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1. Bayes factors

The Bayesian definition of probability differs radically from the conventional “frequentist” one,
necessitating the overhaul of many concepts and techniquesused in statistics and its applications.
Since its introduction in 1900 [1], theχ2 statistic has become the standard criterion for goodness of
fit in physics and many other disciplines, while Laplace’s Bayesian approach [2] remained largely
forgotten until revived by Jeffreys [3]. Later refinements such as the Maximum Likelihood occupy
a middle ground between the two approaches.

In this contribution, we demonstrate the use of one Bayesiantechnique in the simple context
of fitting or, more generally, the quantitative assessment of evidence in favour of a hypothesis
H1 as a description of given data, compared to a rival hypothesis H2. We do so by analysing
the concrete example of binned data for the correlation function C2(Q) in the four-momentum
differenceQ=

√

−(p1− p2)2 as published recently by the L3 Collaboration [4].

Suppose we have dataD= {Q1, . . . ,Qn} consisting ofnmeasurements of particle four-momen-
tum differences, assumed to be mutually independent as is customary in femtoscopy. Typically,
the experimentalist will want to test how well various parametrisations fit the data. For the pur-
poses of Bayesian analysis, a given parametrisationy(Q|θθθ m) with Nm free parametersθθθ m =

{θm1,θm2, . . . ,θmNm} is considered a “model” or “hypothesis”Hm. The starting point is theodds in
favour of model Hm compared to a different model Hℓ” , defined as the ratiop(Hm|D)/p(Hℓ |D),
while theevidence for Hm versus Hℓ is the logarithm1 of the odds. Use of Bayes’ Theorem for both
hypotheses yields

p(Hm|D)

p(Hℓ |D)
=

p(D |Hm) p(Hm)

∑k p(D |Hk) p(Hk)

∑k p(D |Hk) p(Hk)

p(D |Hℓ)P(Hℓ)
=

p(D |Hm)

p(D |Hℓ)
·

p(Hm)

p(Hℓ)
. (1.1)

The evidence ofHm versusHℓ is therefore the same as theBayes factor Bmℓ= lg[p(D |Hm)/p(D |Hℓ)]

if there is no a priori reason to preferHm aboveHℓ and thereforep(Hm) = p(Hℓ) = 1/2. A large
Bayes factor says that the evidence forHm is stronger than the evidence forHℓ and vice versa. It
can be written as a ratio of integrals over the respective parameter spaces ofθθθm andθθθ ℓ,

Bmℓ = lg
p(D |Hm)

p(D |Hℓ)
= lg

∫

dθθθ m p(D|θθθ m,Hm) p(θθθ m|Hm)
∫

dθθθ ℓ p(D|θθθ ℓ,Hℓ) p(θθθ ℓ|Hℓ)
. (1.2)

Solving the high-dimensional integrals will often be an arduous task. Fortunately, the indepen-
dence of the measurements implies that the likelihoodp(D |θθθ m,Hm) factorises into the product of
likelihoods for individual data points, which by assumption have the same form,

p(D |θθθ m,Hm) =∏
i

p(Qi |θθθ m,Hm)≈ [p(Q|θθθ m,Hm)]
n. (1.3)

Due to the large exponent, even the slightest nonuniformityin p(Q|θθθ m,Hm) will lead to the de-
velopment of a strong peak in parameter space for the overalllikelihood, situated at the maximum
likelihood pointθ̂θθ m. An asymmetric priorp(θθθ m |Hm) will shift the peak to a valueθθθ ∗

m, but it will
not materially affect the width of the peak or its differentiability. Unless the shifted peak falls on a

1We use lg= log2; other base units can be substituted as preferred.
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boundary of the parameter space or happens to be nondifferentiable, it can therefore be expanded
aroundθθθ ∗

m [5]:

p(D |θθθ m,Hm) p(θθθ m|Hm)≃ p(D |θθθ ∗,Hm) p(θθθ ∗ |Hm)exp

[

−
1
2
(θθθ m−θθθ ∗

m)A
−1(θθθ m−θθθ ∗

m)

]

(1.4)

whereA−1 is the Hessian of the expansion

A−1
i j =−

∂ 2 ln[p(D |θθθ m,Hm) p(θθθ m|Hm)]

∂θmi ∂θm j

∣

∣

∣

∣

θθθ∗
m

(1.5)

andA is the parameter covariance matrix. As more data is accumulated, the peak narrows so that
we can neglect the fact that parameters may have finite ranges. Integrating the above as if it were a
Gaussian, one obtains Laplace’s result [2]

∫ +∞

−∞
dθθθ p(D |θθθ m,Hm) p(θθθ m |Hm)≃ p(D |θθθ ∗

m,Hm) p(θθθ ∗
m|Hm)

√

(2π)Nm detAm, (1.6)

which under the stated assumptions is a good approximation of the full-blown integral appearing
in Eq. (1.2) ifn& 20Nm. The Bayes factor becomes simply the difference

Bmℓ ≃ hℓ−hm (1.7)

hk ≡− lg

[

p(D |θθθ ∗
k,Hk) p(θθθ ∗

k |Hk)
√

(2π)Nk detAk

]

. (1.8)

Evidencehk can be determined for any single modelHk, but has no meaning on its own; only
differenceshℓ−hm are meaningful in quantifying the probability forHm to be true compared toHℓ,

p(Hm|D)

p(Hℓ |D)
≃ 2hℓ−hm. (1.9)

2. Relationship toχ2 and the Maximum Likelihood

The Bayesian results obtained above differ from the traditional Maximum Likelihood Estimate
(MLE), which ignores the priorsp(θθθ m|Hm) and approximates the integral (1.2) to the maxima of
the likelihoods,

Bmℓ = lg

∫

dθθθ m p(D|θθθ m,Hm) p(θθθ m|Hm)
∫

dθθθ ℓ p(D|θθθ ℓ,Hℓ) p(θθθ ℓ|Hℓ)
≃ lg

p(D|θ̂θθ m,Hm)

p(D|θ̂θθ ℓ,Hℓ)
. (2.1)

The traditionalχ2 goodness-of-fit is related to the above as follows. The measurements{Qi} are
binned into binsb = 1, . . . ,B with bin midpointsQb, yielding the histogram version of the data,
D = {nb}

B
b=1 with ∑b nb = 1. The most general “parametrisation” of the histogram contents is then

the multinomial withααα = {αb}
B
b=1 the set of Bernoulli probabilities withB−1 degrees of freedom,

p(nnn|ααα ,n) = n!
B

∏
b=1

αnb
b

nb!
, (2.2)
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which on use of the Stirling approximation becomes, up to a normalisation constant,

p(nnn|ααα ,n) = c·exp

[

−∑
b

nb ln
nb

nαb

]

. (2.3)

Expanding the free parametersααα around the measured datannn and truncating

p(nnn|ααα ,n) = c·exp

[

−∑
b

(

(nαb−nb)
2

2nb
−

(nαb−nb)
3

3n2
b

+ . . .

)

]

≃ c·exp

[

−
1
2∑

b

(nαb−nb)
2

nb

]

,

(2.4)

we can identify the multinomial quantities with the measured correlation functions at mid-bin
points Qb by setting2 nb → IC2(Qb), C = ∑bC2(Qb), andn → IC. The nb in the denominator
is almost equal to the measured bin variancesnb ≃ σ2(nb) = I2σ2(C2(Qb)) so that the quadratic
term is

(nαb−nb)
2

2nb
≃

[C2(Qb)−y(Qb | θ̂θθ m)]
2

2σ(C2(Qb))2 , (2.5)

wherenαb/I → y(Qb | θ̂θθ m), which includes all the constants, is the unnormalised parametrisation
for C2(Q) in common use. Comparing this to the usual definition

χ2 =∑
b

[C2(Qb)−y(Qb | θ̂θθ m)]
2

σ(C2(Qb))2 , (2.6)

we see that the maximum likelihood is approximately equal to

p(D|θ̂θθ m,Hm)≃ e−χ2/2, (2.7)

so thatχ2 is seen to be an approximation of the Bayes formulation, using only a single point in
the parameter spaceθθθ ∗

m ≡ θ̂θθ m and thereby effectively assuming a uniform prior. Furthermore, χ2

truncates the expansion of (2.4); this is probably the approximation most vulnerable to criticism.

3. Parametrisations and Lévy-based polynomial expansions

We now apply the above general ideas to the specific case of thevarious parametrisations shown
in Table 1 for the correlation function data for two-jet events published by the L3 Collaboration
[4]. HypothesesH1 to H3 are taken from the L3 paper. Realising that it is important toquantify the
degree of deviation of Bose-Einstein correlation data fromthe Gaussian or the exponential shape,
the L3 Collaboration also studied a “Laguerre expansion” aswell as the symmetric Lévy source
distribution, characterized by the stretched-exponential correlation function of hypothesisH2. In
H4 andH5, we propose a new expansion technique that measures deviations fromH2 in terms of a
series of “Lévy polynomials” that are orthogonal to the characteristic function of symmetric Lévy
distributions, generalising the results presented in Ref.[6].

L1(x|α) = det

(

µ0,α µ1,α

1 x

)

L2(x|α) = det







µ0,α µ1,α µ2,α

µ1,α µ2,α µ3,α

1 x x2






etc. (3.1)

2I is an arbitrary large integer to ensure thatIC2(Qb) is an integer. As it eventually cancels out, its size is immaterial.

4



P
o
S
(
W
P
C
F
2
0
1
1
)
0
3
3

From χ2 to Bayesian model comparison and Levy expansions of Bose-Einstein correlations in e+e− reactions
Michiel B. De Kock

whereµr,α =
∫ ∞

0 dx xr f (x|α) = 1
α Γ( r+1

α ). These reduce, up to a normalisation constant, to the La-
guerre polynomials forα = 1. Figure 1 displays two examples for various values ofα . Polynomials
cannot be both orthogonal and derivatives for transcendental weight functions [9], and therefore in
H6 andH7 we also investigated nonorthogonal derivative functions of the stretched exponential3.

Hypothesis Functional form Nm

H1 Gauss γ [1+ εQ]
[

1+λe−R2Q2
]

4

H2 Stretched Exponential γ [1+ εQ]
[

1+λe−RαQα
]

5

H3 Simplifiedτ-model γ [1+ εQ]
[

1+λe−R2αQ2α
cos[tan(απ/2)R2α Q2α ]

]

5

H4 1st-order Lévy polynomial γ
[

1+λe−RαQα
[1+c1L1(Q|α ,R)]

]

5

H5 3rd-order Lévy polynomial γ
[

1+λe−RαQα
[1+c1L1(Q|α ,R)+c3L3(Q|α ,R)]

]

6

H6 1st-order derivative γ
[

1+λe−RαQα
+c1

d
dQe−RαQα

]

5

H7 3rd-order derivative γ
[

1+λe−RαQα
+c1

d
dQe−RαQα

+c3
d3

dQ3 e−RαQα
]

6

Table 1: Summary of parametrisations tested
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Figure 1: Lévy polynomials of first and third order times the weight functione−xα
for α = 0.8,1.0,1.2,1.4.

4. Application to L3 binned data

In Table 2, we show the results of applying the Laplace approximation (1.6) to the L3 two-jet data,
which is provided in terms of 100 binned values for the correlation functionC(Qb) together with
standard errorsσ(C(Qb)) in the range 0< Q < 4 GeV. Throughout, we used a Gaussian prior
p(θθθ ∗

m|Hm) with a width which was determined by numerical integration over one of the L3 data
points. To illustrate the contributions of the likelihood,prior and determinant factors enteringhm

3Note the absence of the[1+ εQ] long-range correction term. L3 demonstrated that this termvanishes if the dip,
the non-positive definiteness ofC2(Q)−1, is taken into account by the parametrisation elsewhere, e.g. by the cosine in
H3 and by the first-order polynomials inH4 andH5, resulting inε values consistent with zero.
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in (1.8), we have listed their logarithmic contributions separately in the three columns headed L, P
and F. These quantities are therefore the building blocks for calculating the odds between any two
competing hypotheses. Thus one can, for example, deduce that the odds forH7 compared toH6 are
2100.6−97.0 ≃ 12:1. Also included in Table 2 are the traditionalχ2 measure (C) and its associated
confidence level (CL).

Hypothesis Nm L P F hm C CL

H1 Gauss 4 177.8 -3.6 32.2 206.5 2.57 3.4×10−13%

H2 Stretched Exponential 5 138.5 -0.5 34.0 172.0 2.02 1.5×10−6%

H3 Simplifiedτ-model 5 68.2 -3.4 37.0 101.8 1.00 49.1%

H4 1st-order Lévy polynomial 5 66.2 2.2 30.3 98.8 0.97 57.3%

H5 3rd-order Lévy polynomial 6 65.9 3.8 41.6 111.3 0.97 55.7%

H6 1st-order derivative 5 67.3 4.2 29.1 100.6 0.98 53.0%

H7 3rd-order derivative 6 60.4 4.9 31.7 97.0 0.89 77.0%

Table 2: Results of fitting parametrisations listed in Table 1.
Legend: L ≡− lgP(D |θθθ∗

m,Hm)≡ χ2/(2ln2) hm ≡ L+P+F

P≡− lgP(θθθ∗
m |Hm) C≡ χ2/(B−Nm)

F≡− lg
√

(2π)Nm detA CL ≡ confidence level

It is inappropriate to generalise conclusions based on one specific dataset with its specific circum-
stances. The fact that in the two-jet L3 data the correlationfunctionC2(Q) drops well below 1.0 for
0.5 < Q< 2 GeV, for example, is probably the dominant influence on the goodness of fit. Under
this caveat, we make the following observations regarding the results shown in Table 2:

1. At first sight, the Bayes factor and theχ2 methodologies deliver judgements which are rather
similar: H7 is consistently ranked best, whileH1 andH2 are ranked worst (least likely). The two
methodologies yield vastly different numbers when one hypothesis is bad. As shown below,
there are surprising variations even among the better ones.

2. The determinant plays an important role. For example, factor F= 41.6 for H5 is significantly
larger than that of similar modelsH4 andH6 even though the three log likelihoods are similar.
This can be traced to the fact that the uncertainty in the parameters forH5 is larger, as expressed
in the width of its Gaussian (1.4). Whileχ2, based only on the likelihood, can hardly distinguish
betweenH4 andH5, the contribution of the largeH5 determinant ensures that the Bayesian odds
for H4 versusH5 are 5800:1. In other words, by taking into account not only the best parameter
valuesθθθ ∗

5 but also their uncertainties, the Bayes factor could distinguish whatχ2 could not.
3. Our Bayes factor calculation takes the experimental standard errorsσ(C(Qb)) into account by

using (2.5) in the exponent of the likelihood; in other words, we assume that they are Gaussian.
We can improve on this approximation by doing a more completeBayesian analysis using not
the binned data but the pair momenta{Qi} themselves.

4. As Fig. 1 shows, the Lévy polynomials introduced here are well suited to describe one-sided
strongly-peaked data. It may be helpful to use them, as we have done here, merely as part of
parametrisations of data to which they show some resemblance. More systematic use in Gram-
Charlier or other expansions will be faced with issues inherent in all asymptotic series [7, 8].
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5. Conclusions

1. In hypothesesH4 to H7, we have presented new techniques to study deviations from astretched
exponential or Fourier-transformed Lévy shape. Details will be published elsewhere.

2. The standard measures of fit quality likeχ2 or CL are useful in rejecting models which are
inconsistent with a given dataset. Where two or more models are consistent with the data, how-
ever, they are unable to select the more probable. The Bayes factor (1.9) permits quantification
of the evidence (relative probability) for the validity of models.

3. Besides the likelihood, the prior and determinant also play a role, sometimes decisively so.

4. The Laplace approximation (1.4) is usually fairly accurate, but the assumption of Gaussian
errors for count data (2.4), which is made by truncation of the Taylor expansion in the data, is
of dubious quality.

5. By integrating over parameter space, Bayesian evidence takes into accountall possible values
of the parameters, whileχ2 and Maximum Likelihood do not.

6. Bayes factors depend linearly on the two priors. This is good in that they are made explicit, but
bad in the sense that results can and do change depending on the choice of priors.

7. The omission of priors inχ2 is to its disadvantage as it discards important information.

8. It may appear thatχ2 does not need any alternative hypothesis to be of use. This isnot so,
however: the alternative implicit inχ2 is the “Bernoulli class” of multinomials [10].
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