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1. Introduction

In ordinary zero-temperature perturbative field theory, this conference series has witnessed a
rapid development of automated computer-algebra aided approaches over the past decade or so.
Triggered perhaps by the integration-by-parts (IBP) method [1, 2] that received an enormous boost
from its algorithmic description by Laporta [3], the problem of reducing the large variety of Feyn-
man integrals that occur in a given perturbative computation to a small number of master integrals
can nowadays be regarded as solved, in the sense that there exist independent public computer-
algebraic implementations [4 – 6] which, given sufficient hardware resources, perform this step in
an automated way. Concerning the subsequent evaluation of master integrals, the degree of au-
tomation is less developed – after all, integration is still an art. However, besides a much better
understanding of the analytic structure of the numbers and functions that are contained in the per-
turbative series [7 – 10], there has been progress in developing powerful approaches to obtain ana-
lytic results [3, 11] as well as stable and fast numerical tools [12, 13] that promise to be applicable
to large classes of Feynman integrals.

In this note, we will discuss the corresponding situation for finite-temperature perturbation
theory. The present state of affairs is that, while many of the methods and algorithmic tools devel-
oped for zero-temperature field theory (such as generation and classification of Feynman graphs,
efficient color and Lorentz algebra as well as IBP reduction methods) can be – and have been
– applied with only minor adjustments to finite-temperature systems, only very few master sum-
integrals that remain after the IBP reduction step are known (see, e.g. Refs. [14 – 18] or the review
[19]). It seems difficult to profit from the comparably mature zero-temperature techniques for this
step, due to the very different analytical structure that the sums bring about. Here, we will there-
fore give only a brief discussion on thermal IBP methods, to concentrate then on sum-integral
evaluation, producing a new result for a phenomenologically relevant case.

2. Sum-integral reduction via IBP

The basic principle of the IBP method [1, 2] applies to any integral, and can hence also be
applied to the sum-integrals that occur in finite-temperature field theories. The Matsubara sums
are simply left untouched, while their summands are interpreted as massive loop integrals in a
reduced space-time dimension and with masses provided by the Matsubara frequencies, with the
IBP relations acting upon these massive loop integrals. A more detailed review of these techniques
is given e.g. in Ref. [20]. Similar to the zero-temperature case, the linear relations among sum-
integrals – as generated by IBP on the Matsubara summands – can be systematically used for a
sum-integral reduction step, employing a variant of the Laporta algorithm [3]. This approach has
been successfully used for a number of higher-order calculations in finite-temperature QCD (for
examples, see e.g. [20 – 22]), to enable basis transforms among master sum-integrals (see below),
or even to aid in managing the infrared (IR) behavior of Matsubara summands when evaluating
master integrals [23]. To show two concrete examples, IBP has revealed that a non-trivial 2-loop
sunset-sum-integral [24] and a non-trivial 3-loop mercedes-sum-integral vanish identically:

∑

∫
PQ

1
P2 Q2 (P−Q)2

IBP= 0 , J000
111111

IBP= 0 , (2.1)
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where we have used a generic notation for massless bosonic 3-loop vacuum sum-integrals

Jαβγ

abcde f ≡ ∑

∫
PQR

(P0)α(Q0)β (R0)γ

[P2]a[Q2]b[R2]c[(P−Q)2]d [(P−R)2]e[(Q−R)2] f . (2.2)

In our notation, bosonic (Euclidean) four-momenta are denoted by P = (P0,p) = (2πnT,p), with
T being temperature of the thermal system, inverse propagators are P2 = P2

0 + p2, and the sum-
integral symbol stands for

∑

∫
P
≡ T ∑

n∈Z

∫ ddp
(2π)d , with d = 3−2ε . (2.3)

A class of 1-loop bosonic tadpoles that we will need below can be evaluated analytically as

Is ≡ ∑

∫
Q

1
[Q2]s

=
2T ζ (2s−d)
(2πT )2s−d

Γ(s− d
2 )

(4π)d/2Γ(s)
. (2.4)

In Ref. [22], it has been shown that the computation of NNLO corrections to the spatial string
tension of pure Yang-Mills theory (mapped to Taylor coefficients of background-gauge-field self-
energies [21]) can be reduced to 3-loop basketball-type master sum-integrals Ki (and products of
simpler 1-loop ones Ii), giving the gauge-invariant expression

Π
′
T3(0) = C3

A

(
9

∑
i=1

βi(d)Ki +β10(d) I4I1I1 +β11(d) I3I2I1 +β12(d) I2I2I2

)
(2.5)

{K1, . . . ,K9} ≡ {J000
220011,J

000
310011,J

002
320011,J

020
410011,J

220
510011,J

400
510011,J

800
710011,J

730
730−111,J

820
820−111} , (2.6)

where the coefficients βi are rational functions that contain simple and double poles in 1/(d−3),
and where all massless bosonic 3-loop vacuum sum-integrals Ki have been represented in terms
of the notation introduced in Eq. (2.2). After an extensive reverse search in our IBP database, it
proves possible to transform the above expression into the equivalent representation

Π
′
T3(0) = C3

A

(
6

∑
i=1

ri(d)Vi + r7(d) I4I1I1 + r8(d) I3I2I1 + r9(d) I2I2I2

)
(2.7)

{V1, . . . ,V6} ≡ {J000
121110,J

000
211110,J

002
221110,J

020
311110,J

022
411110,J

000
310011} (2.8)

which, much in the spirit of the epsilon-finite basis advocated in Ref. [25], does not contain diver-
gences in the coefficients ri(d) as d → 3 (note that V6 = K2 was already contained in the old basis
listed in Eq. (2.6), and was kept since it is has already been evaluated in Ref. [18]). Eq. (2.7) can
now serve as a convenient starting point for determining the spatial string tension, once the five
unknown master sum-integrals {V1, . . . ,V5} have been evaluated up to their constant parts. For V1,
see the next section.

3. A 3-loop master sum-integral of dimension zero

Let us now turn to a concrete example of 3-loop sum-integrals, to demonstrate the main tech-
niques that are used in the master integral evaluation step. Here, we work in d = 3− 2ε spatial
dimensions, and wish to evaluate the ε-expansion of V1 given in Eq. (2.8) up to the constant term.
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V1 is a sum-integral of spectacles-type, for which a generic evaluation procedure has been
discussed in Ref. [26]. Subtracting subdivergences, the sum-integral is split into its finite part
(which can typically be computed only numerically in configuration space), and its divergent part
(which can be expressed analytically in terms of Zeta and Gamma functions), treating the P0 = 0
mode separately (softening the IR via IBP relations if needed). We thus decompose V1 as

V1 ≡ J000
121110 = ∑

∫
P

1
P2 Π21(P)Π11(P) (3.1)

= ∑

∫
P

′ 1
P2

{
(Π21−Π

E
21)(Π11−Π

B
11)+Π

E
21(Π11−Π

B
11)+(Π21−Π

E
21−Π

C
21)(Π

B
11−Π

D
11)
}

+

+∑

∫
P

′ 1
P2

{
(Π21−Π

E
21)Π

D
11 +Π

C
21(Π

B
11−Π

D
11)+Π

E
21Π

B
11

}
+∑

∫
P

δP0

Π21Π11
P2 , (3.2)

where the first line collects the finite pieces (the primed sum excludes the P0 = 0 term), the second
line the divergent pieces as well as the zero-mode, and we have used the 1-loop 2-point structures

Πab(P)≡ Πab ≡ ∑

∫
Q

1
[Q2]a[(P−Q)2]b

, Π
B
ab ≡

∫
Q

1
[Q2]a[(P−Q)2]b

=
G(a,b,d +1)

[P2]a+b−(d+1)/2 , (3.3)

where G(s1,s2,d) =
Γ(d

2 − s1)Γ(d
2 − s2)Γ(s1 + s2− d

2 )
(4π)d/2Γ(s1)Γ(s2)Γ(d− s1− s2)

, (3.4)

Π
C
ab ≡ Π

B
ab +

Ia

[P2]b
+

Ib

[P2]a
, Π

D
ab ≡

[P2]ε

(2πT )2ε
Π

B
ab , Π

E
ab ≡ ∑

∫
Q

δQ0

1
[Q2]a[(P−Q)2]b

. (3.5)

We will in the following evaluate the various contributions to V1 of Eq. (3.2) in turn.

3.1 Finite pieces

Using inverse 3d Fourier transforms of the 2-point functions, the first term of Eq. (3.2) reads

∑

∫
P

′ 1
P2 × (Π21−Π

E
21)× (Π11−Π

B
11)

= T ∑
P0

′
∫ d3p

(2π)3
1

P2×
T

2(4π)2

∫
d3r

eipr

r̄ ∑
Q0

′ e
−|Q0|r−|Q0+P0|r

|Q̄0|
×T 3

4

∫
d3s

eips

s̄2

(
coth s̄−1

s̄

)
e−|P0|s +O(ε)

=
2

(4π)6 ∑
n,m

′
∫

∞

0
dx
∫

∞

0
dy

1
y

(
cothy− 1

y

)
e−(|n|+|m|+|m+n|)y

|n||m|

(
e−|n||x−y|− e−|n|(x+y)

)
+O(ε)

=
1

(4π)6

∫
∞

0
dy

1
3y

(
cothy− 1

y

)[
6y
[

ln(1− e−2y)+ y
]2−π

2[ ln(1− e−2y)+4y
]
−14y3 +

+6ln(1−e−2y)Li2
(
e−2y)+12y

[
Li2
(
1/(1−e−2y)

)
− iπ ln(1−e−2y)

]
−6Li3

(
1− e2y)]+O(ε)

=
c1

(4π)6 +O(ε) , c1 ≈ 0.6864720593640618954(1) , (3.6)

where we have used dimensionless variables such as r̄ = 2πT |r| = x and Q̄0 = Q0/(2πT ) = m;
performed the momentum integration as well as the angular integration in configuration space in
the third line; integrated over x and performed both sums in the fourth line; and performed the last
step simply via Mathematica’s numerical integration routine.
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In full analogy1, we get for the second term of Eq. (3.2)

∑

∫
P

′ 1
P2 ×Π

E
21× (Π11−Π

B
11)

= T ∑
P0

′
∫ d3p

(2π)3
1

P2 ×
(
− T

4π

|P0|
P4

)
× T 3

4

∫
d3r

eipr

r̄2

(
coth r̄− 1

r̄

)
e−|P0|r +O(ε)

=− 2
(4π)6

∞

∑
n=1

∫
∞

0
dx
(

x
n

+
1
n2

)(
cothx− 1

x

)
e−2nx +O(ε)

=
1

(4π)6

[
π2

6
+

3
2

ζ (3)+
π2

3
ln2π−4π

2 lnG
]
+O(ε) , (3.7)

where G ≈ 1.28243 is the Glaisher constant. Similarly, the third term of Eq. (3.2) evaluates as

∑

∫
P

′ 1
P2 × (Π21−Π

E
21−Π

C
21)× (ΠB

11−Π
D
11)

= T ∑
P0

′
∫ d3p

(2π)3
1

P2 ×
T

2(4π)2

∫
d3r

eipr

r̄

[
f210(r̄, |P̄0|)

]
×
(
− ln P̄2

16π2

)
+O(ε)

with f210(x,n)≡ e2nxB(e−2x,n+1,0)+Hn− ln(1−e−2x)+ e2nxEi(−2nx)+ ln
2x
n
− γE−

x
6n

=
4

(4π)6

∞

∑
n=1

∫
∞

0
dxe−2nx

[
e2nxEi(−2nx)+ ln

x
2n

+ γE

][
f210(x,n)

]
+O(ε) (3.8)

=
c2

(4π)6 +O(ε) , c2 ≈−3.202(1) , (3.9)

where we have used the incomplete Beta function B(z,n + 1,0) =
∫ z

0 dt tn/(1− t) = − ln(1− z)−
∑

n
m=1 zm/m, harmonic numbers Hn = ∑

n
m=1 1/m and exponential integral Ei(z) =

∫ z
−∞

dt et/t. After
integrating over p the angular r integration was trivial, leaving Eq. (3.8) where the summation
converges somewhat slowly and the evaluation of the integrand itself is costly since it contains
special functions; for the numerical precision given above, we have truncated the sum at nmax =
7000 and estimated the remainder by fitting to a power-law a/nb in the interval n ∈ [7000,19000]
(obtaining b ≈ 1.9) and summing this fit to infinity.

3.2 Divergent pieces

Introducing the following 2-loop vacuum sum-integrals (see e.g. Appendix A and B of Ref. [26])

A(s1,s2,s3;s4;d)≡ ∑

∫
PQ

δQ0 |P0|s4

[Q2]s1 [P2]s2 [(P−Q)2]s3
(3.10)

=
2T 2 ζ (2s123−2d− s4)

(2πT )2s123−2d−s4

Γ(s13− d
2 )Γ(s12− d

2 )Γ(d
2 − s1)Γ(s123−d)

(4π)dΓ(s2)Γ(s3)Γ(d/2)Γ(s1123−d)
,

L(s1,s2,s3;s4,s5;d)≡ ∑

∫
PQ

(P0)s4 (Q0)s5

[P2]s1 [Q2]s2 [(P+Q)2]s3
, (3.11)

L(211;00;d) IBP= − 1
(d−5)(d−2)

I2 I2 , (3.12)

1Here, we use ΠE
21

IBP= (d− 3) 2P2
0−P2

[P2]2 ΠE
11−

2P2
0

[P2]2 ΠE
02

d=3= − T |P0|
4π[P2]2 , where we have treated |P0| as a mass in the 3d

1-loop self-energy integrals ΠE
ab, and noticed that ΠE

11 is finite at d = 3, and that the tadpole ΠE
02 is known analytically.
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and noting from Eqs. (3.3),(3.5) that ΠD ∼ ΠB ∼ 1/[P2]x are simple powers, the fourth, fifth and
sixth terms of Eq. (3.2) are effectively 2-loop structures and can be evaluated analytically as

∑

∫
P

′ 1
P2 (Π21−Π

E
21)Π

D
11 =

G(1,1,d +1)
(2πT )3−d

[
L(211;00;d)−A(121;0;d)−A(211;0;d)

]
, (3.13)

∑

∫
P

′ 1
P2 Π

C
21 (ΠB

11−Π
D
11) = G(1,1,d +1)

[
G(2,1,d +1)Î5−d + I2Î(7−d)/2 + I1Î(9−d)/2

]
, (3.14)

∑

∫
P

′ 1
P2 Π

E
21 Π

B
11 = G(1,1,d +1)A(2,(5−d)/2,1;0;d) , (3.15)

where we have used the abbreviation Îs ≡ Is − (2πT )d−3Is+(d−3)/2. All three expressions contain
poles as d → 3; the first two contribute starting from 1/ε3, the last one merely from 1/ε .

3.3 Zero mode

The seventh term of Eq. (3.2) can be decomposed into finite (first line) and divergent parts as

∑

∫
P

δP0

1
P2 Π21 Π11 = ∑

∫
P

δP0

1
P2 (Π21−Π

E
21)(Π11−Π

B
11−Π

E
11)+

+∑

∫
P

δP0

1
P2

{
Π

E
21Π11 +Π21 (ΠB

11 +Π
E
11)−Π

E
21 (ΠB

11 +Π
E
11)
}

. (3.16)

In full analogy to Sec. 3.1, the first (finite) term is treated in 3d coordinate space, as

∑

∫
P

δP0

1
P2 × (Π21−Π

E
21)× (Π11−Π

B
11−Π

E
11)

= T
∫ d3p

(2π)3
1
p2 ×

T
2(4π)2

∫
d3r

eipr

r̄

[
−2ln(1− e−2r̄)

]
× T 3

4

∫
d3s

eips

s̄2

(
coth s̄− 1

s̄
−1
)

+O(ε)

=− 4
(4π)6

∫
∞

0
dx
∫

∞

0
dy

x+ y−|x− y|
y

ln(1− e−2x)
(

cothy− 1
y
−1
)

+O(ε)

=
1

(4π)6
4
3

∫
∞

0
dy

1
y

(
cothy− 1

y
−1
)[

4y3−2π
2y+3

[
Li3
(
e2y)+2πi y2]−3ζ (3)

]
+O(ε)

=
c3

(4π)6 +O(ε) , c3 ≈ 10.33244698246374834(1) . (3.17)

In full analogy to Sec. 3.2, the second (divergent) part of Eq. (3.16) contains 1- and 2-loop structures
G and A only and is hence known fully analytically in terms of Gamma and Zeta functions:

∑

∫
P

δP0

1
P2

{
Π

E
21Π11 +Π21 Π

E
11 +Π21 Π

B
11−Π

E
21 (ΠB

11 +Π
E
11)
}

= T G(2,1,d)A(4−d/2,1,1;0;d)+T G(1,1,d)A(3−d/2,2,1;0;d)+

+G(1,1,d +1)A((5−d)/2,2,1;0;d)−0scalefree . (3.18)

3.4 Result

Collecting from Eqs. (3.6), (3.7), (3.9), (3.13), (3.14), (3.15), (3.17), (3.18) and expanding
around d = 3−2ε , we finally obtain

V1 =
1

6(4π)6

(
eγE

4πT 2

)3ε [ 1
ε3 +

3
ε2 +

1
ε

(
13−6γE

2 +
3π2

4
−12γ1−3ζ (3)

)
+

6



P
o
S
(
L
L
2
0
1
2
)
0
6
3

Automated computation meets hot QCD York Schröder

+
(

51−42γE
2 +4π

2
(19

16
+ ln(2π)−12lnG

)
+2ln(2)

(
12−12γE

2−24γ1−ζ (3)
)
+

+6γE
(
3ζ (3)−4−4γ1

)
−84γ1−36γ2 +

25
2

ζ (3)−16ζ
′(3)+6

(
c1 + c2 + c3

))
+O(ε)

]
≈ 1

6(4π)6

(
1

T 2

)3ε( 1
ε3 −

2.86143
ε2 +

15.2646
ε

+47.77(1)+O(ε)
)

, (3.19)

with (c1 + c2 + c3)≈ 7.817(1), where the numerical error is dominated by Eq. (3.9). The analytic
part of the result contains the Glaisher constant G, for which 12ln(G) = 1 + ζ ′(−1)/ζ (−1), zeta
values as well as the Stieltjes constants γi, defined by ζ (1+ε) = 1/ε +γE−γ1ε +γ2ε2/2+O(ε3).

Note that our 3-loop sum-integral V1 does contain a 1/ε3 divergence, as would be naturally
expected from the fact that the 1-loop tadpoles of Eq. (2.4) diverge as 1/ε at most (recall that
d = 3−2ε in our notation). This is in fact the first example where we observe such behavior – all
previously known non-trivial 3-loop cases in fact started at order 1/ε2.

4. Conclusions

While automated methods for Feynman integral reduction work well when applied to the sum-
integrals that arise in finite temperature perturbation theory, the step of evaluating the resulting
master sum-integrals is in a much less mature state. Only a small number of non-trivial higher-loop
sum-integrals are known so far, their evaluation resting on a case-by-case analysis with intricate
subdivergence subtraction techniques, such as demonstrated here on the example of a new bosonic
3-loop tadpole that enters in a NNLO determination of the spatial string tension. Typical results
are partly analytic and partly numeric, since often the constant terms of the Laurent series cannot
be obtained in closed form, but mapped onto simple finite low-dimensional representations.

Future progress in the field of classification and evaluation of sum-integrals would certainly
give a boost to the field of finite temperature field theory. It will be interesting to see whether
this progress originates again from a fruitful application of zero-temperature methods (such as
e.g. Mellin-Barnes representations, classes of multiple nested sums and integrals such as harmonic
polylogarithms, or systematic numerical methods based on sector decomposition), or whether com-
pletely new ideas and structures are needed.

The work of I.G. is supported by the Deutsche Forschungsgemeinschaft (DFG) under grant
no. GRK 881. Y.S. is supported by the Heisenberg program DFG, contract no. SCHR 993/1.
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