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Using the negative binomial distribution (NBD) and the generalized Glauber-Lachs (GGL) for-

mula, we analyze the data on charged multiplicity distributions in the several pseudorapidity

intervals|η | < ηc at 0.2 - 7 TeV by UA5 and ALICE Collaborations. We confirm that the KNO

scaling holds among the multiplicity distributions withηc = 0.5 at
√

s= 0.2 - 2.36 TeV and esti-

mate the energy dependence of a parameter1/k in NBD and parameters1/k andγ (the ratio of the

average value of the coherent hadrons to that of the chaotic hadrons) in the GGL formula. Using

empirical formulae for the parameters1/k andγ in the GGL formula, we predict the multiplicity

distributions withηc = 0.5 at 7 and 14 TeV. Data on the second order Bose-Einstein correlations

(BEC) at 0.9 and 2.36 TeV by ALICE and CMS Collaborations are also analyzed based on the

GGL formula. Predictions for the third order BEC at 0.9 and 2.36 TeV are presented.

The Seventh Workshop on Particle Correlations and Femtoscopy
September 20 - 24 2011
University of Tokyo, Japan

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:mizoguti@toba-cmt.ac.jp�
mailto:biyajima@azusa.shinshu-u.ac.jp�


P
o
S
(
W
P
C
F
2
0
1
1
)
0
2
0

generalized Glauber-Lachs formula Takuya Mizoguchi

1. Introduction

Recently ALICE Collaboration [1] has investigated the multiplicity distributions with pseudo-
rapidity cutoffs and compared its data with the data by UA5 Collaboration [2, 3], and concluded
that the combined data withηc = 0.5 at 0.2, 0.9, and 2.36 TeV are fairly well described by the single
NBD (negative binomial distribution) [4, 5]. Moreover, ALICE Collaboration has reported that the
KNO scaling [6] holds among the combined data withηc = 0.5 at 0.2, 0.9, and 2.36 TeV. The first
aim of this study is to confirm the statement above mentioned in [1] and to analyze the same data
by the GGL(generalized Glauber-Lachs) formula [7, 8]. Some predictions at 2.36 TeV [9] are also
included in this proceeding.

Moreover, ALICE and CMS Collaborations have reported the data on Bose-Einstein correla-
tions (BEC) [10, 11]. Thus we investigate them based on a conventional formula with the degree
of coherence and the GGL formula. According to main results in Ref. [12], our talk is presented.

The NBD is introduced in the following:

Pk(n) =
Γ(n+k)

Γ(n+1)Γ(k)
(〈n〉/k)n

(1+ 〈n〉/k)n+k , (1.1)

where〈n〉 andk are the average multiplicity and the intrinsic parameter, respectively. In the KNO
scaling limit (n and〈n〉 are large, but the ratioz= n/〈n〉 is finite), for the quantity〈n〉P(n, 〈n〉) the
following gamma distribution is derived from Eq. (1.1) as

ψk(z) =
kk

Γ(k)
zk−1e−kz (1.2)

Second we turn to the GGL formula which is expressed as follows:

Pk(n) =
(p〈n〉/k)n

(1+ p〈n〉/k)n+k exp

[
− γ p〈n〉

1+ p〈n〉/k

]
L(k−1)

n

(
− γk

1+ p〈n〉/k

)
, (1.3)

whereγ = |ζ |2/A (the ratio of the average value of the coherent hadrons to that of the chaotic
hadrons),p = 1/(1+ γ), andL(k−1)

n stands for the Laguerre polynomials, respectively.
The KNO scaling function of Eq. (1.3) is given in the following

ψk(z, p) =
(

k
p

)k
[

z√
z(k/p)2(1− p)

]k−1

exp

[
− k

p
(1− p+z)

]
Ik−1

(
2
√

z(k/p)2(1− p)
)

(1.4)

whereIk−1 is the modified Bessel function. Eq. (1.4) becomes the gamma distribution, asγ = 0.
In order to analyze of Bose-Einstein correlations (GGLP effect [13], or hadronic HBT ef-

fect [14, 15]) at LHC, we are going to use the following formulae: The first one is well known as
the conventional formula,

N(−−)/NBG(conventional formula) = c[1+λ E2
2B], (1.5)

N(−−)/NBG(GGL) = c[1+2p(1− p)E2B + p2E2
2B] (1.6)

wherec is normalization factor,λ is the degree of coherence,p = 1/(1+ γ) andE2B is function
of momentum transfer (Q2 = −(p1− p2)2) and the range of interactionR. E2B = exp(−R2Q2)
(Gaussian formula) and/orE2B = exp(−R

√
Q2) (exponential formula) are used.

2



P
o
S
(
W
P
C
F
2
0
1
1
)
0
2
0

generalized Glauber-Lachs formula Takuya Mizoguchi

2. Analyses of data on multiplicity distributions by the NBD and the GGL formula

Utilizing Eqs. (1.1) and (1.3), we analyze the data with pseudo-rapidity cutoffs (ηc = 0.5, 1.0,
and 1.3) at 0.2, 0.54, 0.9 and 2.36 TeV. Results at 0.9 and 2.36 TeV are shown in Fig.1. Energy
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Figure 1: Analyses of data with|η | < ηc by means of Eqs. (1.1) and (1.3). (See estimated values of
parameters contained in Eqs. (1.1) and (1.3) shown in Fig.2 and [12]).

dependences of parameters1/k(NBD), 1/k(GGL) andγ(MD) (MD: multiplicity distribution) withηc =
0.5 are shown in Fig.2. We observe that1/k(NBD) increases gradually as

√
s increases. On the other

hand, the estimated sets of (1/k(GGL) andγ(MD)) in the GGL formula show different behavior.
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Figure 2: Energy dependences of parameters1/k(NBD), 1/k(GGL), andγ(MD) for data withηc = 0.5. Values
at 0.9 TeV by UA5 Collaboration are omitted in GGL formula, because of extreme error bars.

3. Analyses of data on KNO scaling distributions by Eqs. (1.2) and (1.4)

Utilizing the KNO scaling variablez(= n/〈n〉), data on the KNO scaling distributions〈n〉P(n, 〈n〉)
are shown in Fig.3. We combine the data withηc = 0.5 at 0.2, 0.9 and 2.36 TeV and analyze them
by Eq. (1.2) (the gamma distribution) and Eq. (1.4) (the modified Bessel function).

4. Analyses of data on the 2nd order BEC by means of Eqs. (1.5) and (1.6)

We analyze the data on BEC at LHC by the use of Eqs. (1.5) and (1.6) with E2B = exp(−R2Q2)
and/orE2B = exp(−R

√
Q2). Results are depicted in Table1 and Fig.4. In Eq. (1.6), the effec-
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Figure 3: Analyses of KNO scaling distributions〈n〉P(n)’s. The same data of Fig.1are described by KNO
scaling variablez= n/〈n〉. Eqs. (1.2) and (1.4) are used.

tive degree of coherence “λ ” is “ (1+ 2γ)/(1+ γ)2”. In our concrete analyses, we obtained that
1/k(BEC) = 1. γ(BEC) is similar to the value at 0.9 TeV by ALICE Collaboration in Fig.2.

Furthermore, by the use of Eqs. (1.5) and (1.6) with c, we have analyzed the data on BEC at
0.9 and 2.36 TeV by CMS Collaboration [11]. Results are shown in Fig.4 and Table1. Notice
that estimated values ofλ , γ andR do not depend on the range of exclusive region (0.4 < Q < 1.4
GeV/c). It is emphasized that the ratioγ(BEC) decreases, as the colliding energy increases. In other
words, the effective degree of coherence “λ ” and the range of interactionR increases from 0.9 to
2.36 TeV. To draw more significant meaning about the parameterγ, we need BEC measurements
with ηc = 0.5.
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Figure 4: Analyses of data on BEC at 0.9 TeV by ALICE Collaboration with conditionsM ≤ 6, and 0.1
≤ kT ≤ 0.55 GeV and at 2.36 TeV by CMS Collaboration.

5. Concluding remarks

We have confirmed that the multiplicity distributions withηc = 0.5 are described by the single
NBD [1]. Moreover, we also confirm that the GGL formula does work well for the explanation of
the same data in present analyses.
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Table 1: Analysis of data on BEC by ALICE Collaboration and CMS Collaboration. Because estimated
value of1/k(BEC) is a unit, it is not cited.

Eq. (1.5) Eq. (1.6)
(upper: Gaussian formula, and lower: exponential formula)

λ c R(fm) χ2/NDF γ c R(fm) χ2/NDF√
s= 0.9 TeV, ALICE (multiplicityM ≤ 6, 0.1≤ kT ≤ 0.55 GeV)

0.35±0.02 0.988±0.003 0.83±0.04 121/72 4.0± 0.3 0.988±0.003 0.81±0.03 119/72
0.64±0.04 0.979±0.004 1.33±0.09 98/72 1.30±0.23 0.977±0.004 1.18±0.07 98/72√

s= 0.9 TeV, CMS (Excluding 0.6< Q < 0.9 GeV/c)

0.32±0.01 0.995±0.001 0.96±0.02 407/165 4.5± 0.2 0.995±0.001 0.95±0.02 394/165
0.66±0.02 0.993±0.001 1.75±0.04 229/165 1.08±0.13 0.993±0.001 1.59±0.03 225/165√

s= 2.36 TeV, CMS (Excluding 0.6< Q < 0.9 GeV/c)

0.33±0.03 0.997±0.002 1.20±0.07 80/81 4.3± 0.6 0.997±0.002 1.18±0.07 80/81
0.72±0.08 0.997±0.002 2.32±0.17 75/81 0.84±0.39 0.996±0.002 2.03±0.08 76/81
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Figure 5: (a) Expected multiplicity distributions withηc = 0.5 at
√

s= 7 and 14 TeV. Computations are
based on the GGL formula (Eq. (1.3)) with values in Fig.2 and 〈n〉 = 2.5+ 0.76ln(

√
s/0.2). (b) Our

predictions of the 3rd order BEC at 0.9 and 2.36 TeV. Eq. (5.1) with values in Table1 is used.

We observed that distributions withηc = 0.5 at 7 TeV does not have the coherent component.
In other words, the multiplicity distributions withηc = 0.5 at 7 TeV are described by the NBD with
k = 1.

Using values in Fig.2, we can predict multiplicity distributions withηc = 0.5 at 7 and 14 TeV
in Fig. 5a. Those are able to be examined in a near future. If there were discrepancies among data
and predictions, we should consider the other effect, for example, due to the mini-jets [16].

Through present analyses of the BEC, results by the exponential formula seem to be better
than those by the Gaussian formula in Table1. See [17] for the source functions. Moreover, values
of γ ’s obtained in Fig.2 and Table1 seem to be similar each other. To obtain more significant
knowledge on the parameterγ, analyses of the multiplicity distributions and the BEC in the same
hadronic ensembles are necessary[14, 15].
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It is worthwhile to predict the 3rd BEC at 0.9 TeV using the same condition withM ≤ 6,
0.1≤ kT ≤ 0.55 GeV/c. Utilizing estimated values ofγ(BEC) andR in the 2nd BEC by ALICE
Collaboration, we can predict the 3rd order BEC; The following formula [14] is used,

N(3−)/NBG = 1+6p(1− p)e−
1
3R
√

Q2
3 +3p2(3−2p)e−

2
3R
√

Q2
3 +2p3e−R

√
Q2

3, (5.1)

wherep = 1/(1+ γ) andQ2
3 = Q2

12+Q2
23+Q2

31. Our predictions on the 3rd order BEC at 0.9 and
2.36 TeV are given in Fig.5b. The results would be compared with measurements, as UA1 Mini-
mum Bias Collaboration did [18]. By these comparisons, we could obtain more useful information
on the parameterγ and the role of the GGL formula.

Addendum: Recently CMS Collaboration has reported new analyses on BEC at 0.9 and 7 TeV
in pp collisions [19]. We have applied Eq. (1.6) to data with the exponential form and the long
range effect(1+αQ). R= 1.47 fm (0.9 TeV) andR= 1.8 fm (7 TeV) are obtained [20].
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