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1. Introduction

There are two essential problems that appear when trying to quantize the supermembrane: the first,
also present for the bosonic supermembrane, is related to the complicated, more than quadratic
nature of the Hamiltonian, which leads to difficulties in constructing the physical spectrum, and the
second, also present for the Green-Schwartz superstring, refers to the presence of some fermionic
constraints due to the kappa-symmetry of the action, constraints that can not be separated in first
and second class in a Lorentz-covariant manner. They have been separated only with the price of
breaking the covariance by using light-cone coordinates.

Around ten years ago, a new approach started to be used, mostly by Berkovits, for the su-
perstring - the pure spinor formalism [2], which has proven to be quite useful for quantising the
superstring in a manifestly super-Poincaré covariant manner. The Green-Schwarz formulation of
the open superstring (or one of the two sectors of the closed superstring) has one reparameterisation
constraint, T , and 16 fermionic constraints, dα , half of which are second class and the other half
first class. The separation of the two types of constraints in a Lorentz-covariant manner, preserv-
ing the full ten-dimensional symmetry, is not possible. Giving up manifest covariance,the usual
way to treat the dα constraints starts by constructing the Dirac bracket from the second class con-
straints. Instead of this approach, an alternative is to try to view the eight second class constraints
as four first class constraints plus four gauge fixing conditions. In the case of the superstring the
resulting set of twelve fermionic first class constraints can then, together with T , be used to write
a conventional BRST charge. This BRST charge is not manifestly Lorentz covariant. However,
after a similarity transformation it can be shown to be equal to the pure spinor BRST charge plus a
topological term which decouples due to the quartet mechanism [2].

After the decoupling, the resulting BRST charge agrees with the pure spinor BRST charge
thereby establishing the equivalence between the two formalisms. The decoupling of the topologi-
cal quartet effectively removes the reparameterisation constraint together with one of the fermionic
constraints and the corresponding ghosts, and reinstates Lorentz covariance. The remaining eleven
bosonic ghosts build up a pure spinor — eleven being the dimension of such a spinor in ten dimen-
sions.

So, in this new approach, the starting point is an action in which the gauge kappa-symmetry
is replaced by a rigid symmetry of the BRST type, whose generator Q called "BRST charge" is
chosen linear in the fermionic constraints of the kappa-symmetric formulation and the components
of a bosonic ghost which satisfies the pure spinor condition. It was shown that physical states
for the superstring belong to the cohomology of Q. After adding some non-minimal fields and
performing a similarity transformation the "BRST charge" Q in the pure spinor formalism gets a
conventional form argued to be equivalent to the one in the kappa-symmetric formalism.

The present paper is an attempt to extend this pure spinor method to the case of the super-
membrane in eleven dimensions, in the sense of finding a connection between the "BRST charge"
postulated in the pure spinor aproach and the conventional BRST charge in the kappa-symmetric
version. It is based almost entirely on the results we obtained in [1].
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2. Supermembrane in eleven dimensions

In this section we discuss the extension of the method described in the introduction to the super-
membrane. We take as a toy model the superparticle case in eleven dimensions studied in [1].

2.1 The κ-symmetric supermembrane

The starting point is the BST (Bergshoeff-Sezggin-Townsend) [4] action for the supermembrane in
D=11 in a flat supergravity background

S =
∫

dτd2
σ

[
PMΠ

M
0 + e0(PMPM +∆)+ ei

Π
M
i PM

− i
2 ε

IJK(θΓMN∂Iθ)
[
Π

M
J Π

N
K + iΠM

J (θΓ
N

∂Kθ)− 1
3(θΓ

M
∂Jθ)(θΓ

N
∂Kθ)

]]
= −1

2

∫
d3

ζ

[√
−g(gIJ

Π
M
I ΠJM−1)

+iε IJK(θΓMN∂Iθ)
[
Π

M
J Π

N
K + iΠM

J (θΓ
N

∂Kθ)− 1
3(θΓ

M
∂Jθ)(θΓ

N
∂Kθ)

]]
, (2.1)

which is invariant under global supersymmetry as well as under a local (gauge) fermionic symmetry
known as the κ-symmetry [8].
ζ I = (τ,σ i) are the space-time coordinates on the worldvolume, I,J,K = 0,1,2 and i, j = 1,2,
while e0 and ei are the components of a vielbein.

We also used the folowing notations

Π
M
I = ∂IXM− iθΓ

M
∂Iθ , (2.2)

∆ = det(ΠN
i Π jN) =

1
2 ε

i j
Π

M
i Π

N
j ε

kl
ΠkMΠlN , (2.3)

where ΠM
I (τ,σ i) are the components of the supersymmetric momentum, XM(τ,σ i) the bosonic

coordinates for the supermembrane in superspace whith associated conjugate momenta PM(τ,σ i),
the fermionic objects θ A(τ,σ i) are the components of a Majorana spinor and have pA(τ,σ

i) as
their associated conjugate momenta. (ΓM)AB are hermitic and symmetric matrices in Majorana
representasion. We denoted Lorentz indices by M = 0, ...,9,11 and spinor indices by A = 1, ...,32.
For more conventions and technical details see appendix A.

The two forms of the action above are related by integrating out PM and using the parameteri-
sation gi j→ (γi j ,N,Ni) [7]

gi j = γi j , g0i = 2γi jN j , g00 =−N2 + γi jNiN j ,

gi j = γ
i j− NiN j

N2 , g0i =
Ni

N2 , g00 =− 1
N2 ,

g = N
√

γ = N
√

detγi j ,

together with the identifications

e0 =
N

2
√

γ
, ei =−Ni , (2.4)
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and the result [7]

∆ = γ(γ i j
Π

M
i Π jM−1) . (2.5)

Of particular interest for us is the hamiltonian analysis of the constraints derived from the
above action. The theory is subject to 32 fermionic primary constraints

dA = pA− iPM(ΓM
θ)A

− i
2 ε i j(ΓMNθ)A

[
ΠM

i ΠN
j + iΠM

i (θΓN∂ jθ)− 1
3(θΓM∂iθ)(θΓN∂ jθ)

]
−1

2 ε i j(θΓMN∂iθ)(Γ
Mθ)A[Π

N
j +

2i
3 θΓN∂ jθ ]≈ 0 . (2.6)

and to 3 bosonic secondary constraints, known as the reparametrisation constraints

T = KMKM +∆−2ε
i j

Π
M
i (dΓM∂ jθ)≈ 0 ,

Ti = KMΠ
M
i −d∂iθ ≈ 0 , (2.7)

where we used notation

KM = PM− iε i j(θΓMN∂iθ)(Π
N
j +

i
2 θΓN∂ jθ) . (2.8)

The basic canonical Poisson brackets are

{PM(σ),XN(ρ)}=−δ
N
Mδ

2(σ −ρ) , {pA(σ),θ B(ρ)}=−δ
B
A δ

2(σ −ρ) , (2.9)

which imply the following non-vanishing Poisson brackets between KM, ΠM
i and dA:

{dA(σ),dB(ρ)} = 2iKMΓ
M
AB δ

2(σ −ρ)+ iε i j
ΠiMΠ jNΓ

MN
AB δ

2(σ −ρ) ,

{dA(σ),KM(ρ)} = −2iε i j
Π

N
i (ΓMN∂ jθ)A δ

2(σ −ρ) ,

{dA(σ),ΠM
i (ρ)} = 2i(ΓM

∂iθ)A δ
2(σ −ρ) ,

{KM(σ),KN(ρ)} = −iε i j(∂iθΓMN∂ jθ)δ
2(σ −ρ) ,

{KM(σ),ΠN
i (ρ)} = −δ

N
M

∂

∂ρi
δ

2(σ −ρ) , (2.10)

where, all fields on the right hand side depend on ρ .

T , Ti and half of dA are first class constraints, while the other half of dA are second class
constraints. Because there is no way (at least not a simple known one) of covariantly separating
the fermionic constraints, we can drop the covariance and work in light-cone coordinates. After
a procedure of gauge un-fixing the second class constraints to first class constraints we can start
writing down the BRST charge for this theory. But for a manifest Lorentz covariant description of
the supermembrane we argue that the pure spinor method can be used.
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2.2 The pure spinor supermembrane

A pure spinor version of the supermembrane in eleven dimensions was proposed by Berkovits [5].
This model is based on the action

S =
∫

dτd2
σ

[
KMΠ

M
0 −d∂0θ +w∂0λ

− i
2 ε

IJK(θΓMN∂Iθ)(Π
M
J Π

N
K + iΠM

J (θΓ
N

∂Kθ)− 1
3(θΓ

M
∂Jθ)(θΓ

N
∂Kθ)

−1
2

[
KMKM +M+2ε

i j(dΓM∂iθ)Π
M
j +2ε

i j(wΓM∂iλ )Π
M
j

+4iε i j(wΓ
M

∂iθ)(λΓM∂ jθ)−4iε i j(w∂iθ)(λ∂ jθ)
]

+ei[KMΠ
M
i −d∂iθ +w∂iλ

]]
, (2.11)

where new variables appear: a bosonic ghost {λ A}A=1...32, which is a pure spinor (i.e. it satisfies a
pure spinor constraint) and its conjugate momentum {wA}A=1...32. The pure spinor constraint

λΓ
M

λ = 0 (2.12)

leaves λ A with only 23 independent components and induces a gauge invariance

δwA = ΛM(ΓM
λ )A , (2.13)

which means that wA and λ A do not have a canonical (Lorentz covariant) Poisson bracket. However,
from w and λ one can form gauge-invariant Lorentz-covariant objects, such as

J = wλ , NMN = 1
2(wΓ

MN
λ ) , (2.14)

which correspond to the ghost charge and respectively the Lorentz current in the (w,λ ) sector.
For calculations involving such gauge invariant expressions, one can effectively use the canonical
Poisson bracket {wA,λ

B}=−δ B
A , as the non-covariant pieces cancel.

The proposed BRST charge is

Q =
∫

d2
σλ

AdA , (2.15)

However, in contrast to the superparticle case studied in [1], further constraints are needed to make
Q nilpotent and the action BRST invariant. As shown in [5] the following constraints also seem to
be required

(λΓMNλ )ΠN
i = 0 , λ∂iλ = 0 . (2.16)

Note that the constraints (2.16) are BRST closed. Still, the exact form of the full set of constraints
deserves further study.

We should also mention another attempt to understand the origin of the pure spinor superme-
mbrane [8]. In this paper the goal was to derive the pure spinor model starting from a “doubled”
version of the κ-symmetric supermembrane. This approach was partially successful, but was not
as complete as that for the superstring [9].
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2.3 Relation between the two formulations

In order to discuss the relation between the above two formulations we restrict ourselves to a
classical analysis (i.e. work at the level of Poisson brackets). Our discussion closely parallels the
ten-dimensional case discussed in [3].

A natural first step is to try to find a supermembrane generalisation of the superparticle result
in [1]. The first step is to introduce a topological quartet (b,c,β ,γ) to the pure spinor BRST charge
which ads to Q a cohomological trivial term

Q→ Q′ = λ
AdA +bγ. (2.17)

Here b, c are fermionic and β , γ are bosonic. The canonical Poisson brackets between the new
variables are

{b,c}=−1 , {β ,γ}=−1 . (2.18)

Then, one performs the similarity transformation

Q′′ = ecR/γQ′e−cR/γ ≡ Q′+{cR
γ
,Q′}+ 1

2!
{cR

γ
,{cR

γ
,Q′}}+ . . . , (2.19)

where we propose the following expression for R in order to provide a suitable generalisation to
the supermembrane case

R =
∫

d2
σ
[
− i

2 KM(dΓMξ )+ i
4 ε i jΠM

i ΠN
j (dΓMNξ )

− 1
2 ε

i j
Π

M
i (ξ ΓM∂ jθ)(wλ )− 1

4 ε
i j

Π
M
i (ξ ΓMNR∂ jθ)(wΓ

NR
λ ) (2.20)

− 1
2 ε

i j
Π

M
i (ξ ∂ jθ)(wΓMλ )− 1

4 ε
i j

Π
M
i (ξ Γ

NR
∂ jθ)(wΓMNRλ )

]
.

A few comments about this expression are in order. The second line of this expression is invariant
under the gauge transformation δwA =ΛM(ΓMλ )A arising from the fact that λ is pure, i.e. λΓMλ =

0. This is easy to see since it involves the gauge invariant expressions encountered previously in
the superparticle case (2.14). The first term on the third line is not invariant unless one imposes
additional conditions. Provided that (λΓMNλ )ΠM

i = 0 it is invariant. However, even with this
additional condition the second term on the third line of (2.20) is not invariant; instead its variation
becomes proportional to ΛPΠP

i ε i j(ξ ΓMN∂ jθ)(λΓMNλ ). If one imposes the stronger condition
λΓMNλ = 0 (or the slightly weaker condition (λΓMNλ )ΠP

i = 0), it is invariant, but this possibility
appears disfavoured since in previous work [5] constraints stronger than (2.16) were not necessary.
Another possibility is that {Q,δR} = 0, i.e. R is only gauge invariant up to BRST closed terms.
Although some terms in {Q,δR} can be cancelled if one also imposes λ∂iλ = 0, it seems that not
all terms can be made to vanish, even using Fierz identities. Therefore we are left with a puzzle
regarding the final term in (2.20). For the remainder of this paper we will assume that either the
stronger condition λΓMNλ = 0 can be used in our calculations, or that there is another way to
make the final term in (2.20) gauge invariant so that the non-covariant pieces in the bracket with Q
vanish.

A strong argument in favour of (2.20) is related to its behaviour under the double dimensional
reduction to the d = 10 type IIA superstring case. Under this reduction one has

Π
M
2 = δ

M
11 , ∂2θ = 0 , K11 = Λ11 = 0 . (2.21)

6
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It is easy to check that when these conditions are fulfilled, R as written above is gauge invariant.
Furthermore, by implementing the conditions (2.21) into R leads to

Rd=10 =
∫

dσ1

[
− i

2 Km(dΓmξ )+ i
2 Πm

1 (dΓmΓ11ξ )

− 1
2(ξ Γ

11
∂1θ)(wλ )− 1

4(ξ Γ
11

Γnr∂1θ)(wΓ
nr

λ ) (2.22)

− 1
2(ξ ∂1θ)(wΓ

11
λ )− 1

4(ξ Γnr∂1θ)(wΓ
11

Γ
nr

λ )

]
,

where m,n,r = 0, . . . ,9. Splitting ξ A = (ξ α , ξ̃ α̇) and similarly for dA, θA, wA and λ A, we find
R = ξ αGα + ξ̃ α̇G̃α̇ where

Gα = − i
2 Km(dγm)α + i

2 Πm(dγm)α

− 1
2(∂θ)α(wλ )− 1

4(γmn∂θ)α(wγ
mn

λ ) ,

G̃α̇ = − i
2 Km(d̃γm)α̇ − i

2 Πm(d̃γm)α̇

− 1
2(∂̄ θ̃)α̇(w̃λ̃ )− 1

4(γmn∂̄ θ̃)α̇(w̃γ
mn

λ̃ ) , (2.23)

which precisely corresponds to the ten-dimensional result [10].
>From (2.20) a lengthy calculation leads to

{Q,R}=
∫

d2
σ [(λξ )T −2(λΓMξ )ε i j

Π
M
i T j] , (2.24)

where

T = KMKM +∆−2ε
i j

Π
M
i (dΓM∂ jθ)−2ε

i j
Π

M
i (wΓM∂ jλ )

−4iε i j(w∂iθ)(λ∂ jθ)+4iε i j(wΓM∂iθ)(λΓ
M

∂ jθ) (2.25)

Ti = KMΠ
M
i −d∂iθ +w∂iλ .

This is one of the main results of this paper. Note that T and Ti in (2.25) are ghost completions of
T and Ti in (2.7).

The expressions in (2.25) are precisely the combinations that appear in the third, the fourth,
and the fifth lines of the action (2.11), which would look something like

S =
∫

dτd2
σ

[
...+

1
2
T + eiTi

]
(2.26)

This is a good indication that we are on the right track, and gives further support to our proposal
for R.

If one imposes λΓMξ = 0 and λξ = 1, one finds

{Q,R}= T. (2.27)

This implies that R is an eleven-dimensional analogue of the (non-covariant) superstring b
ghost (the superparticle limit of which was discussed in [6].) It is non-covariant in the sense of the
Y -formalism [10]. The b ghost appears in the calculation of the multiloop scattering amplitudes

7
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for the superstring and we assume that this R found in the supermembrane case may play a similar
role.

After performing a similarity transformation in first order we obtain a first term in the new
"BRST charge" which depends on one of the reparametrisation constraints (starting to look like
conventional form for a BRST charge)

Q′′ =
∫

d2
σ(cT + ...). (2.28)

A natural strategy would be to also try to find an Ri such that {Q,Ri} = Ti + .... An attempt
based on Ri =

∫
d2σΠM

i (dΓMξ )+ ... fails since one is forced to impose λΓMξ = 0 = λΓMNξ and
λξ 6= 0. However, when (λΓMλ ) = 0,

(λξ )2 =
3
2
(λΓ

M
ξ )(λΓMξ )+

1
4
(λΓ

MN
ξ )(λΓMNξ ) . (2.29)

As in the superparticle case one can perform transformations using ecξ Rξ /γξ where the ξ sub-
script indicate that we perform several transformations using R’s with various different fixed ξ ’s.
This gives leading terms in Q′ of the form

Q′ =
∫

d2
σ ( ∑

ξ

cξ Tξ + . . .) , (2.30)

where Tξ is a certain combination of T and the eleven T M ≡ ε i jΠM
i Tj.

Possibly the most natural approach would be to pick T and two fixed M’s, ± say, T± =

ε i jΠ±i Tj, so that

Q′ =
∫

d2
σ(cT + c+T++ c−T−+ . . .) . (2.31)

Although not covariant and not based on the usual form of reparameterisation constraints (2.7) this
would be part of a viable form for a BRST charge arising from the κ-symmetric formulation. If
one insists on covariance one could keep all the T M so that

Q′ =
∫

d2
σ(cT + cMT M + . . .) . (2.32)

In this case the constraints would be reducible, but it may be profitable to keep covariance i.e. to
work with T M = ε i jΠM

i Tj. It is easy to check that, generically, the two sets of constraints based on
T M or Ti define the same constraint surface.

Thus, we seem to be close to finding a Q′ which can be related to a BRST charge in the κ-
symmetric formulation, either of the form (2.31) or (2.32). This point should be studied further.
Also, we only calculated the lowest order terms in the similarity transformation. Although general
theorems seem to guarantee that the construction will work also at higher orders since we started
from a BRST charge that satisfies {Q,Q}= 0, it may be profitable to work out the details.

Above we only studied how the BRST charges are related. In the same way as in [3] it should
also be possible to relate the two actions. Although our work supports the pure spinor formulation
it does not really clarify what constraints should be imposed on λ . Partly this is a consequence
of the fact that we started from the pure-spinor formulation and tried to obtain the κ-symmetric
formulation rather than the other way around.

8
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3. Conclusions

The main results presented in this paper are meant to support the pure spinor formulation of the su-
permembrane developed by Berkovits. Here we tried to relate the conventional BRST charge in the
kappa-symmetric formulation with the postulated "BRST charge" for the pure spinor formulation
of the supermembrane and we argue that it is posible to reinstate the reparameterisation constraints
in the pure-spinor formulation of the supermembrane by introducing a topological sector and per-
forming a similarity transformation and that the resulting BRST charge would be of conventional
type, related to the BRST charge of the κ-symmetric supermembrane in a formulation where all
second class constraints are ‘gauge unfixed’ to first class constraints.

In our analysis we also encountere a natural candidate for a (non-covariant) supermembrane
analogue of the superstring b ghost.

A. Conventions and technical details

In this appendix we collect our conventions and some technical details. Our conventions are closely
related to those of [8], but with some minor differences. Spacetime indices are labeled by capital
letters from the middle of the alphabet: M,N, . . .= 0, . . . ,9,11. Spinor indices are labeled by capital
letters from the beginning of the alphabet: A,B, . . .= 1, . . . ,32. The gamma matrices (ΓM)A

B satisfy
the usual algebra: {ΓM,ΓN}= 1

2(Γ
MΓN +ΓNΓM) = ηMN . We worked with the mostly plus metric

ηMN = diag(−+ ...+). Indices can be lowered using the charge-conjugation matrix CAB = −CBA

via (ΓM)AB =CAD(Γ
M)D

B and raisedwith the inverse of this matrix. We do not write CAB explicitly
as the position of the indices should always be clear from the context. Also, we do not write the
spinor indices explicitly in fully contracted expressions. ΓM1···Mp is symmetric for p = 1,2,5 and
antisymmetric for p = 0,3,4 (p = 0 corresponds to CAB); these form a basis for the bispinor ΨAϒB

as

ΨAϒB =
1
32

[
(Ψϒ)CAB +(ΨΓ

S1ϒ)(ΓS1)AB−
1
2!
(ΨΓ

S1S2ϒ)(ΓS1S2)AB−

− 1
3!
(ΨΓ

S1S2S3ϒ)(ΓS1S2S3)AB +
1
4!
(ΨΓ

S1S2S3S4ϒ)(ΓS1S2S3S4)AB +

+
1
5!
(ΨΓ

S1S2S3S4S5ϒ)(ΓS1S2S3S4S5)AB

]
. (A.1)

Any antisymmetric bispinor f [AB] in eleven dimensions can be decomposed into a scalar, a
3-form and a 4-form

f [AB] =CAB f +(ΓMNP)
AB f MNP +(ΓMNPQ)

AB f MNPQ , (A.2)

and any symmetric bispinor g(AB) into a 1-form, a 2-form and a 5-form

g(AB) = (ΓM)AB f M +(ΓMN)
AB f MN +(ΓMNPQR)

AB f MNPQR . (A.3)

We sometimes find it useful to decompose our expressions into a (non-covariant) U(5) basis.
Alternative decompositions are SO(8) and SO(9). Under SO(11)→ U(5) a vector decomposes as

9
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V M → (va,va,v11) where

va =
V a + iV a+5

2
, va =

V a− iV a+5

2
, v11 =V 11 . (A.4)

>From which it follows that e.g. UMV M = 2uava + 2uava + u11v11. Tensors are decomposed in a
similar way.

A spinor ΨA splits as (ψα ,ψα̇) and then further as ψα→ (ψ+,ψa,ψ[ab]) and ψα̇→ (ψ−,ψa,ψ
[ab])

where a,b = 1, . . . ,5.
In the U(5) basis the gamma matrices can be chosen as

(γ1)A
B
= σ1+iσ2

2 ⊗1l⊗1l⊗1l⊗1l , (γ2)A
B

=σ3⊗ σ1+iσ2

2 ⊗1l⊗1l⊗1l ,
(γ3)A

B
= σ3⊗σ3⊗ σ1+iσ2

2 ⊗1l⊗1l , (γ4)A
B

=σ3⊗σ3⊗σ3⊗ σ1+iσ2

2 ⊗1l ,
(γ5)A

B
= σ3⊗σ3⊗σ3⊗σ3⊗ σ1+iσ2

2 , CAB = iσ2⊗σ1⊗ iσ2⊗σ1⊗ iσ2 ,

(γ1)A
B = σ1−iσ2

2 ⊗1l⊗1l⊗1l⊗1l , (γ2)A
B =σ3⊗ σ1−iσ2

2 ⊗1l⊗1l⊗1l ,
(γ3)A

B = σ3⊗σ3⊗ σ1−iσ2

2 ⊗1l⊗1l , (γ4)A
B =σ3⊗σ3⊗σ3⊗ σ1−iσ2

2 ⊗1l ,
(γ5)A

B = σ3⊗σ3⊗σ3⊗σ3⊗ σ1−iσ2

2 , (Γ11)A
B
=σ3⊗σ3⊗σ3⊗σ3⊗σ3 ,

(A.5)

where σ1,2,3 are the usual Pauli matrices

σ
1 =

(
0 1
1 0

)
, σ

2 =

(
0 −i
i 0

)
, σ

3 =

(
1 0
0 −1

)
. (A.6)

Using the U(5) decomposition, we can write formulæ for λξ , λΓMξ and λΓMNξ in the following
form

λξ = λ
+

ξ
−−λ

−
ξ
++λ

a
ξa−λaξ

a + 1
2 λabξ

ab− 1
2 λ

ab
ξab

λΓ
11

ξ = λ
+

ξ
−+λ

−
ξ
++λ

a
ξa +λaξ

a + 1
2 λabξ

ab + 1
2 λ

ab
ξab

λγ
a
ξ = −λ

+
ξ

a−λ
a
ξ
++λbξ

ab +λ
ab

ξb +
1
4 εabcdeλbcξde

λγaξ = λ
−

ξa +λaξ
−−λ

b
ξab−λabξ

b− 1
4 εabcdeλ bcξ de

λγ
a
Γ

11
ξ = λ

+
ξ

a +λ
a
ξ
++λbξ

ab +λ
ab

ξb− 1
4 εabcdeλbcξde

λγaΓ
11

ξ = λ
−

ξa +λaξ
−+λ

b
ξab +λabξ

b− 1
4 εabcdeλ bcξ de (A.7)

λγ
ab

ξ = −λ
+

ξ
ab−λ

ab
ξ
+− 1

2 ε
abcde(λcdξe +λeξcd)

λγabξ = λ
−

ξab +λabξ
−+ 1

2 εabcde(λ
cd

ξ
e +λ

e
ξ

cd)

λγ
a

bξ = λ
a
ξb +λbξ

a +λbcξ
ca +λ

ac
ξcb

+ 1
2 δ

a
b (λ

+
ξ
−+λ

−
ξ
+−λ

c
ξc−λcξ

c + 1
2 λcdξ

cd + 1
2 λ

cd
ξcd)

The pure spinor condition λΓMλ = 0 writen in the U(5) representation becomes

−λ
+

λ
a +λ

ab
λb +

1
8

ε
abcde

λbcλde = 0, (A.8)

λ
−

λa−λabλ
b− 1

8
εabcdeλ

bc
ξ

de = 0, (A.9)

λ
+

λ
−+λ

a
λa +

1
4

λabλ
ab = 0. (A.10)
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>From (A.8) si (A.9) we can eliminate the dependent variabiles λ a and λa and so we obtain that λ A

has 32− 10 = 22 independent components. But (A.10) is invariant to (λα ,λα̇)→ (ρλα ,ρ
−1λα̇).

This means, λ A has 23 degrees of freedom (λ+,λ−,λ ab,λab,ρ).

Sometimes we find it useful to decompose further into U(4). In this case we write

λ a → (λ a′ ,κ+) , λa → (λa′ ,κ
−) ,

λ ab → (λ a′b′ ,κa′) , λab → (λa′b′ ,κa′) ,
(A.11)

and similarly for ξ A.

The corresponding formulæ for λξ , λΓMξ and λΓMNξ in the U(4) basis can be obtained from
(A.7) by inserting the expressions (A.11) (we will not write the result explicitly). To simplify the
notation, below we drop the prime and use a,b = 1, . . . ,4.

In the U(4) basis one can write explicit solutions to the λΓMλ = 0 constraint, for example

λ
a =

1
λ+κeλe

[
κ
−

κ
a
κ

b
λb +λ

ab
λbκ

c
λc−λ

+
λ

ab
λbcκ

c− 1
8 κ

a
ε

bcde
λbcλde

−1
2 κ

a
λ
+

λ
bc

λbc +
1
8 λ

ab
λbε

cde f
λcdλe f − 1

2 λ
+

λ
−

ε
abcd

λbλcd

]
,

κa = − 1
κeλe

[
λ
−

λ
+

λa−κ
−

λabκ
b−λabλ

bc
λc− 1

2 λ
+

λabcdκ
b
λ

cd
]
, (A.12)

κ
+ =

εabcdλabλcd−8κaλa

8λ+
,

which shows that λ has 23 independent components.

It is also possible to write down explicit solutions to the λΓMλ = 0 = λΓMNλ constraints, as

λ
a =

1
2λ+

ε
abcd

κbλcd , κ
+ =

1
8λ+

ε
abcd

λabλcd ,

λa =
1

2λ−
εabcdκ

b
λ

cd , κ
− =

1
8λ−

εabcdλ
ab

λ
cd , (A.13)

λ
ab = 2

κ [aεb]cdeκcλde +2λ+λ−εabcdλcd

ε f ghkλ f gλhk
,

which shows that such a λ has 16 independent components.

We need to mention that we found the GAMMA package [11] very useful in handling the large
amount of gamma matrix algebras needed in our calculations.
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