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The connection between long GRBs and supernovae is now well established. I briefly review the
evidence in favor of this connection and summarise where we are observationally. I also use a few
events to exemplify what should be done and what type of data are needed. I also look at what
we can learn from looking at SNe not associated with GRBs and see how GRBs fit into the broad
picture of stellar explosions.
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1. Introduction

The connection between gamma-ray bursts (GRBs) and supernovae (SNe) has existed for
longer than the “official” history of GRBs. Colgate [8] predicted that exploding stars should emit
γ rays. Even though it turned out that this model for GRB prompt emission is not correct, it meant
that a connection between SNe and GRBs was on everybody’s mind from the beginning. Indeed,
Klebesadel, Strong & Olson [21] searched for spatial and temporal coincidence between explosive
events (novae and supernovae) and GRBs. Although they didn’t find any coinciding event, this
was not enough to discourage further similar searches. It is only in the afterglow era that major
progress could finally be made and that a clear link between long GRBs and SNe would be firmly
established.

This review is not an attempt to be exhaustive so there is no discussion of all known or can-
didate SNe associated with GRB. I will rather try to show where we are now asa community and
to place these SNe in a general context. Several recent reviews took a close look at the evidence
for each SN/GRB and should be consulted for specific information about any particular object (see
e.g. [42, 17]).

2. From suspicion to proof

GRB980425 was quickly associated with a supernova, SN 1998bw. The spectra of the SN
clearly showed that it was a type Ic – meaning that the spectrum showed no sign of hydrogen nor
helium. The association between the GRB and the SN meant that the burst was extremely faint
however (Eiso < 1048 erg). SN 1998bw itself was also peculiar, as it was a very bright SN, showed
very broad lines (BL) and had a large expansion velocity (e.g. [12]. Because of this highly unusual
nature – very weak and very nearby while the SN was very bright, there was still a question mark
over this event and some fraction of the community was still waiting for a GRB at agenuinely
“cosmological” distance.

This happened with GRB030329. The burst was close enough that a SN could be seen, yet
it was distant and bright enough that it could be classified as a genuine GRB. Unambiguous SN
features became visible in afterglow spectra a few days after the burst ([38, 16]). The SN was
shown to be very similar to SN 1998bw [26] and was also classified as a SN Ic-BL. This event
removed any doubt as to the association between SNe and GRBs.

Since then, several other GRBs have had indisputable spectral evidence supporting the pres-
ence of a SN (see Table 1). Several good quality spectra (between 2 and many) have been obtained
also for GRB031203 (SN 2003lw [24]), XRF060218 (SN 2006aj [33]), GRB100316D (SN 2010bh,
[7, 3]), GRB120422A (SN 2012bz, [25, 34])1 These SNe share the characteristics of SN 1998bw,
in the sense that they are of type Ic and they have broad lines, indicative of high expansion velocity.

There were attempts to obtain a spectrum of the SN for a number of other GRBsbut the
evidence is not as solid as one would wish. The reader is referred to [17] for a detailed discussion
of each event and associated evidence.

1This last event is still a developing story as of this writing. While the presenceof a SN is clear, the SN itself is not
yet fully characterised.
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a) GRBs with highest quality spectroscopic evidence:
GRB980425≡ SN 1998bw, GRB030329≡ SN 2003dh, GRB031203≡ SN 2003lw,
GRB060218≡ SN 2006aj, GRB100316D≡ SN 2010bh, GRB091127≡ SN 2009nz,
GRB120422A≡ SN 2012bz

b) Other GRBs with SN evidence:
GRB970228, GRB980326, GRB990712, GRB991208, GRB000911, GRB011121,
GRB020305, GRB020405, GRB020410, GRB020903, GRB021211, GRB030723,
GRB040624, GRB041006, GRB050416A, GRB050525A, GRB050824, GRB060729,
GRB070419A, GRB080319B, GRB081007, GRB090618, GRB100418A, GRB101219B,
GRB101225A

Table 1: A list of GRBs where some evidence for a SN has been found (see Table 9.1 in [17] for references
related to any particular GRB). The first category includes those events with a very clear spectroscopic
signature; the second category includes event where the evidence ranges from good to poor.

2.1 Light curves bumps

Short of obtaining a spectrum around the time of the SN peak luminosity, a well-sampled light
curve in several filters can also show evidence for a SN. This will take theform of a “slowing
‘down” of the light curve or even a rebrightening. A fairly large number of bursts have displayed
such a behaviour and in most cases, the bump can be reasonably well fit with a SN light curve (see
Table 1). These SNe are represented as “modified SN 1998bw”, in the sense that the adopted model
light curve is usually that of SN 1998bw, stretched or compressed in time andshifted in brightness
(and properly accounting for the different luminosity distance andk-correction).

The brightness of these bumps is usually within a factor of a few of SN 1998bw (e.g. [43,
10, 5]) albeit slightly fainter on average, which is not surprising given that SN 1998bw was a very
bright event. At this point, one can say that in nearly every case where we should have been able
to see a bump, a bump has been seen and it corresponds, in brightness and timing, to a SN.

2.2 Properties of SNe of GRBs

We want to understand the explosions so that we can ultimately constrain the progenitors of
GRBs. A good multi-colour light curve, coupled with a velocity measurement atmaximum light,
can be modelled analytically [1] to obtain explosion parameters: kinetic energyEk, mass of the
ejectaMe j, and mass of56Ni synthesised. This has been done for a few events (see [6, 31, 3] for the
case of XRF100316D). This approach may be subject to systematic errors however and modelling
based on light curve and time-series spectroscopy yields more robust results (e.g. [18, 27, 23]).
This provides a better understanding of the ejecta’s structure and yields more reliable results than
simple light curve analysis because it avoids several simplifications. The results of such modelling
give a range of values for each parameter: the kinetic energy isEk = 2−60×1051 erg, the ejected
mass ranges from 2M⊙ to 13M⊙ and the mass of56Ni synthesised in the explosion is between 0.1
M⊙ and 0.7M⊙.
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3. Cautionary tales

In some cases, the observational data may not allow us to detect a SN signature. One such
example is GRB070419A. While there was an initial claim for a SN [15] based on a photometric
bump, a full analysis of all the light curve data showed that the late time behaviour could be fully
explained by a fairly shallow decay of the afterglow [28]. In order to determine the SN brightness,
we need to know very well what the afterglow is doing. This means that a well-sampled GRB light
curve is necessary for tens of days; not only for a few hours. Observing the source past the SN
maximum is needed as well; if any “rebrightening” is seen, the fast fading ofthe SN will leave a
different signature in the light curve than the power law decay of the afterglow.

Another example is given in Fig. 1. The left panel is a light curve displayinga more or less
power law decay. From this light curve, it is impossible to tell whether there is aSN hidden in
the data or not. The right panel of the figure shows the full light curve, which is for GRB030329.
Now, obviously a SN was there to be found in the data. Assume for a moment that this burst had
been atz∼ 0.5, hence much fainter, we would have had much less data, the light curve would
have looked like the left panel of Fig. 1 and it would have been very hardto find a SN in the light
curve. The point here is that even if we do not see an obvious SN bump, there may well be one
but we need good enough data to separate the relative contributions of theafterglow and SN. The
case of GRB060729 is particularly instructive: there is no SN bump to be seen simply because the
afterglow was very bright but a careful analysis revealed a bright SNin the light curve [5].

Another example is provided by GRB101225. There are two “competing” interpretations
regarding the nature of this event. One is a cosmological GRB (z≃ 0.33) with a SN bump [39], the
other is a minor planetary body tidally disrupted by a (Galactic) neutron star [4]. The point here is
not to decide which interpretation is best but to emphasise again thatthe right type of data at the
right timewill go a long way towards removing any ambiguities in the analysis. This burst serves
as a stark reminder that nothing replaces spectroscopy.

4. GRBs or SNe we do not see

The central point of this section is about negatives: not finding what weexpect or finding what
we do not expect.

4.1 Observing a GRB and finding no SN

There are times when, try as you may, there is no SN to be found. Two eventsin particular,
GRB060505 and GRB060614, are now etched in the collective consciousness. Both were at a
redshift low enough that a SN even substantially fainter than SN 1998bw would have been detected
easily. The limits on the brightness of any SN are actually very strong: in both cases any SN would
have to have been at least 100 times fainter than SN 1998bw at peak (e.g. [13, 14, 9]). Several
other events also showed no sign of a SN, although in some cases the lack ofredshift makes the
evidence weaker ([36, 22]).

While there may still be some lingering questions regarding the nature of these bursts, they
may be in a different class than most long GRBs. A possibility is that they have slightly different
progenitors. Indeed, it may well be possible to make a GRB (i.e. a relativistic jet) without making
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Figure 1: Left: An R-band light curve for a seemingly anonymous GRB. The afterglow decays by several
magnitudes over∼ 2.5 decades in time. At first sight, there is no SN bump.Right: The wholeR-band light
curve of GRB030329 which is the event on the left. There is no doubt that there was a SN associated with
this event.

a bright SN (e.g. [41, 40, 30]). A bright burst ofγ rays may be the only electromagnetic signature
of such events. Obviously we need to find more of these “failed” SNe. Thisis why it is important
to monitor low redshift GRBs for several weeks. The absence of a SN maytell us even more than
an actual detection.

4.2 Observing a SN and serendipitously finding a GRB

Given that GRBs emit their radiation in a narrow cone, we miss most of them (i.e. those
pointing away from Earth). The emission becomes visible however at late times inthe radio when
the afterglow is emitting essentially isotropically. Because we can separate normal SNe from late-
time jet emission via their luminosities (jets are much more luminous than SNe, e.g. [37] and
references therein), this offers a way of finding GRBs whose high-energy emission was directed
away from us.

Observations of SNe at radio wavelengths have recently uncovered such a case. The radio
luminosity of SN 2009bb places it squarely among the jet-associated SNe [37], yet no GRB was
observed. Another possible case is SN 2007gr [32]. These recent observations of nearby SNe
show that the number of jets found via their SN emission may be comparable to the number of
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Figure 2: Cumulative distribution of peak magnitudes for local SNe Ibc (red dashed line) and the SNe
associated with GRBs (blue solid line). On average, the SNe of GRBs are brighter than local SNe Ibc (based
on data in [5]). This should be interpreted with some cautionhowever as observations of a SN/GRB at an
intermediate redshift (sayz≃ 0.3−0.5) is easier when the SN is bright.

SNe found via their early gamma-ray emission. If the two techniques have comparable yields, they
should both be pursued as each complements the other.

5. The SNe of GRBs in a general context

From their relative rates, we know that GRBs represent a very small fraction of all SNe. From
their observed properties however, they do stretch the parameter spaceof stellar explosions. We
know that local “normal” SNe and GRBs mark the explosions of massive stars. What sets GRBs
apart from other SNe is the large amount of energy that goes into relativistic ejecta. What we
ultimately want to know is why a small fraction of SNe manage to do that while most ofthem do
not. Comparing the respective observational properties of these two types of explosions is a fruitful
way of understanding their differences.

One similarity is the spectroscopic type, Ic, which tells us that GRB progenitorsare stripped-
envelope stars. They also share the same “locations” on the respective host galaxies ([11, 19]):
local SNe Ic and GRBs are much more concentrated on the light of their hoststhan other types
of SNe. The SNe of GRBs show, on average, larger ejection velocities than local SNe Ic, they
have very broad lines. They also have larger energies and peak brightnesses than local SNe Ic (see
Fig. 2).

The properties of GRB host galaxies are instructive as well; they are different from those of
SNe Ic. GRBs are found in relatively low luminosity irregular galaxies [11].GRB are also found in
more metal-poor environments than SNe Ic (e.g. [20, 29], see also [35] however). In this context,
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it is interesting to note that localbroad-lineSNe Ic tend to prefer low metallicity environments as
well ([29]).

6. Conclusion

A bump on a light curve in itself is moderately interesting; it becomes much more valuable
when combined with time-series spectroscopy because this allows us to characterise the progenitor
star. Photometric monitoring low-z GRB is warranted however because this is the only way to
find other SN-less GRB (like GRB060614). It is important to know what fraction of bursts can
be formed via this channel. This will eventually help us understand whether these objects are a
separate class altogether or part of a continuum encompassing very faint and very bright SNe.

It can be frustrating to wait for nature to be so kind as to offer us a low redshift GRB where the
SN can be studied in detail. Observing nearby SNe can help us tremendouslyto understand GRBs
in general. Radio monitoring of SNe has been proved to be a good way to findrelativistic ejecta
in the local universe. On the other hand, ongoing optical surveys of thesky (PTF, Pan-STARRS,
SkyMapper, La Silla QUEST, CRTS, etc.) already find hundreds of SNe of all types every year.
This will lead to a better understanding of the evolution and explosion of massive stars that will
improve our understanding of GRBs. This is like making a jigsaw puzzle with a 1000 pieces with
one blank piece among them. Obviously we do not know where it fits in the global picture but once
the other 999 pieces are in place, we will will know exactly where the blank one fits and, looking
at the general picture, we will have a very good idea as to what this piece should look like.
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