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We study moduli stabilization by thermal effects in the cosmological context. The implementation
of finite temperature, which spontaneously breaks supersymmetry, induces an effective potential
at one loop level. At the points where extra massless states appear in the string spectrum, the po-
tential develops local minima whose depth depends on the temperature. Moduli attracted to these
points acquire dynamical masses which decrease with cosmological evolution. This makes the
coherent scalar oscillations dilute before nucleosynthesis, and the cosmological moduli problem
is avoided. In particular, we study the effective potential induced by a maximally supersymmetric
heterotic string gas for spacetime dimension D ≥ 4, and a gas of type II strings compactified on
Calabi-Yau three-folds (D = 4). In the former case, the local minima of the potential arise at en-
hanced gauge symmetry points, which can stabilize all moduli but the dilaton. In the latter case,
the local minima are reached at the loci where 2-cycles or 3-cycles in the Calabi-Yau space shrink
to zero size, accompanied with either conifold transitions or non Abelian gauge symmetries. This
stabilizes the type II moduli which characterize the deformation of these shrinking cycles. Moduli
stabilization in the dual string models is also investigated by heterotic/type I S-dualities and type
II/heterotic dualities.
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1. Introduction and outline

Moduli stabilization is a long standing issue in the superstring phenomenology. In fact, the
presence of moduli fields in supersymmetric compactifications leads to difficulties: not only the
massless scalars are in contradiction with observations of the gravitational force, but also, being
continuous parameters in the couplings and mass spectrum, they imply a loss of predictability of
the theory. Much attention is thus drawn to the search for mechanisms which attract the moduli
fields to certain preferred values, where scalar masses are generated.

On the other hand, the scalar masses are subjected to constraints from cosmology. Basically,
when the scalar fields oscillate coherently in the potential well, the energy of oscillation dominates
the total energy of the universe [1], until the scalar particles decay. The productions of the decay
can alter the primordial abundances of the light nuclei produced by nucleosynthesis. Also, the huge
amount of entropy production during the decay can wash out the baryon number asymmetry. This
is termed as the cosmological moduli problem, which was initially identified in the framework of
supersymmetric standard models [2–4]. One applaudable solution to these is to require the scalar
masses be of O(10)TeV order. It is pointed out in [3] that once this is satisfied, the decay of these
scalar particles reheats the universe to a temperature of order 1MeV, high enough to restart the
nucleosynthesis. Then it is found in [4] that the baryon number asymmetry can also be saved by
the O(10)TeV order scalar mass if the baryogenesis is due to the Affleck-Dine mechanism [5].

Here I present our recent work [6,7] where the above problems were addressed by investigating
thermal string effects. It was shown in [8] that a gas of string modes, carrying both winding and
momenta, can generate a free energy that enables stabilization of radii moduli. A quantum version
of this effect has been presented in [6, 7, 9, 10], with the thermal gas and free energy replaced
by virtual strings which induce an effective potential. To avoid generating a large cosmological
constant, the cosmology is addressed in the context of no-scale models [11]. The latter are defined
at classical level by backgrounds associated to vanishing minima of the scalar potential, with flat
directions parameterized by the spontaneous supersymmetry breaking scale.

For simplicity, we consider here only temperature breaking of supersymmetry. At the level
of conformal field theory on the worldsheet, the implementation of finite temperature amounts to
a Scherk-Schwarz reduction on the Euclidean time circle of radius R0, with boundary conditions
associated to the spacetime fermion number [12]. The string frame temperature is T̂ = β̂−1 =

1
/

2πR0 and the Einstein frame temperature is T = e
2

D−2 φ (D)
T̂ , where φ (D) is the D-dimensional

dilaton. The supersymmetry is thus broken spontaneously at the scale T . We restrict our attention
to the intermediate era between the Hagedorn phase transition [13] and the electroweak phase
transition, so that Mstring� T � ΛEW.

To build phenomenologically viable models however, it is necessary to also include zero tem-
perature spontaneous supersymmetry breaking. Otherwise as the temperature drops during the
cosmological evolution, the supersymmetry broken by temperature will be restored. The case with
another Scherk-Schwarz reduction performed in one of the internal dimensions is intensively stud-
ied in Refs. [9], where it is shown that the supersymmetry breaking scale MSUSY induced in this
internal dimension evolves proportionally with T . It is expected that by the end of the intermediate
era, when T approaches ΛEW, the radiative corrections induced by infrared effects start to desta-
bilize the Higgs potential, freezing MSUSY at about O(1)TeV order. This gives an account of the
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hierarchy MSUSY�MPlank .
The breaking of supersymmetry generates a nontrivial vacuum-vacuum amplitude, which we

compute at one-loop level, supposing that the string theory is at weak coupling. This amplitude is
just the thermal partition function of the string gas computed up to one-loop level, which we denote
by Z. It gives rise to the free energy density by F =− Z

βV , (V the space volume in Einstein frame).
The back-reaction of F on the spacetime background is dictated by the one-loop effective action

S =
∫

dDx
√
−g
[R

2
− 1

2
FMN∂Φ

M
∂Φ

N−F
(
T,~Φ

)]
, (1.1)

where ΦM are the moduli, and the metric components FMN are functions of these moduli. Since F

appears in the action as the effective potential, moduli attractors should be its local minima.
It can be shown that when we only have temperature breaking of supersymmetry, the free

energy density takes the form [6]:

F (T,~Φ) =−
∫

∞

0

d`
2`

1

(2π`)
D
2
∑

s
e−

1
2 Ms(~Φ)2`

∑
k0∈Z

e−
(2k0+1)2

2T 2` =−T D
∑

s
G
(
Ms(~Φ)/T

)
, (1.2)

where Ms is the tree-level mass of the s-th string state, which can depend on the moduli. The func-
tion G(x) is defined in terms of the modified Bessel function of the second kind (see [6] for more
details). It peaks at x = 0 and is exponentially suppressed at large x. Therefore only light states give
significant contribution to F . By consequence the local minima of F appear at the vacuum ex-
pectation values (VEV’s) of ~Φ where some massive states in the string spectrum become massless.
These states can originate either from the perturbative spectrum or from non perturbative objects
such as D-branes. String-string dualities can help figure out the non perturbative contribution.

The local minima of F induce time-dependent scalar masses, instead of constant ones. This
ensures that the universe is radiation dominated at the exit of the intermediate era, which is crucial
to the resolution of the cosmological moduli problem. In order to show this, we take the flat
Robinson-Walker metric ds2 = −dt2 + a(t)2d~x2 (in the Einstein frame). Solving the equations of
motion about a local minimum of F , say ~Φ0, we obtain the following time evolution of the scale
factor, the temperature, and the total energy density:

a(t) ∝ 1/T (t) ∝ t2/D, ρtot ∝ H2
∝ a−D. (1.3)

The coherent moduli field oscillations obey the equation

ε̈
M +(D−1)H ε̇

M +Λ
M
Nε

N = 0, (1.4)

where we let ~Φ =~Φ0+~ε , and we have the squared-mass matrix ΛM
N =

(
FMPFPN

)
~Φ0

, with FPN :=
∂ 2F

/
∂ΦPΦN , and FMN the inverse of FMN . Using Eq.(1.2) one can show that ΛM

N ∝ T D−2.
Thus with Eq.(1.4) we have the usual scalar dynamics, but with scalar masses depending on
the temperature, hence on time. This results in the late-time scalar oscillation behavior ε ∼
t−1/2 sin

(
λ t2/D + phase

)
, instead of t1/D−1 sin

(
λ t + phase

)
for constant mass, where λ 2 is some

eigenvalue of the squared-mass matrix. Therefore the energy density stored in the scalar oscilla-
tions behaves asymptotically as

ρΦ =
1
2

FMN
∣∣
~Φ0

ε̇
M

ε̇
N ∼ t

4
D−3

∝ a2−3D/2, (1.5)
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while the result for the case of constant scalar mass is ρΦ ∼ a1−D which obviously dominates
over the radiation energy ρrad ∼ a−D for any spacetime dimension. Back to the case of dynamical
mass, where Eq.(1.5) holds, when D ≥ 5, the universe is radiation dominated, since compared
to Eq.(1.3), we have ρΦ� ρtot. However D = 4 is a marginal case where even though the metric
evolution appears as that of a radiation dominated universe (ρtot ∝ H2 ∝ a−4), the energy of coherent
scalar oscillations is not dominated. Instead, it takes up a constant portion in the total energy
(ρtot ∝ ρΦ ∝ a−4). This is due to the over-simplified supersymmetry breaking mechanism that we
adopt here. It is shown in [9] that the D = 4 case is also radiation dominated once an additional
source of spontaneous supersymmetry breaking is introduced in the internal space.

In the following, we investigate the cosmology induced by two specific string models: the
maximally supersymmetric heterotic strings and the Calabi-Yau (CY) compactification of type II
strings.

2. Heterotic cosmology and type I dual

We start with the cosmology induced by weakly coupled SO(32) heterotic strings compacti-
fied on a factorized torus ∏

9
i=D S1(Rhi), where the subscript h indicates heterotic quantities. The

model have maximal number of supersymmetry, so that the metric (FMN) in Eq.(1.1) is exact at
tree level. Let the moduli space be coordinatized by the D-dimensional dilaton φ

(D)
h := φ

(10)
h −

1
2 ∑

9
i=D ln(2πRhi) and all the internal radii Rhi with i = D, . . . ,9. Computing the thermal one-loop

amplitude, we find that when all radii satisfy |Rhi− 1/Rhi| < 1/(2πRh0), i = D, ...,9, the corre-
sponding free energy density takes the form [6]:

Fh =−T D

{
n0 cD +

9

∑
i=D

n1 G
(

2πRh0

∣∣∣ 1
Rhi
−Rhi

∣∣∣)+O(e−2πRh0)

}
, (2.1)

where the coefficients n0 and n1 are positive, associated to the counting of states. The first term
in the above expression is from massless states. The second term involving the G-function shows
that Fh reaches a local minimum at the self T-dual point Rhi = 1 (i = D, . . . ,9), due to the states of
masses

∣∣ 1
Rhi
−Rhi

∣∣. These are just the non Cartan components responsible for the gauge symmetry
enhancement U(1)→ SU(2) in each internal circle. In fact in heterotic strings, the correspondence
between the enhancement of gauge symmetry and the local extrema of the free energy is true to
all loop levels [14]. Therefore the internal radii can all be stabilized at the value 1 where we have
SU(2)10−D enhanced symmetry. Moreover for D ≥ 5, the string coupling λ

(D)
h = eφ

(D)
h freezes on

the flat direction to some constant value determined by the initial conditions. For D = 4, the dilaton
φ
(4)
h does not converge to a constant but instead decreases logarithmically with the cosmological

time.
We switch to the dual type I picture. If we perform naive perturbative computation ZI =

T +K +A +M to obtain the free energy density, we will find no local minimum of FI, since no
perturbative effect can lead to gauge symmetry enhancements in maximally supersymmetric type
I strings. We thus seek to include non perturbative effects which can be inferred from heterotic
strings through string-string S-dualities. In dimension D, the duality dictionary for Einstein frame
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quantities is [15]

Rhi =
RIi√

λI
≡ RIi

e−
1
2 φ

(D)
I(

∏
9
j=D 2πRI j

)1/4 , i = 0 or D, ...,9,

φ
(D)
h =−D−6

4
φ
(D)
I − D−2

8

9

∑
i=D

ln(2πRIi) ,

(2.2)

where λI is the type I string coupling in ten dimensions. When applying this duality map, the het-
erotic states that induce the local minimum in Eq.(2.1) are sent to non perturbative states of masses∣∣∣ 1

Rhi
− Rhi

λI

∣∣∣ on the type I side. From the type I point of view, they have the natural interpretation as D

(or anti-D)-strings wrapped once along the circles S1(RIi), with one unit of momentum. Therefore
when all radii satisfy

∣∣∣ 1
RIi
− RIi

λI

∣∣∣ < 1
2πRI0

, they are attracted to RIi =
√

λI, where we have the en-

hanced gauge symmetry SU(2)10−D due to D-string states. The type I dilaton freezes somewhere
along its flat direction just as its heterotic dual except for D = 6 where it is stabilized while the
internal space volume ∏

9
i=D(2πRIi) freezes along a flat direction. This is because in D = 6 the

duality map Eq.(2.2) exchanges internal volumes and string couplings. Another subtlety arising
from Eq.(2.2) is that, since the heterotic theory is always in the weak coupling regime, the type I
dual is strongly coupled for D > 6 and weakly coupled for D < 6. However our result is still valid
at small coupling for D > 6 since the D-string states, responsible for the stabilization of RIi, are
BPS states whose masses are protected by supersymmetry.

The D-string state contribution can also have an E1-instanton interpretation, following the
lines of Refs. [16]. For simplicity, we consider the compactification on S1(RI9). This contrasts the
zero temperature case where E1-instantons arise for D≤ 8. Starting from the heterotic side, we can
easily express the thermal partition function as a sum over worldsheet instantons. When sending
this heterotic result to the type I side using the dictionary (2.2), the corresponding type I partition
function contains a sum of E1-instantons, which is explicitly [6]

ZE1
I =

V̂ (10)
I

(2π)10 2 ∑
E1instantons

s0
e

2iπ
λI

ϒI

ϒI2 Y 4
I2

4

∑
n=0

[
αn

(2πϒI2)n ∑
Ā≥−1

bĀ

(
1
λI

+ Ā
YI2

ϒI2

)4−n

e2iπYIĀ

]
+ c.c.+O(e

−4π
RI0√

λI ),

(2.3)

with the Kähler and complex structure moduli ϒI and YI of the torus S1(RI0)×S1(RI9)ϒI = iϒI2 = i(2k̃0 +1)RI0 ·n9RI9

YI = YI1 + iYI2 =
m̃9

n9 + i
(2k̃0 +1)RI0

n9RI9

, n9 > m̃9 ≥ 0 , k̃0 ≥ 0. (2.4)

This result suggests it possible to derive from a pure type I point of view the free energy responsible
for the stabilization of the internal moduli.

We can further consider generic toroidal compactifications, where all possible moduli are
switched on. On the heterotic side, these moduli include the dilaton φ

(D)
h , the internal metric

g(h)i j , the internal antisymmetric tensor B(h)
i j , and the Wilson lines Y I

(h)i, where i, j = D, . . . ,9 and
I = 10, . . . ,25. Again, all moduli except the dilaton are attracted to the values associated to some

5
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enhanced gauge symmetry, where Fh is minimized locally. In the dual type I picture, moduli
stabilization is inferred from the heterotic side through the dictionary

φ
(D)
h =−D−6

4
φ
(D)
I − D−2

8
ln
√

g(h),

g(h)i j =
g(I)i j

λI
, B(h)

i j =Ci j, Y I
(h)i = Y I

(I)i.

(2.5)

where Ci j is the Ramond-Ramond 2-form. The subtlety is that now the dual type I moduli are
stabilized by either non perturbative D-string states in the closed string sector or perturbative states
in the open string sector. For D 6= 6, all type I moduli are stabilized except the dilaton, and for
D = 6 however, the dilaton is stabilized while the internal volume freezes on a flat direction.

As an explicit example, we examine the case of compactification on T 2, where we have on the

heterotic side, the moduli T = B89 + i
√

ĝ88ĝ99− ĝ2
89, U =

(
ĝ89 + i

√
ĝ88ĝ99− ĝ2

89

)
/ĝ88 and the

Wilson lines Y I
i (i, j = 8,9; I = 10,11, . . . ,25). The mass formula for perturbative F-string states is

M̂2
A,~m,~n,~Q

(T ,U ,Y )=
1

T2U2

∣∣∣∣−m8U +m9+ T̃ n8+
(
T̃ U − 1

2
W IW I

)
n9+W IQI

∣∣∣∣2+4A, (2.6)

where W I := U Y I
8 −Y I

9 and T̃ := T + 1
2Y I

8 W I , ~m,~n are the internal momenta and winding num-
bers, and QI the root vector of the internal lattice ΓO(32)/Z2 . Using the mass formula we can figure
out moduli attractors where there are states becoming massless. The enhanced gauge group can be
determined from the Narrain lattice formed by the right-moving internal momenta of these states.
For example we have the local attractor with SU(3)×SO(32) enhanced symmetry, where the mod-
uli are stabilized at Y I

i = 0, T = U = 1
2 + i

√
3

2 . Another less trivial example is the attractor with
SU(2)×SO(34) enhanced symmetry, where the moduli are attracted to T =U = i/

√
2, Y I≥10

8 = 0
and Y 10

9 =−Y 11
9 =−Y 12

9 = · · ·=−Y 25
9 =−1/2. In the dual type I picture the moduli stabilization

follows from the dictionary (2.5).

3. Type II cosmology and heterotic dual

We turn to models with less supersymmetry. We consider cosmology in type II strings com-
pactified on a Calabi-Yau (CY) three-fold M of Hodge numbers (h11,h12). The moduli space is a
Cartesian product MV ×MH . The vector multiplet moduli space MV of complex dimension h11 is
a special Kähler manifold, which is exact at tree level, because the dilaton lives in a hypermultiplet.
The hypermultiplet moduli space MH of real dimension 4(h12 + 1) is a quaternionic manifold,
which contains the universal hypermultiplet accommodating the dilaton. Therefore MH is sub-
jected to perturbative and non perturbative corrections. When M is a K3 fibration, a dual heterotic
string theory can exist, compactified on K3×T 2. The string-string duality sends the type II vector
multiplet moduli to the heterotic vector multiplet moduli and the same is true of the hypermultiplet
moduli. Thus the stabilization of heterotic moduli can be inferred from the stabilization of the dual
type II moduli.

On the type II side, the moduli space develops singular loci when the internal CY space un-
dergoes extremal transitions. At these loci, some 2-cycles or 3-cycles in the CY space shrink to
zero size, giving rise to a singular three-fold. This can lead to conifold transitions or non Abelian
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gauge symmetries, with extra massless states appearing in the low-energy spectrum. Nonsingular
CY three-folds can be recovered by restoring the shrinking 2-cycles or 3-cycles to finite size. In
the following analysis, we adopt the type IIA description, and suppose that the desingularization
by restoring 2-cycles is always available. Indeed only in this case can we write down the effective
gauge theory, following the analysis in [17, 18].

At the conifold locus, let R 2-cycles in the CY space M, spanning an S-dimensional subspace
of homology, shrink to separated nodes. Locally, R monopole states become massless, described
by R hypermultiplets charged under S U(1)-vector multiplets [17]. When R > S, we can deform
the shrinking 2-cycles into 3-cycles and obtain a topologically different CY space M′. The change
in Hodge numbers is

h11(M′) = h11(M)−S, h12(M′) = h12(M)+R−S. (3.1)

Near the non Abelian locus, N−1 homologically independent 2-cycles, with the intersection matrix
the Cartan matrix of AN−1, shrink to zero size along a smooth curve C of genus g. By the arguments
in [18], N2−N vector multiplets and g(N2−N) hypermultiplets become massless, giving rise to
the gauge symmetry enhancement U(1)N−1 → SU(N) with g hypermultiplets transforming in its
adjoint representation. When g > 1, we can construct a topologically different CY space M′′ by
deforming all shrinking 2-cycles into 3-cycles. The change in Hodge numbers is

h11(M′′) = h11(M)− (N−1), h12(M′′) = h12(M)+(g−1)(N2−N)− (N−1). (3.2)

In both cases, the low energy effective theory about the singular loci containing all light fields is
described by a gauged N4 = 2 supergravity theory. Desingularizing the CY space by restoring the
shrinking 2-cycles (3-cycles) corresponds to sitting in the Coulomb (Higgs) branch of the gauge
theory. Therefore by our setup, the Coulomb branch must exist. The scalar fields in the light
vector multiplets span a special Kähler manifold which contains MV , and we denote its special
coordinates by {X I}, I = 1, . . . ,nV . The scalar fields in the light hypermultiplets span a quater-
nionic manifold which contains MH , and we let its real coordinates be {qΞ}, Ξ = 1, . . . ,4nH . Here
nV ≥ h11 and nH ≥ h12 +1 are respectively the total number of light vector multiplets and light hy-
permultiplets. These scalar fields are divided into two groups: those participating in the extremal
transition whose VEV’s characterize the deformation of the vanishing cycles, and the rest which
are spectators to the extremal transition. We then let gIJ̄ = gIJ̄(X

K) and hΛΣ = hΛΣ(qΞ) be the spe-
cial Kähler metric and quaternionic metric. Due to the gauging, a scalar potential is generated. The
supergravity action is now regular in the neighborhood of singular loci since the inclusion of all
light states repairs the IR divergences.

Attraction to conifold transition loci

Near the conifold locus, the scalar fields participating in the extremal transition are those in
the vector multiplets of U(1)S, X i (i = 1, . . . ,S), and those in the R hypermultiplets charged under
U(1)S, qA u (A = 1, . . . ,R; u = 1,2,3,4). The conifold locus can be represented by X i = 0 = qA u

with suitable choice of parametrization. For simplicity we switch off the spectator scalar fields.
In the neighborhood of the conifold locus, by performing power expansion in X i and qA u and

7
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imposing U(1)S-isometry, we obtain the scalar part of the supergravity action to the lowest order
[7]:

S =
1

κ2
(4)

∫
d4x
√
−g
[1

2
R−gī ∂X i

∂ X̄ j−∇QA †
∇QA

−g2
c eKV ∑

i, j

(
4 ∑

A

QA
i QA

j X̄ iX j QA †QA +gī~Di·~D j

)]
, (3.3)

where QA
i is the charge of the A -th monopole under the i-th U(1), gc the gauge coupling constant.

The Kähler potential KV , the special Kähler metric and the quaternionic metric in the above action
are constant, taking their values at the conifold locus. Also we have defined the SU(2)R doublet
and the D-term:

QA =

(
−qA 2 + iqA 1

qA 3 + iqA 4

)
, ~Di = ∑

A

QA
i QA †~σQA . (3.4)

The action (3.3) describes an N4 = 2 supersymmetric Abelian gauge field theory formally coupled
to gravity. We show that moduli are attracted to the conifold locus whether starting in the Coulomb
branch or the Higgs branch.
• In the Coulomb branch, corresponding to the compactification on M, X i (i = 1, . . . ,S) obtain
nonzero VEV’s, while qA u (A = 1, . . . ,R; u = 1,2,3,4) have zero VEV. Thus the VEV’s of X i

form S of the h11(M) Kähler moduli, parameterizing the Coulomb branch vacua together with the
moduli fields which are spectators to the conifold transition. The free energy density is [7]

F =−T 4
[
n0 +∑

s
nsG
(Ms

T

)]
+O

(
e−

Mmin
T
)
, (3.5)

where n0 and ns count respectively the massless states and the light monopole states. Also Mmin is
the minimum mass of the states which never become massless in the neighborhood of the conifold
locus. We let the temperature be much lower than this mass, T � Mmin, so that the contribution
from massive states is exponentially supressed. In the argument of the G-function, Ms is the tree-
level mass of the s-th light monopole state, which has the behavior Ms ∼ O(X i). Therefore at the
conifold locus where X i = 0, the free energy density reaches its local minimum. Thus the S Kähler
moduli X i are attracted to the conifold locus.
• In the Higgs branch, corresponding to the compactification on M′, qA u (A = 1, . . . ,R; u =

1,2,3,4) have nonzero VEV’s subjected to the constraints ~Di = 0 modulo gauge orbits, so that
they parameterize R−S of the h12(M′)+1 quaternionic directions in the complex structure moduli
space. On the other hand, the VEV’s of X i vanish, and the vector multiplets containing X i absorb S
hypermultiplets to form S long massive vector multiplets. The free energy density takes the same
form of Eq.(3.5), with Ms ∼ O(qA u). Thus the 4(R− S) hypermultiplet moduli qA u are attracted
to 0, corresponding to the conifold locus in the Higgs branch.

Attraction to non Abelian loci

Near the non Abelian locus the scalar fields relevant to the extremal transition are those in
the SU(N)-vector multiplet, Xa (a = 1, . . . ,N2−1), as well as those in the g hypermuliplets in the

8
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adjoint of SU(N), qaA u (A = 1, . . . ,g; u = 1,2,3,4), and we suppose g > 1.1 The non Abelian loci
can be parameterized as Xa = 0 = qaA u. Expanding in powers of Xa and qaA u, imposing SU(N)

isometry, we obtain the bosonic part of the supergravity action to the lowest order [7]:

S=
1

κ2
(4)

∫
d4x
√
−g
[1

2
R− l2

∇Xa
∇X̄a−∇Qa†

A ∇Qa
A

−g2
c eKV

{
l2[X , X̄ ]2 +4[X̄ ,qA u]a[qA u,X ]a + l−2~Da ·~Da}], (3.6)

where l is a nonzero constant. The SU(2)R doublet Qa
A and the D-term ~Da are defined as

Qa
A =

(
−qaA 2 + iqaA 1

qaA 3 + iqaA 4

)
, ~Da = ∑

A ,b,c
i f abcQbA †~σQcA , (3.7)

where f abc are the structure constants of SU(N). The action (3.6) thus describes an N4 = 2 SU(N)

super Yang-Mills field theory formally coupled to gravity. We show that moduli can be attracted to
the non Abelian locus from either the Coulomb branch or the Higgs branch.
• In the Coulomb branch, corresponding to the compactification on M, all Cartan components X â

and qâA u (â = 1, . . . ,N−1; A = 1, . . . ,g; u = 1,2,3,4) acquire nonzero VEV’s, while all the non
Cartan components vanish. Therefore X â form N− 1 of the h11(M) Kähler moduli, while qâA u

form 4g(N− 1) of the 4h12(M)+ 4 complex structure moduli. The free energy density takes the
form of Eq.(3.5) with Ms ∼ O

(
X â,qâA u

)
. Therefore the non Abelian locus where X â and qâA u

vanish is the local minimum of the free energy density. By consequence, X â and qâA u are attracted
to the non Abelian locus.
• In the Higgs branch, corresponding to the compactification on M′′, qaA u (a = 1, . . . ,N2−1; A =

1, . . . ,g; u = 1,2,3,4) have nonzero VEV’s satisfying the constraint ~Da = 0 modulo gauge orbits,
and they form 4(g−1)(N2−1) of the 4h12(M′′)+4 complex structure moduli. The scalars in the
SU(N)-vector multiplet Xa vanish. The SU(N)-vector multiplet absorbs one hypermultiplet in the
adjoint of SU(N) and becomes a long massive vector multiplet. The free energy density is of the
form Eq.(3.5), with Ms ∼ O

(
qaA u

)
. Thus the (g−1)(N2−1) complex structure moduli qaA u are

attracted to 0, corresponding to the non Abelian locus in the Higgs branch.

An example: stabilization at intersections of extremal transition loci

We analyze a 2-parameter example with heterotic dual, where the internal CY space is M ∈
P4
(1,1,2,2,6)[12](2,128). Its mirror is defined by [19]

x12
1 + x12

2 + x6
3 + x6

4 + x2
5−12ψ x1x2x3x4x5−2φ x6

1x6
2 = 0. (3.8)

The complex coefficients φ and ψ are the two Kähler moduli (from the type IIA point of view). This
model has at once a conifold locus with R = S = 1, and an SU(2)-non Abelian locus with g = 2.

1When g = 0, the pure SU(N) gauge theory has UV freedom, and is Abelian in the IR with the gauge group
U(1)N−1. This situation can be regarded as an example of the conifold case with S = N−1 and R = 0. For g = 1, the
SU(N)-vector multiplet and the only hypermultiplet in the adjoint representation combine into an N = 4 gauge sector.
This case is conformal and is already dealt with in Sec.2.
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The latter leads to a Higgs branch corresponding to the CY space M′′ ∈ P5
(1,1,1,1,1,3)[2,6](1,129).

These singular loci are defined by the vanishing of [19]

∆ = ∆c×∆s =
(
(1− z1)

2−4z2
1zs
)
×
(
1−4zs

)
, (3.9)

where ∆c = 0 defines the conifold locus, and ∆s = 0 the non Abelian locus, with z1 = − 1
864

φ

ψ6 ,

zs =
1

4φ 2 a reparametrization of the Kähler moduli. The two singular loci intersect at two points:(
z1,zs

)
=
(1

2 ,
1
4

)
and

(
∞, 1

4

)
, which are the favored points of moduli stabilization, since there is a

maximal number of massless modes at these points. Thus sitting in the Coulomb branch, we can
lift the whole Kähler moduli space and 2 of the 128+1 quaternionic flat directions in the complex
structure moduli space. Also in the Coulomb branch, the heterotic dual compactified on K3×T 2

exists [20]. Therefore we can infer from the type II side the stabilization of the dual heterotic
moduli. Especially since the whole vector multiplet moduli space is lifted, the heterotic dilaton,
living in a vector multiplet, can be stabilized.

4. Summary and perspectives

We have studied moduli stabilization by thermal effects in the cosmological context. The
breaking of supersymmetry generates a thermal free energy at one-loop level. The moduli are
attracted to its local minima, where extra massless modes appear in the low energy spectrum. These
extra massless states can either be perturbative or non perturbative. The scalar masses induced by
such thermal effect are time-dependent, which ensures that the universe is radiation dominated at
the exit of the intermediate era, so that the cosmological moduli problem does not arise.

Detailed analysis is carried out first to maximally supersymmetric heterotic strings in the weak
coupling regime. It is reported for spacetime dimension D ≥ 4 that all moduli except the dilaton
are stabilized at enhanced gauge symmetry points, where the extra massless states are perturbative.
Additionally for D ≥ 5, the dilaton is frozen somewhere in the flat direction, while for D = 4, it
has a logarithmic behavior. Passing to the dual type I picture using the S-duality, one finds that
for D = 4,5 (D≥ 7), all the internal type I moduli can be stabilized in the weak (strong) coupling
regime, with the dilaton frozen somewhere in the flat direction. However for D = 6, where the
S-duality map exchanges the heterotic (type I) dilaton with the type I (heterotic) internal volume,
the internal volume is frozen in the flat direction and all other moduli including the dilaton are
stabilized. The extra massless states are either non perturbative D-string states or perturbative open
string states.

Another model studied is the type II strings compactified on CY three-folds. The moduli space
admits particular loci where 2-cycles or 3-cycles in the internal CY manifold shrink to zero size,
leading to conifold transition or non Abelian gauge symmetry. Extra massless N4 = 2 supermulti-
plets arise at these loci, inducing local minima to the one-loop free energy. The analysis is based
on writing out the full effective action without integrating out the extra light states, so that the
action is free of IR divergences. As a result, all type II moduli characterizing the deformation of
the shrinking cycles are stabilized. More generally, the favored points in the moduli space are the
intersection points of several such loci. An explicit example is given where moduli are stabilized
at the intersection of a conifold transition locus and a non Abelian locus, where the entire Kähler

10
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moduli space is lifted. This implies in the dual heterotic picture that all vector multiplet moduli are
stabilized, including the heterotic dilaton.

More work can be carried out on models with N4 = 1 supersymmetry, for instance, the type
II models compactified on generalized CY spaces [21] including fluxes, branes and/or orientifold
projections. As mentioned in the introduction, realistic models require a zero temperature sponta-
neous supersymmetry breaking mechanism, so that the N4 = 1 supersymmetry remains broken at
low temperature. Thus it would be of interest to extend the orbifold model results in Refs. [9] to
the context of generalized CY compactifications. Moreover, toroidal compactifications of type II
strings in the presence of “gravito-magnetic” fluxes lead to thermal models free of Hagedorn-like
divergences, and the induced cosmology has no initial singularity [13]. Therefore we can inves-
tigate the implementation of gravito-magnetic fluxes in the (generalized) CY compactifications,
hopefully to obtain a theoretical framework giving a full account for both primordial and late-time
universe.
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