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We show how to embed a theory with the Z′ boson (gauge boson of extra U(1) gauge group)
into a GUT theory based on SO(10). Two embeddings with two different sequences of SO(10)
breaking are shown. Unification of gauge coupling constants provides constraints on the mass of
the Z′ boson and on the low energy values of two additional gauge coupling constants related to
Z′ interactions with fermions. Analytic formulas for these constraints have been derived at 1-loop
level. Unification constraints are compared to the latest results from the LHC and electroweak
precision tests (EWPT).
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1. Introduction

The minimal Z’ model is a model with the gauge group GSM⊕U(1), where GSM is the Standard
Model Gauge Group. It can be also written as SU(3)c⊕ SU(2)L⊕U(1)2. The word "minimal"
means, that no fermions, which are additional with respect to the SM (except for RH-neutrinos),
are needed for anomaly cancellation. This is possible only when the U(1)2 algebra is spanned by
the weak hypercharge (Y ) and B−L generators. The Z’ boson is by definition the gauge boson of
additional U(1) gauge group.

The model has three basic parameters, additional with respect to the SM - the mass of the Z′

boson - MZ′ and two additional gauge coupling constants - g′B−L and gB−L. In the general class
of Z′ models, they are free parameters, that are constrained only by experiments (the LHC and
electroweak precision tests from LEP). After embedding a Z′-model into a GUT model, unification
of gauge coupling constants provides additional constraints. They can be added to experimental
ones, which allowes to obtain a lower limit for MZ′ for each type of embedding.

The paper is organized as follows. Section 1 contains basic information about minimal Z′

models including the Standard Parametrization. In Section 2 we show two specific, supersymmetric
SO(10)-GUT models, that contain minimal Z’ models as the low-energy limits. Each of them is
based on a different pattern of gauge symmetry breaking. Section 3 is dedicated to the procedure of
obtaining constraints on couplings g′B−L and gB−L from analytic, 1-loop solutions of gauge RGE.
Results of this procedure, applied to models 1 and 2, are compared with experimental constraints
in Section 4. Then, we conclude in Section 5.

2. Minimal Z’ models - formalism and Standard Parametrization

The most useful form of the Lagrangean for a theory with unbroken U(1)2 gauge symmetry
contains the following, abelian part

Labelian = −1
4 Fµν

a Faµν + i∑ f Ψ̄ f γµ

(
∂ µ − i(XT ) f

aGabAµ

b

)
Ψ f

+∑s
[
∂ µϕs− i

(
(XT )s

aGabAµ

b

)
ϕs
][

∂µϕ∗s + i
(
(XT )s

cGcdAµd
)

ϕ∗s
] (2.1)

Small latin index s denotes a single complex scalar field. Analogicaly, small latin index f denotes
a single fermionic (Weyl) field. Ψ f is a chiral field (left-handed or right-handed) in Dirac notation.
Small Latin indeces a,b,c,d ∈ {1,2} are related to the U(1)2 algebra. Aµ

a denotes an abelian gauge
field, Fµν

a = ∂ µAν
a −∂ νAµ

a , Gab is an abelian gauge coupling constant, Xx
a and Xx

c are charges of a
single field x (s or f ).

There is large freedom of transformations, that preserve the form of the Lagrangean given in
eq. (2.1). Firstly, one can transform fields Aµ

a orthogonaly

Aν

a′ := Oa′bAν
b (2.2)

where Oa′b is an orthogonal matrix. Secondly, one can transform abelian generators Xa linearly

Xa′ := La′bXb (2.3)
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where La′b is a linear, invertable matrix. Gauge coupling matrix Gab transforms under eq. (2.2) and
(2.3) in the following way

Ga′b′ := (LT )−1
a′bGbaOT

ab′ (2.4)

One can use the above freedom to obtain the Standard Parametrization in a minimal Z′ model.

In this parametrization X =

[
Y

B−L

]
and the freedom given by O-transformations (2.2) is used to

demand G21 = 0

XT
a GabAµ

b = [Y,B−L]

[
g′ g′B−L

0 gB−L

][
B0 µ

Z′0 µ

]
(2.5)

As one can see, the gauge boson B0 couples only to weak hypercharge Y through the g′ coupling
constant, exactly like in the SM. One should remember, that Z′0 is not the final Z′ boson. Z′ is a
mass eigenstate, which is a linear combination of W 3, B0 and Z′0. The formula (2.5) is correct for
energy scales higher than MZ′ . Below this scale the U(1)2 symmetry is broken down to U(1)Y ,
so the Z′ boson is integrated out and g′B−L, gB−L are eaten by appriopriate, dimensionfull Wilson
coefficients of the effective theory.

3. Embedding Z’ models into SO(10) GUT models

In a GUT model, in which the GUT group is broken down to the Z’ gauge group (SU(3)c⊕
SU(2)L⊕U(1)2), there is a natural parametrization of the U(1)2 algebra - it can be spanned by ap-
priopriate, diagonal generators of the GUT group (let’s denote them X1̂ and X2̂). This parametriza-
tion is different, than the standard one, so one needs an appriopriate L-transformation (2.3) to relate
them to each other. Let’s choose two specific patterns of SO(10) breaking

Pattern I SO(10)
µ0−→ SU(5)⊕U(1)X

µ1−→ SU(3)c⊕SU(2)L⊕U(1)2 (3.1)

Pattern II SO(10)
µ0−→ SU(3)c⊕SU(2)L⊕SU(2)R⊕U(1)B−L

µ1−→ SU(3)c⊕SU(2)L⊕U(1)2

(3.2)
µ0 and µ1 denote scales of symmetry breaking. In Pattern I, when SO(10) is initially broken to
SU(5)⊕U(1)X , the relation between (X1̂,X2̂) basis and (Y,B−L) basis is the following

Pattern I

[
X1̂
X2̂

]
=

[
Ŷ
X

]
=

[ √
15
5 0
−
√

10
5

√
10
4

]
·

[
Y

B−L

]
(3.3)

As we can see, the weak hypercharge Y is rescaled to Ŷ just like in the minimal GUT model, based
on SU(5)[1],[2]. When SO(10) is initially broken to SU(3)⊕ SU(2)L⊕ SU(2)R⊕U(1)B−L, the
relation between (X1̂,X2̂) basis and (Y,B−L) basis is the following

Pattern II

[
X1̂
X2̂

]
=

[
R

B̂−L

]
=

[
1 −1

2

0
√

6
4

]
·

[
Y

B−L

]
(3.4)

R is the third (diagonal) generator of SU(2)R and B̂−L is the appriopriately rescaled B− L. In
both patterns the intermediate group (SU(5)⊕U(1)X or SU(3)⊕SU(2)L⊕SU(2)R⊕U(1)B−L) is
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broken down to the Z’ gauge group, which is then broken down to the SM group at the scale of
MZ′ . We consider two specific, supersymmetric models.

Model 1 is based on Pattern I and its higgs sector contains (chiral) 210, 54, 126, 126 and 10 of
SO(10). These representations aquire VEVs, that realize pattern I in the following way:

Model 1 SO(10) 210−→ SU(5)⊕U(1)X
2454−→ SU(3)c⊕SU(2)L⊕U(1)2 (3.5)

and then

SU(3)c⊕SU(2)L⊕U(1)2 χ126+126−→ SU(3)c⊕SU(2)L⊕U(1)Y
h10−→ SU(3)c⊕U(1)EM (3.6)

2454 is 24 of SU(5), which is embedded in 54 of SO(10). χ126+126 is the U(1)2-breaking higgs.
It’s a linear combination of two SM-singlets - χ− and χ+, that are parts of 126 and 126 of SO(10)
respectively. h10 is the standard higgs, embedded in 10 of SO(10).

Model 2 is based on Pattern II and its higgs sector contains two 45s, 126, 126 and 10 of
SO(10). These representations aquire VEVs, that realize pattern II in the following way:

Model 2 SO(10) 45−→ SU(3)c⊕SU(2)L⊕SU(2)R⊕U(1)B−L
[1,1,3]45−→ SU(3)c⊕SU(2)L⊕U(1)2

(3.7)
The higgs denoted by [1,1,3]45 is a singlet under SU(3)c⊕SU(2)L and triplet under SU(2)R, that
is embedded in 45 of SO(10). Further symmetry breakings are the same as in Model 1. Moreover,
in both models, all SM fermions (and their superpartners) are embedded in three chiral 16’s of
SO(10)[3].

We assume, that MSSM-fields, RH-neutrinos, χ−, χ+ and superpartners of all these fields are
relatively light with masses below the µ1 scale. They will be called "light" fields. All other fields
are heavier and have masses between µ1 and µ0 scales. These assumptions are adopted for both
considered models.

4. Low energy analytic constraints from 1-loop unification
of gauge coupling constants

At one-loop there are analytic RGE-solutions for all non-abelian and also abelian gauge cou-
pling constants [4]. Solutions expressed in the basis of Xâ generators are therefore explicitly equiv-
alent to solutions writen in the low-energy basis. In this section analytic solutions of 1-loop gauge
RGE are used to derive approximate low-energy constraints on additional abelian gauge coupling
constants and treshold mass parameters.

Analytic 1-loop solution of RGE for a non-abelian gauge coupling constant αA = 1
4π

g2
A is well

known

α
−1
A (µx) = α

−1
A (µy)−

bA

2π
ln
(

µx

µy

)
(4.1)

Finding analogical solution for abelian gauge coupling constants requires introducing an apprio-
priate analog of αA, which is the following matrix

ϑab =
1

4π
GacGT

cb (4.2)
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ϑab is O-invariant, but not L-invariant

ϑa′b′ = La′bϑbaLT
ab′ (4.3)

Obtaining analytic 1-loop solution of RGE for abelian gauge coupling constants requires inverting
the ϑab matrix

ϑ
−1
ab (µx) = ϑ

−1
ab (µy)−

bab

2π
ln
(

µx

µy

)
(4.4)

µx and µy are some energy scales (µx ≥ µy). One can apply La′b transformation to matrices in
formula (4.4) (and to the whole formula itself) to write them in different basis of Xa′ generators. In
particular, in the Standard Parametrization ϑ

−1
ab has the following form

ϑ
−1
ab = 4π

 1
g′2 −g′B−L

gB−L

1
g′2

−g′B−L
gB−L

1
g′2

1
g2

B−L
+
(

g′B−L
gB−L

)2
1

g′2

 (4.5)

Moreover, in the (X1̂,X2̂) basis, at the µ1 scale, Gab-matrix has to be diagonal, so matrices ϑab and
ϑ
−1
ab also have to be diagonal.

Analytic solutions of type (4.1) and (4.4) should be modified by including treshold correc-
tions. System of all these equations should be also supplemented with unification conditions and
inequalities, that originate from various constraints (perturbativity, µ0 ≤ MPl , non-observation of
proton decay[5], etc.). Masses of "light" fields are additionaly constrained. Effective treshold mass
parameters, which are weighted (weights proportional to dynkin indeces), geometrical averages of
these masses, are assumed to be larger than 1 TeV and smaller than 10 TeV. This range has been
chosen to cover typical values of the SUSY-breaking scale TSUSY , which can be identified with one
of effective treshold mass parameters (we have chosen the one, that affects the running of g′). It’s
important, whether TSUSY is larger or smaller than MZ′ , so these two cases are considered separately.

In both cases, after collecting all constraints into one big system of equations and inequalities,
one can use all equations to eliminate some unwanted parameters. The result is a system, that
contains only inequalities with smaller number of parameters. For a given value of MZ′ and in
appriopriate coordinates, it defines the allowed multidimensional polyhedron in the parameter-
space. One can project this polyhedron to the 2D-plane spanned by g′B−L and gB−L only (values at
the MZ′-scale). Results of this procedure for Models 1 and 2 are shown in the next section.

5. Comparison between theoretical and experimental constraints

Important experimental constraints on the minimal Z’ model are currently provided not only
by the LHC, but also by electroweak precision tests (EWPT) made in LEP. They have been shown
as constraints on g′B−L and gB−L for different values of MZ′ in [4]. We follow the convention of this
paper and divide g′B−L and gB−L by gZ (taken at the MZ-scale)

g̃′B−L =
g′B−L

gZ
g̃B−L =

gB−L

gZ
(5.1)

The crucial LHC data are taken from the 95% C.L. exclusion plot published by ATLAS collabora-
tion [6]. It shows an upper limit for the total cross-section in the Z′ −→ l+l− channel, where l is
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Figure 1: Experimental constraints on g̃′B−L and g̃B−L for MZ′ equal to 1.6 TeV (left plot), 1.8 TeV (middle
plot) and 2 TeV (right plot). Blue and violet regions are allowed by ATLAS. Dark orange and violet regions
are allowed by EWPT.

Figure 2: Comparison between unification constraints (blue region) and experimental ones (violet stripes)
on g̃′B−L and g̃B−L for Model 1 with MZ′ equal to 1.6 TeV (left plot), 1.8 TeV (middle plot) and 2 TeV (right
plot). The green square represents a small interval, which is allowed without taking into account treshold
corrections.

an electron or a muon. To obtain needed constraints, we calculated this cross-section in the leading
order in the narrow width approximation as a function of g̃′B−L and g̃B−L. Experimental constraints
from ATLAS and EWPT are shown in figure 1. The procedure, described in the previous section,
provides unification constraints on g̃′B−L and g̃B−L in Models 1 and 2. Results are shown in figures
2 and 3 respectively.

As we can see, for MZ′ = 1.6 TeV, Model 1 is strongly constrained and Model 2 is almost ex-
cluded by experiments. On the other hand, for MZ′ = 2 TeV experimental constraints are currently
too weak to exclude anything in Model 1 or any significant region in Model 2. The left plot of
figure 3 allows us to deduce, that the lower experimental bound on MZ′ in Model 2 is very close to
1.6 TeV. In Model 1, it’s definitely smaller, probably in the range 1.4−1.5 TeV.
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Figure 3: Comparison between unification constraints (blue region) and experimental ones (violet stripes)
on g̃′B−L and g̃B−L for Model 2 with MZ′ equal to 1.6 TeV (left plot), 1.8 TeV (middle plot) and 2 TeV (right
plot). The green circle represents a point, which is allowed without taking into account treshold corrections.

6. Conclusions

Constraints from Grand Unification decrease experimentally-allowed region of the parameter
space in minimal Z′ models. They can provide a lower bound on the MZ′ (like 1.6 TeV in Model
2). Treshold corrections are important. They give additional freedom, enlarging allowed region of
the parameter space. Methods presented in this paper can be used beyond minimal Z′ models [7],
unless there are three or more U(1)s at the same range of scales [8],[9].
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