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When one considers an effective low-energy theory built upon the basis of the Standard Model
(i.e. posessing its fields and symmetries), higher dimensional interaction terms appear in the La-
grangian. Dimension-six terms have been enumerated in the classical article by Buchmüller and
Wyler [1]. Although redundance of some of those operators has been already noted in the lit-
erature, the first complete list has been published in the article [2], where we performed their
classification once again from the outset. Assuming baryon number conservation, we found
15+19+25 = 59 independent operators (barring flavour structure and Hermitian conjugations),
as compared to 16+ 35+ 29 = 80 in Ref. [1]. The three summed numbers refer to operators
containing 0, 2 and 4 fermion fields. If the assumption of baryon number conservation is relaxed,
5 new operators arise in the four-fermion sector.
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The basis of dimension-six operators in the Standard Model

1. Introduction

It is commonly believed, that the the Standard Model (SM) of strong and electroweak inter-
actions is an effective theory that is valid up to certain energy scale Λ. The theory embedding it
would have to incorporate all the SM degrees of freedom and, if a gauge theory, posess an internal
symmetry containing SU(3)C×SU(2)L×U(1)Y of the SM, whereas its predictions should reduce
at low energies to those of the SM.

Typically for theories that are considered, reduction to the SM at low energies proceeds via
decoupling of heavy particles with masses of order Λ or larger. Such a decoupling at the per-
turbative level is described by the Appelquist-Carazzone postulate [3]. It leads to appearance of
higher-dimensional operators in the Lagrangian of considered effective theory that are suppressed
by powers of Λ

LSM = L
(4)

SM +
1
Λ

∑
k

C(5)
k Q(5)

k +
1

Λ2 ∑
k

C(6)
k Q(6)

k +O

(
1

Λ3

)
, (1.1)

where L
(4)

SM is the usual “renormalizable” part of the SM Lagrangian, containing only dimension-
two and -four operators.1 In the remaining terms, Q(n)

k denote dimension-n operators, and C(n)
k stand

for the corresponding dimensionless coupling constants (Wilson coefficients). Once the underlying
high-energy theory is specified, all the coefficients C(n)

k can be determined by integrating out the
heavy fields. In practice however, one rather determines them, requiring that both theories give the
same values of Green’s functions.

The goal we achieved was to find a complete set of independent operators of dimension 5 and
6 that are built out of the SM fields and are consistent with the SM gauge symmetries. We did not
rely on the original analysis of such operators by Buchmüller and Wyler [1] and performed the full
classification. The main reason for repeating the analysis was the fact that many linear combina-
tions of operators listed in Ref. [1] vanish by the Equations Of Motion (EOMs). Such operators are
redundant, i.e. they give no contribution to on-shell matrix elements, both in perturbation theory
(to all orders) and beyond [4]. Although the presence of several EOM-vanishing combinations in
Ref. [1] has been already pointed out in the literature [14, 13, 15], no updated complete list has
been published to date. Our final operator basis differs from Ref. [1] also in the four-fermion sector
where the EOMs play no role.

2. Notation and conventions

The SM matter content is summarized in Tab. 1 with isospin, colour, and generation indices
denoted by j = 1,2, α = 1,2,3, and p = 1,2,3, respectively. Chirality indices (L, R) of the
fermion fields will be skipped in what follows. Complex conjugate of the Higgs field will always
occur either as ϕ† or ϕ̃ , where ϕ̃ j = ε jk(ϕ

k)?, and ε jk is totally antisymmetric with ε12 =+1.

1Canonical dimensions of operators are determined from the field contents alone, excluding possible dimensionful
coupling constants. The only dimension-two operator in L

(4)
SM is ϕ†ϕ in the Higgs mass term.
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The basis of dimension-six operators in the Standard Model

fermions scalars

field l j
Lp eRp qα j

Lp uα
Rp dα

Rp ϕ j

hypercharge Y −1
2 −1 1

6
2
3 −1

3
1
2

Table 1: The SM matter content

The well-known expression for L
(4)

SM before Spontaneous Symmetry Breakdown (SSB) reads

L
(4)

SM = −1
4

GA
µνGAµν − 1

4
W I

µνW Iµν − 1
4

BµνBµν +
(
Dµϕ

)†
(Dµ

ϕ)+m2
ϕ

†
ϕ− 1

2
λ
(
ϕ

†
ϕ
)2

+ i
(
l̄ 6Dl + ē 6De+ q̄ 6Dq+ ū 6Du+ d̄ 6Dd

)
−
(
l̄ Γeeϕ + q̄Γuuϕ̃ + q̄Γddϕ +h.c.

)
, (2.1)

where the Yukawa couplings Γe,u,d are matrices in the generation space. We shall not consider SSB
in this paper. Our sign convention for covariant derivatives is exemplified by

Dµq =
(
∂µ + igsT AGA

µ + igSIW I
µ + ig′YqBµ

)
q. (2.2)

Here, T A = 1
2 λ A and SI = 1

2 τ I are the SU(3) and SU(2) generators, while λ A and τ I are the Gell-
Mann and Pauli matrices, respectively. All the hypercharges Y have been listed in Tab. 1.

It is useful to define Hermitian derivative terms that contain ϕ†
←

Dµϕ ≡ (Dµϕ)†ϕ as follows:

ϕ†i
↔

Dµ ϕ ≡ iϕ†
(

Dµ −
←

Dµ

)
ϕ and ϕ†i

↔
D I

µ ϕ ≡ iϕ†
(

τ
IDµ −

←
Dµτ

I
)

ϕ. (2.3)

The gauge field strength tensors and their covariant derivatives read

GA
µν = ∂µGA

ν −∂νGA
µ −gs f ABCGB

µGC
ν ,

(
DρGµν

)A
= ∂ρGA

µν −gs f ABCGB
ρGC

µν ,

W I
µν = ∂µW I

ν −∂νW I
µ −gε IJKW J

µW K
ν ,

(
DρWµν

)I
= ∂ρW I

µν −gε IJKW J
ρ W K

µν ,

Bµν = ∂µBν −∂νBµ , DρBµν = ∂ρBµν .
(2.4)

Dual tensors are defined by X̃µν = 1
2 εµνρσ Xρσ (ε0123 = +1), where X stands for GA, W I or

B.
The fermion kinetic terms in L

(4)
SM are Hermitian up to total derivatives, i.e. iψ̄ 6Dψ − h.c.

= ∂µ(ψ̄γµψ). Total derivatives of gauge-invariant objects in LSM are skipped throughout the
paper, as they give no physical effects. At the dimension-five and -six levels, we encounter no
gauge-invariant operators that are built out of non-abelian gauge fields only, and equal to total
derivatives of gauge-variant objects. At the dimension-four level, the two possible such terms
G̃A

µνGAµν = 4εµνρσ ∂µ

(
GA

ν ∂ρGA
σ − 1

3 gs f ABCGA
ν GB

ρGC
σ

)
and the analogous W̃ I

µνW Iµν should be
understood as implicitly present on the r.h.s of Eq. (2.1). They leave the Feynman rules and EOMs
unaffected, showing up in topological quantum effects only [5].
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The basis of dimension-six operators in the Standard Model

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG f ABCGAν
µ GBρ

ν GCµ

ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ f ABCG̃Aν
µ GBρ

ν GCµ

ρ Qϕ� (ϕ†ϕ)�(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW ε IJKW Iν
µ W Jρ

ν W Kµ

ρ QϕD
(
ϕ†Dµϕ

)? (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ ε IJKW̃ Iν
µ W Jρ

ν W Kµ

ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕ GA
µνGAµν QeW (l̄pσ µνer)τ

IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµ lr)

Q
ϕG̃ ϕ†ϕ G̃A

µνGAµν QeB (l̄pσ µνer)ϕBµν Q(3)
ϕl (ϕ†i

↔
D I

µ ϕ)(l̄pτ Iγµ lr)

QϕW ϕ†ϕ W I
µνW Iµν QuG (q̄pσ µνT Aur)ϕ̃ GA

µν Qϕe (ϕ†i
↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃ ϕ†ϕ W̃ I

µνW Iµν QuW (q̄pσ µνur)τ
Iϕ̃ W I

µν Q(1)
ϕq (ϕ†i

↔
Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕ BµνBµν QuB (q̄pσ µνur)ϕ̃ Bµν Q(3)
ϕq (ϕ†i

↔
D I

µ ϕ)(q̄pτ Iγµqr)

Q
ϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσ µνT Adr)ϕ GA

µν Qϕu (ϕ†i
↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ Iϕ W I
µνBµν QdW (q̄pσ µνdr)τ

Iϕ W I
µν Qϕd (ϕ†i

↔
Dµ ϕ)(d̄pγµdr)

Q
ϕW̃B ϕ†τ Iϕ W̃ I

µνBµν QdB (q̄pσ µνdr)ϕ Bµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3. The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results for the basis of independent operators
Q(5)

n and Q(6)
n , meaning that no linear combination of them and their Hermitian conjugates is EOM-

vanishing up to total derivatives.
Imposing the SM gauge symmetry constraints on Q(5)

n leaves out just a single operator [6], up
to Hermitian conjugation and flavour assignments. It reads

Qνν = ε jkεmnϕ
j
ϕ

m(lk
p)

TCln
r ≡ (ϕ̃†lp)

TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the electroweak
symmetry breaking, it generates neutrino masses and mixings. Neither L

(4)
SM nor the dimension-

six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1) and Tab. 1) with
observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries are
listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented with
generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac indices

are always contracted within the brackets, and not displayed. The same is true for the isospin and

2In the Dirac representation C = iγ2γ0, with Bjorken and Drell[7] phase conventions.
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The basis of dimension-six operators in the Standard Model

(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Qll (l̄pγµ lr)(l̄sγµ lt) Qee (ēpγµer)(ēsγ
µet) Qle (l̄pγµ lr)(ēsγ

µet)

Q(1)
qq (q̄pγµqr)(q̄sγ

µqt) Quu (ūpγµur)(ūsγ
µut) Qlu (l̄pγµ lr)(ūsγ

µut)

Q(3)
qq (q̄pγµτ Iqr)(q̄sγ

µτ Iqt) Qdd (d̄pγµdr)(d̄sγ
µdt) Qld (l̄pγµ lr)(d̄sγ

µdt)

Q(1)
lq (l̄pγµ lr)(q̄sγ

µqt) Qeu (ēpγµer)(ūsγ
µut) Qqe (q̄pγµqr)(ēsγ

µet)

Q(3)
lq (l̄pγµτ Ilr)(q̄sγ

µτ Iqt) Qed (ēpγµer)(d̄sγ
µdt) Q(1)

qu (q̄pγµqr)(ūsγ
µut)

Q(1)
ud (ūpγµur)(d̄sγ

µdt) Q(8)
qu (q̄pγµT Aqr)(ūsγ

µT Aut)

Q(8)
ud (ūpγµT Aur)(d̄sγ

µT Adt) Q(1)
qd (q̄pγµqr)(d̄sγ

µdt)

Q(8)
qd (q̄pγµT Aqr)(d̄sγ

µT Adt)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating

Qledq (l̄ j
per)(d̄sq

j
t ) Qduq εαβγε jk

[
(dα

p )
TCuβ

r

][
(qγ j

s )TClk
t

]
Q(1)

quqd (q̄ j
pur)ε jk(q̄k

sdt) Qqqu εαβγε jk

[
(qα j

p )TCqβk
r

][
(uγ

s )
TCet

]
Q(8)

quqd (q̄ j
pT Aur)ε jk(q̄k

sT Adt) Q(1)
qqq εαβγε jkεmn

[
(qα j

p )TCqβk
r

][
(qγm

s )TCln
t
]

Q(1)
lequ (l̄ j

per)ε jk(q̄k
sut) Q(3)

qqq εαβγ(τ Iε) jk(τ
Iε)mn

[
(qα j

p )TCqβk
r

][
(qγm

s )TCln
t
]

Q(3)
lequ (l̄ j

pσµνer)ε jk(q̄k
sσ µνut) Qduu εαβγ

[
(dα

p )
TCuβ

r

][
(uγ

s )
TCet

]
Table 3: Four-fermion operators.

colour indices in the upper part of Tab. 3. In the lower-left block of that table, colour indices are
still contracted within the brackets, while the isospin ones are made explicit. Colour indices are
displayed only for operators that violate the baryon number B (lower-right block of Tab. 3). All the
other operators in Tabs. 2 and 3 conserve both B and L.

The bosonic operators (classes X3, X2ϕ2, ϕ6 and ϕ4D2) are all Hermitian. Those containing
X̃µν are CP-odd, while the remaining ones are CP-even. For the operators containing fermions,
Hermitian conjugation is equivalent to transposition of generation indices in each of the fermionic
currents in classes (L̄L)(L̄L), (R̄R)(R̄R), (L̄L)(R̄R), and ψ2ϕ2D2 (except for Qϕud). For the re-
maining operators with fermions, Hermitian conjugates are not listed explicitly.

Counting the entries in Tabs. 2 and 3, we find 15 bosonic operators, 19 single-fermionic-
current ones, and 25 B-conserving four-fermion ones. In total, there are 15+19+25=59 independent
dimension-six operators, so long as B-conservation is imposed.

4. Comparison with Ref. [1]

Comparing the B-conserving operators in Tabs. 2 and 3 with Eqs. (3.3)–(3.64) of Ref. [1], one
finds that
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The basis of dimension-six operators in the Standard Model

(i) The only operator missed in Ref. [1] is Q(3)
lequ = (l̄ j

pσµνer)ε jk(q̄k
sσ µνut). This fact has been

already noticed in Ref. [8] where (l̄ j
puα

t )ε jk(q̄kα
s er) =

1
8 Q(3)

lequ−
1
2 Q(1)

lequ was used instead.

(ii) One linear combination of the three ϕ4D2-class operators in Eqs. (3.28) and (3.44) of Ref. [1]
must be redundant because this class contains two independent operators only. In fact, pres-
ence of all the three operators contradicts correct arguments given in Sec. 3.5 of that paper.

(iii) The number of single-fermionic-current operators in Ref. [1] becomes equal to ours after
removing all the 16 operators with covariant derivatives acting on fermion fields (Eqs. (3.30)–
(3.37) and (3.57)–(3.59) there). All such operators are indeed redundant. This fact has been
already discussed in Refs. [14, 13] for most of the cases. Note that removing those operators
helps in eliminating multiple assignment of the same operator names in Ref. [1].

(iv) Our use of
↔

Dµ instead of Dµ in class ψ2ϕ2D does not affect the formal operator counting,
but actually reduces the number of terms to be considered. The point is that Hermitian
conjugates of our operators with

↔
Dµ have an identical form as the listed ones, so they do

not need to be considered separately. On the other hand, using scalar field derivatives with
a positive relative sign (opposite to that in Eq. (2.3)) would give redundant operators only,
i.e. linear combinations of the three ψ2ϕ3-class terms, EOM-vanishing objects, and total
derivatives. This issue has been already noticed in Ref. [15].

(v) Fierz identities (for anticommuting fermion fields) like the following one:

(ψ̄LγµψL)(χ̄Lγ
µ

χL) = (ψ̄Lγµ χL)(χ̄Lγ
µ

ψL) (4.1)

make 5 out of 29 four-fermion operators in Ref. [1] linearly dependent on the others.
For instance,

(l̄pγµτ
Ilr)(l̄sτ I

γ
µ lt) = 2(l̄ j

pγµ lk
r )(l̄

k
s γ

µ l j
t )−Qprst

ll = 2Qptsr
ll −Qprst

ll , (4.2)

where the identity
τ

I
jkτ

I
mn = 2δ jnδmk−δ jkδmn (4.3)

and Eq. (4.1) have subsequently been used.

As far as the operator names and their normalization are concerned, our notation is close but not
identical to the one of Ref. [1]. Taking advantage of the need to modify the notation because of
redundant operator removal, we do it in several places where convenience is the only issue.
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The complete list of nomenclature and normalization changes reads:

(i) Unnecessary rationals are skipped in front of QϕG, QϕW , QϕB, Qϕ , Qll , Q(1)
qq , Q(3)

qq , Qee, Quu

and Qdd .

(ii) T A instead of λ A are used in QuG, QdG and Q(8)
... .

(iii) Fierz transformation and multiplication by (−2) is applied in our (L̄L)(R̄R) class to avoid
crossed colour and Dirac index contractions, and to make the notation somewhat more trans-
parent. In addition, colour-Fierz transformations are applied to linear combinations of the
last four operators of this class.

(iv) Operator names are changed in many cases to avoid multiple use of the same symbols, in-
dicate the presence of essential fields, and make the nomenclature more systematic in the
four-fermion sector. In particular, the names are modified for QϕWB, Q

ϕW̃B, Qϕud , as well as
in the whole (L̄R)(R̄L) and (L̄R)(L̄R) classes.

One of the reasons for naming our operators with “Q” rather than with “O” is to indicate that many
notational details have changed. We have followed Ref. [1] everywhere except for sign conventions
for the Yukawa couplings in Eq. (2.1) and inside covariant derivatives (Eq. (2.2)). The latter affects
signs of operators in classes X3 and ψ2Xϕ .

5. Conclusions

A simplification of the operator basis by the EOMs can be appreciated by comparing our Tab. 2
that contains 34 entries with Ref. [11] where 106 operators involving bosons are present because no
EOM-reduction has been applied. Going down from 106 to 51 with the help of EOMs in Ref. [1]
has been a partial success.

The knowledge of the form of effective interactions in the SM is crucial for phenomenological
analyses of a possible impact of a broader theory on already known and measured processes. Al-
though the overall list is of certain lenght, only few are important in a specific case. For instance,
anomalous Wtb couplings that can be well tested at the LHC are described by four operators only
(QuW , QdW , Q(3)

ϕq and Qϕud) [13, 15, 12].
It is interesting to note that if the underlying beyond-SM model is a weakly coupled (per-

turbative) gauge theory, operators containing field-strength tensors in Tab. 2 cannot be tree-level
generated [8]. In consequence, their Wilson coefficients Ck are typically O

( 1
16π2

)
. Thus, so long

as we are interested in operators with O(1) coefficients only, as little as 14 entries of Tab. 2 remain
relevant. Investigations involving those operators can be found, e.g., in Refs. [9, 16].
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