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1. Introduction

In high energy nucleus-nucleus collisions or hadron-hadron collisions, Bose-Einstein corre-
lations of identical particles are considered as one of the possible measures for the space-time
domain where identical particles are produced. If multiplicity distribution (MD) and Bose-Einstein
correlations (BEC) are constructed from the same observed data sample, some information on BEC
would be contained in the MD. Therefore, we can estimate parameters on BEC precisely from the
observed MD and BEC at fixed multiplicities.

One of the theoretical approaches to BEC is made on the analogy of the quantum optics [1],
where two types of sources, chaotic and coherent are introduced. In Ref.[2], formulae for MD and
BEC in semi-inclusive events are derived in the QO approach, and a diagrammatic representation
of the cumulants is proposed.

Recently, new data on BEC and MDs in pp collisions are reported from the LHC experiments.
In the present paper, MD and BEC are analyzed by the formulae derived in the QO approach.

2. Momentum densities in semi-inclusive events

Then-particle momentum density in semi-inclusive events in the QO approach is defined by,

ρn(p1, · · · , pn) = c0

⟨
| f (p1)|2 · · · | f (pn)|2

⟩
a
, f (p) =

M

∑
i=1

aiφi(p)+ fc(p). (2.1)

In Eq.(2.1), c0 denotes a normalization factor,f (p) is an amplitude composed of that of thei-th
chaotic source,φi(p), and that of the coherent source,fc(p), andai is a random complex number
attached to thei-th chaotic source. The number of independent chaotic sources,M, is assumed to
be infinite[2]. Parenthesis⟨F⟩a in Eq.(2.1) denotes the average ofF over the random numberai

with a Gaussian weight [3];

⟨F⟩a =
( M

∏
i=1

1
πλi

∫
exp

[
−|ai |2

λi

]
d2ai

)
F. (2.2)

The generating functional (GF) of momentum densities in semi-inclusive events is defined by

Zsm[h(p)] = c0

∞

∑
n=0

1
n!

⟨[∫
| f (p)|2h(p)

d3p
E

]n
⟩

a
, (2.3)

whereh(p) is an arbitrary function. Then-particle momentum density and then-th order cumulant
in semi-inclusive events are given respectively by

ρn(p1, · · · , pn) = E1 · · ·En
δ nZsm[h(p)]

δh(p1) · · ·δh(pn)

∣∣∣∣
h(p)=0

, (2.4)

gn(p1, · · · , pn) = E1 · · ·En
δ n lnZsm[h(p)]

δh(p1) · · ·δh(pn)

∣∣∣∣
h(p)=0

. (2.5)
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For a review of semi-inclusive events, see [4]. From Eqs.(2.5) and (2.6), we have an iteration
relation for momentum densities,

ρ1(p1) = c0g1(p1) = c0[r(p1, p1)+c(p1, p1)],

ρ2(p1, p2) = g1(p1)ρ(p2)+c0

{
|r(p1, p2)|2+2Re[r(p1, p2)c(p2, p1)]

}
, (2.6)

.ρn(p1, · · · , pn) = g1(p1)ρn−1(p2, · · · , pn)+c0gn(p1, · · · , pn)

+
n−2

∑
i=1

∑gi+1(p1, p j1, · · · , p j i )ρn−i−1(p j i+1, · · · , p jn−1), for n≥ 2. (2.7)

In Eq.(2.6), r(p1, p2) is a correlation caused by the chaotic sources,r(p1, p2)=∑M
i=1 λiφi(p1)φ ∗

i (p2),
andc(p1, p2) is a correlation by the coherent source,c(p1, p2) = fc(p1) f ∗c (p2).

The second summation on the right hand side of Eq.(2.7) indicates that all possible combina-
tions of( j1, · · · , j i) and( j i+1, · · · , jn−1) are taken from(2,3, · · · ,n).

In order to calculate momentum densities at fixed multiplicity, following equations are defined;

ρ(k)
n (p1, · · · , pk) =

1
(n−k)!

∫
· · ·

∫
ρn(p1, · · · , pk, pk+1, · · · , pn)

d3pk+1

Ek+1
· · · d3pn

En
,

g(k)n (p1, · · · , pk) =
1

(n−k)!

∫
· · ·

∫
gn(p1, · · · , pk, pk+1, · · · , pn)

d3pk+1

Ek+1
· · · d3pn

En
. (2.8)

The MD is given byP(0) = Zsm[0] = c0 and

P(n) = ρ(0)
n =

(n−k)!
n!

=
∫

· · ·
∫

ρ(k)
n (p1, · · · , pk)

d3p1

E1
· · · d3pk

Ek
. (2.9)

For a review on MD, see for example [5]. From Eq.(2.7), we have [2]

ρ(1)
n (p1) =

n

∑
j=1

jg(1)
j (p1)P(n− j), g(1)j (p1) = Rj(p1, p1)+

j−1

∑
l=0

Tl , j−l−1(p1, p1), for n≥ 1,(2.10)

ρ(2)
n (p1, p2) =

n−1

∑
j=1

(n− j)g(1)j (p1)ρ
(1)
n− j(p2)+

n

∑
j=2

g(2)j (p1, p2)P(n− j),

g(2)j (p1, p2) =
j−1

∑
l=1

Rj(p1, p2)Rj−l (p2, p1)

+
j−2

∑
l=0

l

∑
m=0

{
Tm,l−m(p1, p2)Rj−l−1(p2, p1)+Rj−l−1(p1, p2)Tm,l−m(p2, p1)

}
, (2.11)

where, withR0(p1, p2) = E1δ 3(p1, p2),

Rj(p1, p2) =

∫
r(p1, p

′)Rj−1(p
′, p2)

d3p′

E′ ,

Tj,l (p1, p2) =

∫∫
Rj(p1, p

′
1)c(p

′
1, p

′
2)Rl (p

′
2, p2)

d3p′1
E′

1

d3p′2
E′

2
. (2.12)
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3. Formulae for MD and BEC

In the followings, rapidityyi = tanh−1(piL/Ei) and transverse momentumpppiT (i = 1,2, · · · ) are
used. Correlationsr(p1, p2) andc(p1, p2) are both assumed to be real and parametrized as,

r(y1, ppp1T ;y2, ppp2T) = psm

√
ρ(y1, ppp1T)ρ(y2, ppp2T) exp[−γL(∆y)2− γT(∆pppT)

2],

c(y1, ppp1T ;y2, ppp2T) = (1− psm)
√

ρ(y1, ppp1T)ρ(y2, ppp2T),

ρ(y1, ppp1T) = ⟨n0⟩
√

π/α(π/β )exp[−α y2
1−β ppp2

1T ],

where∆y = y2− y1 and∆pppT = ppp2T − ppp1T . The chaoticity parameter in semi-inclusive events is
assumed to be constant, and is denoted bypsm(= r(pi , pi)/ρ(pi)). As the longitudinal momentum
transfer squared,Q2

L = (E1−E2)
2−(p1L− p2L)

2, is approximately written asQ2
L ≈ ⟨mT⟩2(∆y)2 for

|∆y|<< 1 with average transverse mass⟨mT⟩,
√γL/⟨mT⟩ roughly equal to the longitudinal source

size, and
√γT is the transverse souce size. Parameter⟨n0⟩ is related to an average multiplicity.

If psm = 0, the MD defined by Eq.(3.1) becomes a Poisson distribution with an average⟨n0⟩.
Parametersα are β are related to the width of rapidity distribution and that ofpT distribution,
respectively.

Then, functionRj(y1, ppp1T ,y2, ppp2T) in Eq.(2.12) is written as,

Rj(y1, ppp1T ,y2, ppp2T) = Nj exp[−A j(y
2
1+y2

2)+2Cjy1y2−U j(ppp
2
1T + ppp2

2T)+2Wj ppp1T ppp2T ],

where [6, 7]

A j =
r2− r1

2
1+(r1/r2)

j

1− (r1/r2) j , Cj = (r2− r1)
(r1/r2)

j/2

1− (r1/r2) j ,

U j =
t2− t1

2
1+(t1/t2) j

1− (t1/t2) j , Wj = (t2− t1)
(t1/t2) j/2

1− (t1/t2) j ,

Nj =
r2

1/2t2
π3/2

( psm⟨n0⟩α1/2β
r2

1/2t2

) j{ 1− (r1/r2)

1− (r1/r2) j

}1/2 1− (t1/t2)
1− (t1/t2) j ,

r1 =
1
2

[
α +2γL −

√
α2+4αγL

]
, r2 =

1
2

[
α +2γL +

√
α2+4αγL

]
,

t1 =
1
2

[
β +2γT −

√
β 2+4βγT

]
, t2 =

1
2

[
β +2γT +

√
β 2+4βγT

]
.

The MD in the QO approach is written as [7],

P(n) =
1
n

n

∑
j=1

(
∆(R)

j + j∆(S)
j−1

)
P(n− j), (3.1)

where

∆(R)
j = psm⟨n0⟩

( psm⟨n0⟩
√

α β
√

r2 t2

) j−1 1−
√

r1/r2

1− (r1/r2) j/2

{ 1−
√

t1/t2
1− (t1/t2) j/2

}2
,

∆(S)
j−1 = (1− psm)⟨n0⟩

( psm⟨n0⟩
√

α β
√

r2 t2

) j−1{ 1− (r1/r2)

1− (r1/r2) j

}1/2 1− (t1/t2)
1− (t1/t2) j .

As can be seen from the above equations, the MD contains four parameters,psm, ⟨n0⟩, hL = γL/α
andhT = γT/β . The inclusive one-particle rapidity distribution is given by

ρ(1)(y) =
nmax

∑
n=1

ρ(1)
n (y), ρ(1)

n (y) =
∫

ρ(1)
n (y, pppT)d

2pppT . (3.2)
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The Bose-Einstein correlation functionC(2)
n (∆y) atn-particle events is defined as

C(2)
n (∆y) =

nP(n)
n−1

∫ ∫ ∫
ρ(2)

n (y1, ppp1T ,y1+∆y, ppp1T +∆pppT)dy1d2ppp1Td2∆pppT∫ ∫ ∫
ρ(1)

n (y1, ppp1T)ρ
(1)
n (y1+∆y, ppp1T +∆pppT)dy1d2ppp1Td2∆pppT

. (3.3)

4. Analysis of experimental data

The MD for negatively charged particles observed in the pseudo-rapidity region|η |< 1 in pp
collisions at

√
s= 900 GeV [8] is analyzed by Eq.(3.1). It is constructed from the even prongs of

observed charged MD. At first, it is analyzed with four parameters,psm, ⟨n0⟩, hL andhT . The result
becomes thathT ≈ 0. Therefore, the data is re-analyzed with three parameters under the condition
thathT = 0(γT = 0). Estimated parameters are shown in Table1, and comparison of the calculated
result with the observed MD is shown in Fig.1.

psm ⟨n0⟩ hL χ2
min/n.d. f

0.670± 0.052 1.100± 0.10 0.351± 0.294 41.1/(22-3)

Table 1: Estimated parameters in the analysis of negatively charged MD observed in pp collisions [8].

In our calculations, transverse momentum is integrated. Therefore, parameterβ is not included
in Eqs.(3.2) and (3.3). Calculated result on inclusive one-particle rapidity distributions is shown in
Fig.2. Calculated result on Bose-Einstein correlation functions at fixed multiplicities as a function
of ∆y is shown in Fig.3. That of Bose-Einstein correlation functions at∆y= 0 is compared with the
data atQinv = 0 in Fig.4. The data is presented in fourpT range [8]. Therefore we use the average
value of four cases.
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Figure 1: Analysis of negatively charged
MD in |η | < 1 in pp collisions [8] by
Eq.(3.1).
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Figure 2: Inclusive one-particle rapidity
distributions calculated withα = 0.6 and
1.2 by Eq.(3.2).

5. Summary

The observed MD and BEC at∆y = 0 (Qinv = 0) are analyzed by our model in the QO ap-
proach. In our formulation, six parameters,psm, ⟨n0⟩, hL = γL/α, hT = γT/β , α andβ are con-
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Figure 3: Bose-Einstein correlation func-
tion C(2)

n (∆y) calculated withα = 1.2 by
Eq.(3.3).
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Figure 4: Comparison ofC(0)
n (0) cal-

culated with α = 0.6 and 1.2 with the
data [9].

tained. In the present analysis, parameterγT becomes effectively zero andβ is not included in
Eq.(3.3). Therefore, only parameterα is effective to the analysis of BEC. As can be seen from
Fig.4, calculated result ofC(2)

n (0) for 0.6≤ α ≤ 1.2 would not be inconsistent with the observed
data at∆y = 0 (Qinv = 0). If the MD and BEC at fixed multiplicities are constructed from the
same data sample, we would obtain more precise information on the production region of like-sign
charged particles in the final states of hadronic interactions.
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