)−m2

i (p j ·q)
]

M2 +
1
2
(pi ·q)

[
(pi · p j)(p j ·q)−m2

j(pi ·q)
]

M̂2

+
[
(pi · p j)(pi ·q)(p j ·q)−m2

i (p j ·q)2−m2
j(pi ·q)2] (pi ·q)(p j ·q)

pi · p j
M3

}
, (2.5)

using ab
S = αb

s Sε/(2π) for the bare coupling with Sε = (4π)ε exp(−εγE). The functions M1,2,3

denote the following integrals:

M1 ≡ Φ

∫ ddk
i(2π)d

1
[k2][(k +q)2][−p j · k]

,

M2 ≡ Φ

∫ ddk
i(2π)d

1
[k2][pi · k + pi ·q][−p j · k]

, (2.6)

M3 ≡ Φ

∫ ddk
i(2π)d

1
[k2][(k +q)2][pi · k + pi ·q][−p j · k]

,

with M̂k ≡ Mk(pi ↔ p j), k = 1,2,3. Each propagator has an implicit +iδ imaginary part. The
momenta pi, p j can in general be massive or massless and the momentum q, corresponding to the
soft gluon, is assumed outgoing and massless. The normalization factor is Φ = 8π2(4π)−εeεγE .
Noting that M̂3 = M3, we see that g(1)

i j is symmetric, g(1)
i j = g(1)

ji . The formula for g(1)
i j in Eq. (2.5) is

generic for different kinematical regions, which we consider next.

3. The one–loop current in the kinematic regions

For all following cases, we define p2
i = m2

i > 0 and pi as well as the momentum q of the soft
gluon in the final state. We consider three kinematical configurations:

1.) p2
j = 0, p j incoming, 2.) p2

j = 0, p j outgoing, 3.) p2
j = m2

j > 0, p j outgoing. (3.1)

We will refer to the Case 1 as being the “space–like” (SL) and the Cases 2 and 3 as the “time–
like” (TL) cases, depending on the sign of the scalar products σk ≡ (pk · q)/|pk · q| = ±1, with
σi =−σ j = 1 for the space–like and σi = σ j = 1 for the time–like kinematics. For all three cases,
the major bottleneck is the calculation of the integrals, which become increasingly complicated.
Details for the calculation of these integrals and discussion about their results can be found in the
Appendix A of [1]. The general structure of these integrals is the following: the integral M1 can
straightforwardly be calculated into a short expression, while the integral M2 results in a hypergeo-
metric function 2F1. The most complicated integral is M3. For the space–like kinematics, MSL

3 can
be expressed in terms of two Appell hypergeometric functions F1, which can be expanded in ε in
terms of multiple polylogarithms Limk,...,m1(tk, . . . , t1) with the help of the library Nestedsums [15].
In the case of one non–zero mass, as needed for Case 1, the Appell functions in M(SL)

3 collapse into
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two hypergeometric functions 2F1. The evaluation of M3 is hardest in the “time–like” kinematics
of Case 3. For this case, we did not calculate a closed analytic form, but expanded the integral in ε

up to the desired order and determined each term in this expansion.
Expanding the integrals Mi to the desired order in ε , one can evaluate the kinematical confi-

gurations for the function g(1)
i j directly. The generic result for the unrenormalized one–loop soft

current can be written in the following form, treating the real and imaginary parts separately:

g(1)
i j (Case x) = R[Cx]

i j + iπI[Cx]
i j ≡ ab

S

(
2(pi · p j)µ2

2(pi ·q)2(p j ·q)

)ε r

∑
n=−2

ε
n
(

R(n)[Cx]
i j + iπI(n)[Cx]

i j

)
, (3.2)

where r is the order in ε needed to produce finite contributions after phase–space integration. The
purpose of the overall d–dimensional prefactor in Eq. (3.2) is to exactly extract the leading power
scaling behavior of the one–loop soft–gluon current in the limit q→ 0. The remainder is given as
an expansion in ε , which has a well–defined limit q→ 0. All results can be found in [1] either
analytically or attached in electronic form.

Looking at the cases explicitly, one makes the following observations: Case 1 is available in
fully analytic form and can be expanded up to order ε2, as needed here. Case 2 can be obtained
by performing an analytic continuation of the result of Case 1. Since in these cases p2

j = 0, the
continuation amounts to the exchange of p j →−p j (cf. Appendix D of [1]). One easily observes
that the result of Case 1 remains unchanged by such a transformation and hence Case 2 is identical
to Case 1. Case 3 is calculated up to and including terms of O(ε) which is sufficient, since the
O(ε2) term contributes only if multiplied by a term ∼ 1/ε2 originating from phase–space integra-
tion. Such a leading pole ∼ 1/ε2 stems from the emission of soft and collinear radiation. Since
both partons i and j are massive, however, collinear singularities are regularized and the leading
pole is of order 1/ε .

For illustration, Eq. (3.4) shows the first orders up to O(ε) of Case 1:

g(1)
i j (Case 1) = R[C1]

i j + iπI[C1]
i j ≡ ab

S

(
2(pi · p j)µ2

2(pi ·q)2(p j ·q)

)ε 2

∑
n=−2

ε
n
(

R(n)[C1]
i j + iπI(n)[C1]

i j

)
, (3.3)

with the real and imaginary parts given by:

I(−2)[C1]
i j = 0 , (3.4)

I(−1)[C1]
i j = −1

2
,

RS I(0)[C1]
i j = 2m2

i (p j ·q) ln
(

αi

2

)
,

RS I(1)[C1]
i j = 4

[
(pi · p j)(pi ·q)−m2

i (p j ·q)
]

Li2
(

1− αi

2

)
+m2

i (p j ·q) ln2
(

αi

2

)
+π

2−2(pi · p j)(pi ·q)+m2
i (p j ·q)

2
,

R(−2)[C1]
i j = −1

2
,

R(−1)[C1]
i j = 0 ,
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RS R(0)[C1]
i j = m2

i (p j ·q) ln2
(

αi

2

)
−π

2 5(2(pi · p j)(pi ·q)−m2
i (p j ·q))

6
,

RS R(1)[C1]
i j = 4

[
(pi · p j)(pi ·q)−m2

i (p j ·q)
]

Li3
(

αi

2

)
−ζ3

4
[
7(pi · p j)(pi ·q)−5m2

i (p j ·q)
]

3

+2
[
(pi · p j)(pi ·q)−m2

i (p j ·q)
]

ln
(

1− αi

2

)
ln2
(

αi

2

)
+ ln

(
αi

2

)(
π

2−2(pi · p j)(pi ·q)−5m2
i (p j ·q)

3

+4
[
(pi · p j)(pi ·q)−m2

i (p j ·q)
]

Li2
(

1− αi

2

))
,

where we expressed the result through the variables RS and αi defined as:

RS = 4
[
m2

i (p j ·q)−2(pi · p j)(pi ·q)
]

, αi =
m2

i (p j ·q)
(pi ·q)(pi · p j)

, α j =
m2

j(pi ·q)
(p j ·q)(pi · p j)

. (3.5)

We have performed various consistency checks on the results for the one–loop soft–gluon
current (see the Appendices of [1] for more information). As expected, the result for Case 3 agrees
in the limit m j → 0 with the result for the soft current in Case 2. This agreement is also a non–
trivial check on the analytic continuation used to derive the result in Case 2 from that in Case 1.
We have also numerically checked the result for the most difficult integral M3 in the “time–like”
kinematics Case 3. Additionally, the massless limit mi = 0, m j = 0 of the one–loop unrenormalized
soft current reproduces the massless results of Ref. [10].

4. Squared matrix elements

The knowledge of the one–loop soft–gluon current makes it possible to construct an appro-
ximation to the squared one–loop matrix element for any process in the limit of the soft gluon as
defined before, which is correct up to power–suppressed terms, as indicated in Eq. (2.1). The one–
loop current (2.4) is calculated as an expansion in ε sufficient for the derivation of the terms O(ε0)
in any observable at NNLO. The interference term between the Born and one–loop amplitude in
this limit is:

〈M(0)
a (n+1;q)|M(1)

a (n+1;q)〉+ c.c. =−4παSµ
2ε

{

2CA

n

∑
i 6= j=1

(ei j− eii)Ri j〈M(0)(n)|Ti ·Tj|M(0)(n)〉−4π

n

∑
i 6= j 6=k=1

eikIi j〈M(0)(n)| f abcT a
i T b

j T c
k |M(0)(n)〉

+

(
n

∑
i6= j=1

ei j〈M(0)(n)|Ti ·Tj|M(1)(n)〉+ c.c.

)
+

(
n

∑
i=1

Cieii〈M(0)(n)|M(1)(n)〉+ c.c.

)}
+O(λ ) ,

(4.1)

where we have split g(1)
i j ≡Ri j +iπIi j into its real and imaginary parts as defined, e.g., in Eqs. (3.2), (3.3)

and introduced ei j ≡ ei · e j and Ci ≡ Ti ·Ti.
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5. Conclusion and outlook

We have studied the behaviour of one–loop QCD amplitudes with an arbitrary number of exter-
nal massive fermions, in the limit of one external gluon becoming soft. This amplitude factorizes
as in the massless case into a product of an amplitude, where the soft gluon has been removed
and a process–independent soft–gluon current. This statement is correct up to power–suppressed
terms. We have calculated this current up to and including one loop in three kinematic regions and
performed a number of checks on the result.

This result can now be used for the evaluation of any cross section with massive fermions at
next–to–next–to leading order within a subtraction approach. An immediate application for it is the
calculation of the tt̄ cross–section at NNLO, for which the one–loop soft–gluon current calculated
here has been used in [11, 12].
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