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1. Introduction

The GridRPC API [10] was designed to define Remote Procedure Call over the Grid, widely
and successfully used in middleware like DIET [7], NetSolve/GridSolve [16], Ninf [14], Om-
niRPC [13] and SmartGridSolve [4]. The API concentrated on remote service executions: It stan-
dardized synchronous and asynchronous calls and computing tasks management.

In June 2011, the Open Grid Forum standardized the document "Data Management API within
the GridRPC" [6] which describes an optional API that extends the GridRPC standard [10] (refer-
enced as GridRPC DM API in this paper). Used in a GridRPC middleware, it provides a minimal
set of structure definitions and functions to handle a large set of data operations among which:
movements, replications, persistence.

For this paper, French and Japanese co-authors of the GridRPC DM API have implemented
the corresponding structures mandatory to the use of the API in their own GridRPC middleware,
respectively DIET and Ninf. A first prototype of the API containing the basic functions offering
data management through the library has been developed, in addition to a GridRPC layer mak-
ing possible to write a single GridRPC client able to invoke DIET and Ninf services transparently.
With several experiments relying on these early developments, we show that the GridRPC DM API
answers already most of the needs presented in [5], namely code portability (the exact GridRPC
code written with the GridRPC DM API to manage data can be used with any GridRPC middle-
ware), computation feasibility (because of the transparent use of remote data, a GridRPC client
is not required to have data on its own system to respect the GridRPC paradigm, hence leading
to the use of light client machines), performance (useless transfers can be avoided with the use
of persistence). Moreover, we show that it is even possible for two Grid middleware, managing
computing resources across different administrative domains and using the API, to collaborate to
the resolution of the same calculus in a completely transparent manner.

2. State of the Art

In the GridRPC paradigm, input and output data are arguments of grpc_call () and grpc_
call_async () and are transferred between a client and the invoked server during steps (4) and
(5) of Figure 1. Thus, each Grid middleware managing its own built-in data, code portability
is impossible, and performance can only be manages bypassing the GridRPC model, even for
request sequencing [2]. Many other issues arise [5], but they can only be addressed separately:
one can store data on distributed file system like GlusterFS! or GFarm [15] to deal with automatic
replication; OmniRPC introduced omniStorage [11] as a Data Management layer relying on several
Data Managers such as GFarm and Bittorrent. It aims to provide data sharing patterns (worker to
worker, broadcast and all-exchange) to optimize communications between a set of resources, but
needs knowledge on the topology and middleware deployment to be useful; DIET also introduced
its own data managers (JuxMEM, DTM, and Dagda [1, 8, 9]), which focus on both user explicit
data management and persistence of data across the resources, with transparent migrations and
replications.

"http://www.gluster.org/
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Figure 1: GridRPC paradigm

Overall, no solution that can solve all issues can fully rely on existing works: in addition to
only fulfilling complementary services, the lack of standard makes their implementation and usage
not interoperable nor portable through different middleware; thus the need for the GridRPC DM
API standards.

3. GridRPC Data Management API

We only present in this section the parts of the GridRPC DM API that have been implemented
in our prototype, in terms of data definitions and functions. Full and detailed version is available
in [6].

3.1 Data definition

In [10], input/output data parameters are provided within the variadic arguments notation of
grpc_call () and grpc_call_async (). The GridRPC DM API uses the grpc_data_t
as the type of such parameters: it is either a computational data, or contains a reference on the
data (the Data Handle) as well as some Storage Information. A data handle is essentially a unique
reference to a data that may reside anywhere (data and data handles can be created separately). A
grpc_data_t variable can represent information on a specific data which can be local or remote.
It is at least composed of: 1) Two NULL-terminated lists of URISs, one to access and one to record
the data (used to prefetch, or transfer it at the end of a computation); 2) The mode of management;
3) Information concerning the type of the data; 4) Data dimensions.

We provide below more details for each item:

1. URLI: it defines the location where a data is stored. URI format is described in [3]. It is built
using “protocol:[//machine_name][:port]/data_path” and thus contains at least four fields,
with protocol being a token like “ibp”, “http”, “memory” or “middleware” for example.
Some fields are optional, depending on the requested protocol.

For example, the URI *‘http://myName/myhome/data/matrix1’’ corresponds
to the location of a file named matrix1, which can be accessed on the machine named
myName, with the ht tp protocol.

2. The management mode is an enumerated type grpc_data_mode_t describing the policy

values on how to manage data on the platform can be set by the client. If the middleware
does not handle the given behavior, it throws an error.
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- GRPC_VOLATILE: the user explicitly manages the GridRPC data (location, contained
data). The data may not be kept inside the platform after a computation, and can be seen
as the default policy of the GridRPC APL

- GRPC_STRICTLY_VOLATILE: used when the data must not be kept inside the plat-
form after a computation, for security reasons for example.

- GRPC_STICKY: used when a data is kept inside the platform but cannot be moved
between the servers. This is used if the client wants data to be available on the same
servers for a second computation for example.

- GRPC_UNIQUE_STICKY: like GRPC_STICKY, but the data cannot be replicated.

- GRPC_PERSISTENT: used when a data has to be kept inside the platform. The under-
lying data middleware is explicitly asked to handle the data: the data can migrate or be
replicated between servers depending on scheduling decisions, and potential coherency
issues may arise if the user attempt to modify the data on his own.

- GRPC_END_LIST: this is a simple marker to terminate grpc_data_mode_t lists.

3. The type of the data is an enumerated type grpc_data_type_t and set by the client.
It can take a value among GRPC_BOOL for a boolean value, GRPC_INT for an integer
value, GRPC_DOUBLE for a double precision floating point value, GRPC_COMPLEX for
a complex number, GRPC_STRING for a character string or GRPC_FILE for a regular file.

4. The dimension is a vector terminated by a zero value, containing the dimensions of the data.
For example the matrix [n m p 0] describes a n X m x p 3D-matrix.

3.2 Function prototypes

For each GridRPC data, a GridRPC DM middleware uses internally a unique Data Handle as
well as additional information about the data, like locations and dimensions. The user provides
such information with a call to the init function, while the data handle is set to the data it identifies.
Explicit data exchanges are done using the asynchronous transfer function. A GridRPC data can
also be inspected to get information about the status of the data, its locations, etc. Functions are
also given to wait after the completion of some transfers. One can unbind the handle and the data,
and free the GridRPC data. Finally, to provide identification of long lived data, data handles can
be saved and restored.

grpc_error_t
grpc_data_init (grpc_data_t = data, const charxx input_URIs, const char*x output_URIs,
const grpc_data_type_t data_type, const size_t* data_dimensions,
const grpc_data_mode_tx data_modes) ;
grpc_error_t
grpc_data_free (grpc_data_t+ data, const charx+« URI_locations);
grpc_error_t
grpc_data_memory_mapping_set (const charx key,
voidx data );
grpc_error_t
grpc_data_memory_mapping_get (const charx key,
voidx* data );
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Figure 2: Platform of experimentation

For the present work four functions were required (see page 4). The first two are mandatory
to initialize and free a GridRPC data. The two others are needed to manipulate data in RAM,
accessible through the memory protocol in URIs: they lead to put a relation between the memory

location and the string used in URIs that the GridRPC DM library is able to understand to access
data.

4. Platform description

This section describes the testbed, depicted in Figure 2, used to realize the different experi-
ments leading to the results given in the next section.

4.1 Resources description

Computing and storage resources involved in our testbed are composed of the following three
heterogeneous computing machines:

e aist is a8 2.4GHz cpu virtual machine with 22GB RAM running the 3.0.0-15 32bits linux
kernel, and located in Tsukuba (Japan) on the SINET network. Used as a GridRPC server.

e graal.ens—-1lyon.fr is a 16 4 core cpu 2.93GHz machine (Intel Xeon X5570), with
32GB RAM and running the 2.6.18-27 64bits linux kernel, located in Lyon (middle east of
France) on the RENATER network. Used as a GridRPC server and as a HTTP server,

e client is a MacBook Pro core 2 duo 2.4GHz with 4GB RAM, running MacOS 10.6.8

64bits, located in Amiens (north of France) on an ADSL 2+ connection. Used as GridRPC
client.

4.2 Connectivity measurements

We give in Table 1 the mean bandwidth between all equipment on the testbed. The available
bandwidth is calculated with the use of scp (due to firewall constraint) by timing 24 transfers of 32
MB matrices between graal and aist, and 2MB matrices between c1ient and the two others.



GridRPC middleware cooperation with GridRPC DM API Yves CANIOU

For the same reason (firewalls), we could not easily measure the latency. From the simple
traceroute, we know that it should be a bit more than 300msec. Note that a connection between
graal and aist, i.e, between RENATER and SINET, goes through the GEANT2 network, and
such a connection has been measured to be around 10Gbs bandwidth with a RTT of about 290msec
in 2009 for studies on LHC-2, which is still correct according to our tests.

r aist graal | client
aist - 8271.20 | 1013.73
graal | 11260.01 - 2454.07

client | 569.52 739.23 -

Table 1: Bandwidth across the platform, in Kbits/s

With the help of those values, we could compare the results obtained in the next section to
computed “expectation times”.

5. Results

5.1 Stickiness and remote data

We designed two scenarios to highlight the most obvious benefits of using the GridRPC DM
API implementation library, in terms of reducing the resources cost (less resource used, no waste)
and the computation time of the execution of an application. For each scenario we conducted
3 different experiments (variants, noted S;E; for Scenario i Experiment j) to compare observed
timings of the scenario in the standard GridRPC context to the GridRPC DM context with the help
of very simple use case by 1) using stickiness and 2) also considering remote data.

Scenario 1
service mat sum, performing the sum of two matrices, is available on the platform.

is the sum of n matrices where each matrix A; is a 1000x 1000 matrix and only the

Figure 3 shows S| Ej, the most simple case in a GridRPC context. We assume that data are
available on the client side, and the service is called n times, each time involving 3 transfers:
both a transfer of two matrices during the grpc_call () and when the resulting matrix is sent
back. Results given in Figure 5 shows the timings for different number of n. As one can see, the
total duration of a run is leaded by the time to transfer data. One can see that in this example,
the computation time is negligible. On can argue that it would have been better to perform the
computations locally, but, if this is just a use-case example, in a real case prior additional transfers
to download matrices on the client would also have been to consider.

Figure 6 shows the benefits of the possibility to keep temporary results on the computational
server. Depicted in Figure 4, for n > 2 we spare 2 x (n — 2) matrix transfers, leading to a linear
improvement, e.g., a ratio of 5.3 on the run duration for n = 10 and a bandwidth ~2.5Mbits/s.

At last we present in Figure 7 the timings when a client uses both the remote data management
and the stickiness: data are available on a HTTP server and are transferred from there at each call;
temporary results are kept on the computational server (Figure 8). The result is sent to the HTTP
server instead of the client. In our testbed the computational server is also the HTTP server, making
HTTP downloads local and the results the best as it could be.
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Figure 5: S{E;: no sticky Figure 6: S| E,: sticky Figure 7: S;E3: HTTP data

Scenario 2 is the computation of A" where A is a 1000x 1000 matrix and only the service
matprod, performing the product of two matrices, is available on the platform.

The most simple GridRPC case for this scenario can also be depicted in Figure 3 in terms
of transfers, with all A; equals to A. We consider indeed that A is already available on the client,
and the service is called n times, each time involving 3 transfers, like for S;E;. Results given in
Figure 10 show that a run duration is mainly leaded by involved transfers.

Using the stickiness for temporary results leads to measurements reported in Figure 11. One
can see that the transfer duration is quiet constant regardless n: indeed as pictured in Figure 9, there
is only two transfers involved in a run, one to upload A on the computational server onto which it
is kept sticky (as are temporary results), and the transfer of the result. grpc_call () are made
using the updated grpc_data_t containing the URIs of the location of data (i.e., on the server),
and only prior to the final call the output is updated so that the resulting matrix is sent to the client.

In case of A is available from the HTTP server and we want the result available there as well,
we can use the remote data management and the stickiness, as we did for S;E3 except that in
this case, (Figure 13), only one transfer for input data is needed, A being kept sticky during the
computation. Only two transfers are involved as well, but since data can be considered as local to
the GridRPC server, we obtain the best possible performance.
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5.2 Inter-middleware transparent collaboration

Consider the situation where two GridRPC servers are available: the first one is the DIET
GridRPC server graal that provides the service mat square which performs the square of an
input matrix; the second one is the Ninf GridRPC server aist providing the service matprod,
performing the product of two matrices. A GridRPC user wants to perform the computation (A x
B)3 for two given matrices A and B. Considering the available computing resources, the user can
perform A X B X A X B X A x B using exclusively aist (normal GridRPC mode since stickiness
is not yet implemented in Ninf), or use a workflow (Figure 14) and compute C =A X B on aist
(step (1)), then D = C?>ongraal (step (2)), and E = C x D on aist (step (3)) for example.

In a general context, using the workflow would be a huge task to perform: 1) on a practi-
cal point of view, it involves two GridRPC middleware that have their own independent libraries.
The fact that they provide their own GridRPC API layer on top of their mnemonics also makes it
harder to deal with, and one way would be to realize a GridRPC client that calls in forked processes
the corresponding grpc_call () in external binaries. 2) the client has to take into account the
monitoring of the availability of intermediary data, when they are produced and transferred, as
well as the interoperability between the middleware frameworks, since they manage and store data
their own way, etc. 3) Besides in the GridRPC model, data are available on the client side when
performing the calls, which may introduce additional delays to the overall computation duration,
and a great care on the ratio realization/maintenance and gain has to be studied. Overall, chances
that such a solution would ever be considered is low. Nevertheless, we implemented a fully work-
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Figure 14: Schema of DIET-Ninf collaboration
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ing client which performs this computation, mainly relying on the GridRPC DM API: GridRPC
middleware framework are not even aware of interacting to solve a unique workflow.

We have conducted two experiments, and we present in Figure 15 the average recorded times
performed on 10 runs of each experiment. As one can see, using the fast computational server
managed by the GridRPC DIET server, graal, leads to nearly halve the overall computation since
step (2) is 57 times faster than on aist, managed by Ninf, making the collaboration of the two of
them very useful for a Grid user.

5.3 Implementation details and additional remarks

e About managed transfer protocols:

— HTTP protocol management: to upload the data we used a HTTP POST form method.
The main advantage of this solution is that PHP is a widespread script language: it is
very easy to set-up and test our solution. Moreover, the script can easily be extended
to manage other API parts, like grpc_getinfo (). In our library prototype, HTTP
transfers are performed using the libCURL open source library.

— DAGDA protocol management: thanks to the DIET Forwarder component, we did not
need to modify the way data are transferred to bypass firewalls: we used the DIET’s data
manager DAGDA functionalities called from the GridRPC DM API implementation.
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— memory is a pseudo protocol used to manage data stored in memory (see Section 3.2).
The transfer of such data is performed using one of the available protocols allowing to
download/upload the data to/from the service execution node. In our implementation,
memory data are simply associated to a name using a STL map<(string, void™*>.

e About service calls: the client prototype needs to manage two different GridRPC middleware
frameworks, resp. DIET and Ninf, at the same time. The two parts of the implementation
are very different but illustrate that it is possible to use the API in spite of hard technical
constraints. Indeed all the computing nodes are installed on servers behind firewalls.

— Within DIET, using the Forwarder component, the parameters of the GridRPC call
function are simply converted to the corresponding DIET structures. The service takes
three strings for the two input matrices and the output one. These strings store URIs
to download the data and to upload the data after the computation. Then everything is
managed by the service itself using the same implementation for the HTTP protocol
than the client and the DAGDA classical API.

— Ninf natively supports GridRPC Data structures and the data itself is transmitted to the
server via the Ninf transport layer. The server then retrieves the data using HTTP and
data mangling modules.

For the experiments we used three different systems/architectures: The client was launched
on a MacOS X 64bits systems, the Ninf computing node on a virtualized 32bits Linux system
and the DIET node on a 64 bits SMP Linux system. The main difficulty was to manage matrix
serialization/deserialization on different architectures. The matrices data format was not affected
by the architecture because their storage was conforming to the double-precision IEEE 754 standard
but all the attendant meta-data like matrix sizes, storage order, needed a conversion to be shared
between the different architectures. For a complete implementation, it should be preferable to use
a standard data format description such as the OGF DFDL language [12].

Such details will be integrated in the OGF GridRPC working group “Interoperable docu-
ment” which aims to describe implementation recommendations so that any implementation of
the GridRPC DM API, and thus anything concerning its usage, is fully interoperable with others.

6. Conclusion and future work

We have presented the first evaluation of the benefits leaded by the extension of the GridRPC
API OGF standard concerning data management, i.e., the GridRPC Data Management GFD-R-
P.186 OGEF standard. We have conducted several experiments with its implementation prototype,
thus showing the expectations that a user can have in terms of: code portability across differ-
ent GridRPC middleware frameworks (codes can fully compile with DIET or Ninf); computa-
tion feasibility, with the integration of the management of remote data directly taken into ac-
count into GridRPC call (synchronous and asynchronous); improved performances (less resource
waste, applications may complete sooner) and transparent collaboration to a calculus using different
GridRPC middleware frameworks in different administrative domains on heterogeneous architec-
tures.

10
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Future work will go towards both experimental material with the development of the rest of
the API, also taking into account other protocols such as GridF TP, and continue the standardiza-
tion work with an interoperable document describing the definition of some output GridRPC DM
functions like getinfo () so that a code can still be written for every GridRPC framework.In
particular, this document will describe how to define and interpret the metadata. The standard was
designed to facilitate the implementation of different data transfer protocols like FTP, GridFTP, bit-
torrent, etc. but without making such implementation compulsory for the GridRPC middleware to
be standard compliant. We plan to propose recommendations and implementation examples based
on the experience we have gained developing the prototype presented in this paper.

Finally, the recommendations, future implementations and possible extensions to the API will
depend on the final users/developers remarks. We are eager to get different use-cases and users
feedback.
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7. Appendix

We give here as an example the C++ code of a client requesting the product of a 100x 100
double matrix A available in memory by a 100x 100 double matrix data? available on the HTTP
server data.test?2. fr, the resulting matrix being sent to the HTTP server running on the client.

#include "gridrpc.hh"
#include <iostream>
#include <cstring >

int main(int argc, charx argv([]) {
grpc:: grpc_data_t dl, d2, d3;

grpc:: grpc_function_handle_t handle;
grpc:: grpc_function_handle_default(&handle , "MATMul");

grpc:: grpc_data_init(&dl, NULL, NULL, grpc::GRPC_DOUBLE, NULL, NULL);
grpc:: grpc_data_init(&d2, NULL, NULL, grpc::GRPC_DOUBLE, NULL, NULL);
grpc:: grpc_data_init(&d3, NULL, NULL, grpc::GRPC_DOUBLE, NULL, NULL);

doublex mat = (typeof mat) calloc(100%x100, sizeof xmat);
grpc:: grpc_data_memory_mapping_set("a", mat);

dl << grpc::IN << "memory://localhost/a";
dl << (size_t) 100 << (size_t) 100;
dl << grpc::GRPC_VOLATILE;

d2 << grpc::IN << "http://data.test2.fr/data2";

d2 << grpc::OUT << "http ://data.test2.fr/data2" << "ftp://test2";
d2 << (size_t) 100 << (size_t) 100;

d2 << grpc::GRPC_VOLATILE;

d3 << grpc::0OUT << "http ://localhost/c";
d3 << (size_t) 100 << (size_t) 100;
d3 << grpc::GRPC_VOLATILE;

try {
grpc_call_data(&handle , &dI, &d2, &d3);
} catch (const charx err) {
std::cerr << "Error: " << err << std::endl;

}

A GridRPC code example
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