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The association of long gamma-ray bursts (LGRB) with the death of massive stars gives the
prospect of utilising LGRBs to trace the high redshift cosmic star formation history (CSFH), com-
peting or even surpassing conventional methods. However, a consensus on the manner in which
the LGRB rate (LGRBR) traces the CSFH must be reached. Driven by recent highly complete
LGRB samples, obtained by the Gamma-Ray burst Optical Near-infrared Detector (GROND)
over the past 4 years, and new evidence of LGRBs occurring in more massive and metal rich
galaxies than previously thought, the possible biases of the LGRBR-CSFH connection are inves-
tigated over a large range of galaxy properties. It is found that there is no strong preference for
metallicity cuts or fixed galaxy mass boundaries and that there are no unknown redshift effects.
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1. Introduction
Achieving luminosities greater than 1052ergs−1, long-duration gamma-ray bursts (LGRBs) are tied
to some of the most catastrophic explosions in the universe. Their ultra luminous nature and sim-
ple power law spectrum makes LGRBs potentially great probes for the high redshift Universe.
The connection of LGRBs to the death of massive stars [25, 9] was strengthened in 2003, by the
spectroscopic association of SN2003dh with GRB030329 [23, 17]. These massive progenitors
have short lifetimes of ∼ 107yr, negligible over cosmological time scales, allowing LGRBs to be
tracers of the cosmic star formation history (CSFH). It was seen that some LGRB samples had
a high-redshift excess in comparison to the CSFH at high redshifts (e.g., [19]), suggesting that
a non-linear dependence between the two existed. After initial studies of LGRB host galaxies,
they were seen to be primarily low-metallic, low-mass, blue, and star forming galaxies [21, 15].
This apparent subset of galaxy type inspired many authors to apply it to the connection between
the LGRB and CSFH [16]. However, metallicity is but one of many dependences investigated,
along with: evolving LGRB luminosity functions (LF) [19], evolving stellar initial mass functions
(IMF) [24], and sample selection effects [5], to name but a few. However, recent studies have be-
gun to show a broader range of host galaxies, including both metal-rich [22, 14] and massive-red
galaxies [13]. Given recently acquired highly complete LGRB redshift samples [11, 19], the LGRB
rate (LGRBR)-CSFH connection is reinvestigated over a range of galaxy properties.

2. The sample
The Gamma-Ray burst Optical Near-infrared (NIR) Detector (GROND) [12], a multi-channel im-
ager mounted at the 2.2m MPG/ESO telescope at La Silla (Chile), has operated for the past 4 years
as an automated GRB afterglow follow-up instrument. Due to the reduced attenuation from gas and
dust at observer frame NIR wavelengths, GROND’s multi-band capabilities in combination with its
rapid-response obtains precise photometric redshifts when spectroscopic observations are not pos-
sible or fruitless (i.e., redshift desert, low signal-to-noise). This has facilitated, for the first time,
highly complete GRB redshift samples. The GROND LGRB sample is created by selecting GRBs
that: (i) are long duration (T observer

90 > 2s) (ii) are detected by GROND < 4hr after the trigger and
(iii) exhibit an X-ray afterglow. This results in a sample of 39 LGRBs: 31 spectroscopic redshifts, 6
photometric redshifts (3 of which are upper limits) and 2 with no optical/NIR afterglow detections
and thus no redshift measurements. We will only consider the photometric sample which contains
the spectroscopic and photometric redshifts, with a completeness of ∼ 90% (see Fig. 1).

3. Modelling the long gamma-ray burst rate
The following is a brief overview of the modelling, readers are encouraged to read [7] for the full
description. The CSFH is simply the sum of all the star formation, SFR(M∗,z), of the contributing
galaxies weighted by a galaxy mass function, φ (M∗,z), and can be described in the following way:

ρ̇ =
∫ M2

M1

ζ (z)γ (M∗,z,εL)SFR(M∗,z)φ (M∗,z) dM∗ = ρ̇ (z,εL,M1,M2) . (3.1)

where M1 and M2 are the upper and lower galaxy mass limits, and the SFR(M∗,z) has been taken
from [1] and the φ (M∗,z) from [8]. The SFR(M∗,z) will still include massive galaxies that have
ceased star formation, and so is corrected by ζ (z). We would like to investigate the contribution
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Figure 1: Left: The luminosity distribution of the GROND Photometric sample. The red-dotted line is the
best fit LGRB luminosity function. Right: The redshift distribution of the GROND Photometric sample.
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Figure 2: Left: The CSFH model described in Eqn. 3.1 is depicted by the red line, measured data are
represented by black and purple dots, and corresponding parametric fits by the dashed and dashed-dotted
lines. Right: The LGRBR model, both with metallicity cuts (red-dashed) and without (blue-dotted). They
are compared to the GROND redshift distribution by the solid-blue lines.

to the CSFH solely from galaxies that lie below a specific metallicity cut, which is achieved by
γ (M∗,z,εL). Both are simple step functions of the following type:

γ (M∗,z,εL) =

{
1 ifε (M∗,z)< εL

0 ifε (M∗,z)≥ εL
and, ζ (z) =

{
1 if M0

Q (1+ z)3.5 > M∗
0 if M0

Q (1+ z)3.5 ≤ M∗
, (3.2)
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Figure 3: Upper Panel: The
χ2 contour plot for δ = 0 (see
lower panel) showing the best fit
metallicity limits, (εL), and mass
ranges, (M1 = log10 (M1) ,M2 =

log10 (M2)). The black line de-
notes the 1% acceptance level of
the χ2 value, where blue is for
better fits and red for worse fits.
Lower Panel: The χ2 values for
each δ value investigated. The re-
sulting best-fit is for δ = 0 and so
only the contour plot for this value
is depicted in the upper panel.

where ε (M∗,z) is the Savaglio relation [20], εL is the metallicity cut-off, and MQ is the local
quenching mass [2, 10]. It is then possible to obtain a modelled LGRB number between two
redshifts z1 and z2 using the following relation:

N (z1,z2) = ηgrb

∫Mmax
MBH

ψ (m) dm∫Mmax
Mmin

mψ(m)dm

∫ z2

z1

ρ̇ (z,εL,M1,M2)(1+ z)δ

1+ z
dV
dz

∫
∞

Llimit(z)

φ (L) dLdz, (3.3)

where φ (L) is the LGRB luminosity function, δ is the evolution dependence, dV
dz is the co-moving

volume, 1
(1+z) is the cosmological time dilation, ψ(m) is the Salpeter IMF [18] with upper and lower

mass limits of Mlow and Mup respectively, MBH is the minimum mass that forms a black hole,
Llimit (z) is the instrumental luminosity limit, and ηgrb is the LGRB probability. The luminosity
limit, Llimit(z), of the sample can be calculated using the luminosity distance, DL, of the form Llimit =

4πD2
LFlimit. By taking Flimit to be the lowest luminosity of the sample, results in the following flux

limit: Flimit = 1.08 · 10−8 ergs−1 cm−2. The LGRB probability contains extra factors that convert
the CSFH in to a LGRBR and is described easily by:

ηgrb = ∆T ∆Ω ×ηtime ηX−ray ηredshift ×nLF (1− cosθ jet) , (3.4)

where ∆T , and ∆Ω, are the survey time length and fractional area covered by the instrument re-
spectively. ηtime, ηX−ray, and ηredshift are the biases introduced into the chosen sample: fraction
observed < T hr after the trigger, fraction with an X-ray afterglow, and redshift completeness, re-
spectively. Finally, nLF, is the normalisation of the LGRBLF, and θ jet is the collimation angle of
the jet. The resulting model can be seen in Fig. 2. All the input values can be found in [7].

4. Grid approach and resulting galaxy properties
The 3-dimensional parameter space for the models derived in Sec. 3 contains: metallicity (εL) and
mass range (M1,M2) constraints on the galaxies contributing to the CSFH, and an evolution de-
pendence (δ ) between the LGRBR and the CSFH. To find the best set of parameters, a grid-like
approach is utilised. This consists of calculating a LGRBR for each combination of parameters
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Figure 4: The resulting GROND
Photometric sample after a lu-
minosity threshold has been ap-
plied. The peak of the distribu-
tion is seen to shift to much higher
redshifts.

and comparing the resulting distribution to the GROND sample (Sec. 2) utilising χ2 analysis (seen
pictorially in Fig. 2). The parameter range investigated is εL/Z� = 0.1− 1.8 with steps of 0.1,
M1/M�,M2/M� =

(
107,1012

)
...
(
107+∆x,1012−∆x

)
for steps of x = 0.05, and δ = 0− 2.9 with

steps of 0.1. The evolution parameter of δ < 0 could have been investigated, but due to the un-
physical nature in terms of the collapsar model it was left for future studies. The resulting best-fit
contour plot of δ = 0 can be seen in Fig. 3. This shows that the best fit CSFH is one that does not
require any constraints on the galaxy types contributing (e.g., metallicity or mass ranges), nor is
there any evolution dependence between the CSFH and LGRBR. This would imply that LGRBs are
not selecting specific types of galaxy and are tracing areas of star formation (i.e., LGRBR∼CSFH).
These implications could be altered depending on the model types discussed in the previous section.

5. Discussion
There are many possible avenues one could take when creating the model of the LGRBR (Sec. 3),
and by making different choices the results, in some non-trivial way, could change . The main three
possibilities are: (i) the LGRBLF, (ii) the stellar IMF and (iii) the sample selection criteria.
(i) The GRBLF can be of different forms; power-law, log-normal, redshift-evolving, and even an
evolving luminosity limit.
(ii) The stellar IMF can also be of different type, e.g. Salpeter [18], Chabrier [4] and even redshift
evolving (Davé) [6].
(iii) If completeness levels of a sample are increased using luminosity cuts, it can introduce extra
biases if the redshifts were not obtained in a non-biased way, for example, shifting the peak of the
LGRB redshift distribution to higher redshifts, requiring there to be biases introduced (see Fig. 4).
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