
P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
2
8

Combining F-Term Hybrid Inflation With a
Peccei-Quinn Phase Transition

C. Pallis∗

Department of Physics, University of Cyprus,
P.O. Box 20537, Nicosia 1678, CYPRUS
E-mail: cpallis@ucy.ac.cy

We consider an inflationary model based only on renormalizable superpotential terms in which a
superheavy scale F-term hybrid inflation (FHI) is followed by a Peccei-Quinn (PQ) phase tran-
sition. We show that the field which triggers the PQ phase transition influences drastically the
inflationary dynamics and that the Universe undergoes a secondary phase of reheating after the
PQ phase transition. Confronting FHI with the current observational data we find that, for the cen-
tral value of the spectral index, the grand unification scale can assume its supersymmetric value
for more or less natural values for the remaining model parameters. On the other hand, the final
reheat temperature after the PQ phase transition turns out to be low enough to avoid the gravitino
problem.

Proceedings of the Corfu Summer Institute 2011
"School and Workshops on Elementary Particle Physics and Gravity"
September 4-18, 2011
Corfu, Greece

∗Speaker.

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:cpallis@ucy.ac.cy


P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
2
8

Combining FHI with a PQ Phase Transition C. Pallis

1. Introduction

In this talk, which is based on Ref. [1], we describe how we can achieve a cosmological
scenario in which a superheavy F-term hybrid inflation (FHI) is followed by a Peccei-Quinn phase
transition (PQPT) using two similar renormalizable superpotential terms. Below, we first briefly
review the basic ingredients of our construction in Sec. 1.1 and Sec. 1.2 and outline the structure
of our proposal in Sec. 1.3.

1.1 F-term Hybrid Inflation

One of the most natural, popular and well-motivated inflationary model is the supersymmetric
(SUSY) FHI [2, 3, 4]. It can be realized adopting the superpotential

WFHI = κS
(
Φ̄Φ−M2) , (1.1)

which is consistent with a continuous R-symmetry [3] under which

S → eiα S, Φ̄Φ → Φ̄Φ, WFHI → eiα WFHI. (1.2)

Here, S is a left-handed (LH) superfield, singlet under a grand unified theory (GUT) gauge group
G; Φ̄ and Φ is a pair of LH superfields belonging to non-trivial conjugate representations of G, and
reducing its rank by their vacuum expectation values (v.e.vs); κ and M are parameters which can
be made positive by field redefinitions.

The SUSY potential induced by WFHI in Eq. (1.1) along the D-flat direction |Φ̄|= |Φ| is

VFHI = κ2 ∣∣Φ̄Φ−M2∣∣2 +κ2|S|2
(
|Φ̄|2 + |Φ|2

)
. (1.3)

WFHI gives rise to FHI, since there is a F-flat direction, with Φ̄ = Φ = 0 and constant potential
energy VF ≃ κ2M4, which is a local minimum of VF for S > M. Also, WFHI leads to the spontaneous
breaking of G, since the SUSY vacuum lies at

⟨S⟩= 0 and |⟨Φ̄⟩|= |⟨Φ⟩|= M, (1.4)

with the non-zero v.e.vs of Φ̄ and Φ developed along the Standard Model (SM) singlet directions.
One of the shortcomings of FHI is the tension which, in general, exists between the pre-

dicted (scalar) spectral index ns and the recent seven-year results [5] from the Wilkinson microwave
anisotropy probe (WMAP7) satellite. Indeed, it is well-known that the realization of FHI within
minimal Supergravity (SUGRA) leads to ns which is just marginally consistent with the fitting of
the WMAP7 data by the standard power-law cosmological model with cold dark matter and a
cosmological constant (ΛCDM). One possible resolution of this problem is [6] the addition to the
Kähler potential of a non-minimal quatric term of the inflaton field with a convenient choice of
its sign. As a consequence, a negative mass term for the inflaton is generated. In the largest part
of the parameter space, the inflationary potential acquires a local maximum and minimum. Then,
FHI of the hilltop type [7] can occur as the inflaton rolls from this maximum down to smaller val-
ues. Therefore, ns can become consistent with data, but only at the cost of an extra indispensable
mild tuning [6] of the initial conditions. Another possible complication is that the system may get
trapped near the minimum of the inflationary potential and, consequently, no FHI takes place.
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1.2 Supersymmetrizing the PQ Solution to the Strong CP Problem

Due to the non-perturbative structure of the vacuum of SU(3)C the lagrangian of quantum
chromodynamics (QCD) includes a CP-violating term, involving the strong coupling constant, g3,
the gluon field-strength tensor, G , and its dual, G̃ . I.e.,

LQCD =
g2

3
32π2 θ̄ G aµν G̃ a

µν + · · · with θ̄ . 5 ·10−10, (1.5)

since θ̄ is involved in the computation of the neutron electric dipole moment which is experimen-
tally determined, with result

dn ≃ 4.5 ·10−16 θ̄ < 2.9 ·10−26 e-cm at 90% c.l. (1.6)

The smallness of θ̄ consists the infamous strong CP problem. The most promising solution, pro-
posed [8] by Peccei and Quinn, is to introduce a global color anomalous U(1)PQ symmetry which
is spontaneously broken at an energy scale fa ≃ (109−1012) GeV, known as PQ energy scale. The
Goldstone boson, a(x), associated with such symmetry breaking is called axion. The Lagrangian
term resulting after the spontaneous symmetry breaking of the U(1)PQ symmetry reads:

La =
1
2

∂ µa∂µa+ ca
g2

3
32π2

a
fa

G a
µν G̃aµν , (1.7)

where ca is a model-dependent parameter. When considering the total lagrangian parts of Eqs. (1.5)
and (1.7), an effective potential for a appears, whose minimum is reached when the so-called
(axion) misalignment angle vanishes, i.e.,

θ = θ̄ + ca
a
fa

= 0 or < a >=−θ̄
fa

ca
· (1.8)

Therefore, minimizing the potential with respect to a sets the offending CP-violating term to zero.
Essentially, θ̄ is promoted to a dynamical variable that evolves to its CP-conserving minimum,
θ = 0, where θ can be seen as the phase of a new complex scalar field, named PQ field.

Within a SUSY framework, the spontaneous breaking of U(1)PQ can be obviously realized
adopting [9] a renormalizable superpotential, WPQ, similar to that of Eq. (1.1) where S is replaced
by another G and PQ singlet LH superfield, P, with the same R charge, while Φ and Φ̄ are replaced
by a pair of G singlet oppositely PQ-charged LH superfields, Q̄ and Q. Indeed, the superpotential

WPQ = κaP
(
Q̄Q− f 2

a /4
)
, (1.9)

is invariant under the U(1)PQ transformations

P → P, Q → eiα Q, Q̄ → e−iα Q (1.10)

and lead to the F-term SUSY potential

VPQF = κ2
a

∣∣Q̄Q− f 2
a /4

∣∣2 + κ2
a |P|

2 (|Q̄|2 + |Q|2
)
, (1.11)

from where we can infer that U(1)PQ can be spontaneously broken due to the following v.e.vs:

⟨P⟩ ≃ 0, ⟨ϕQ⟩= fa with 2Q = 2Q̄ = ϕQ (1.12)
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– since the sum of the arguments of ⟨Q̄⟩ and ⟨Q⟩ must be 0, Q̄ and Q can be brought to the real axis
by an appropriate PQ transformation. In reality, however, the total potential of the PQ fields is

VPQa =VPQF +Va, where Va = m2
a(T ) f 2

a (1− cosθ) (1.13)

comes from nonperturbative QCD effects associated with instantons [10], that break explicitly the
U(1)PQ symmetry down to a ZN discrete subgroup, where N is the sum of the PQ charges of
the SU(3)C triplets and antitriplets of the model. Therefore, the breakdown of ZN by the v.e.vs
in Eq. (1.12) may lead [10] to cosmologically catastrophic domain walls which, however, can be
avoided [11] by introducing extra matter superfields – see Sec. 2.3.

A by-product of the U(1)PQ spontaneous breaking is that we can achieve [12] a resolution
of the µ-problem of MSSM by considering, e.g., a non-renormalizable superpotential of the form
Q̄2HuHd/mP, which after the spontaneous breakdown of U(1)PQ leads to the µ term of the MSSM,
with |µ| ∼ λµ

∣∣⟨Q̄⟩
∣∣2 /mP, which is of the right magnitude if

∣∣⟨Q̄⟩
∣∣ = fa/2 ≃ 5 · 1011 GeV and

λµ ≃ (0.001−0.01) – here, mP ≃ 2.44 ·1018 GeV is the reduced Planck scale; Hu and Hd are the
electroweak Higgses of MSSM which couple to up- and down-type quarks respectively.

1.3 Outline

The key point of our attempt in combining both ingredients (FHI and PQPT) described in
Sec. 1.1 and 1.2 is that P can be regarded as the linear combination of the G×U(1)PQ singlets with
the R charge of the superpotential that does not couple to Φ̄Φ – cf. Ref. [13]. As a consequence,
an unavoidable superpotential coupling SQ̄Q and a S−P mixing in the Kähler potential arise – see
Sec. 2. These facts influence drastically the inflationary set-up described in Sec. 3. In addition, the
value of P after FHI is to be kept larger than fa/2 so as to achieve an instantaneous domination
of the PQ system over radiation in order to alleviate the gravitino (G̃) problem [14, 15]. These
effects are presented in Sec. 4. We end up testing our model against observations in Sec. 5 and
summarizing our results in Sec. 6.

2. Model Description

We below describe the structure of our model in Sec. 2.1, we sketch its cosmological conse-
quences in Sec. 2.2 and explain how we avoid the formation of domain walls in Sec. 2.3.

2.1 The General Set-up

In order to explore our scenario, we identify G with the left-right symmetric gauge group
GLR = SU(3)C ×SU(2)L ×SU(2)R ×U(1)B−L, which can be broken down to the SM gauge group
GSM = SU(3)C ×SU(2)L ×U(1)Y through the v.e.vs acquired by a conjugate pair of SU(2)R dou-
blet Higgs, Φ̄ and Φ. As a consequence, no cosmic strings are produced in the end of FHI and,
therefore, no extra restrictions on the parameters have to be imposed – c.f. Ref. [16]. The model
possesses also three global U(1) symmetries. Namely, a (color) anomalous R symmetry U(1)R, an
anomalous PQ symmetry U(1)PQ and the baryon number symmetry U(1)B. The representations
under GLR and the charges under the global symmetries of the various matter and Higgs superfields
are presented in Table 1, which also contains n extra matter superfields (D̄a −Da and Ha) required
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SUPER- REPRESEN- TRANSFOR- DECOM- GLOBAL

FIELDS TATIONS MATIONS POSITIONS SYMMETRIES

UNDER GLR UNDER GLR UNDER GSM R PQ B D

MATTER FIELDS

li (1,2,1,−1) liUT
L li(1,2,−1/2) 0 −2 0 0

lc
i (1,1,2,1) U∗

Rlc
i νc

i (1,1,0) 2 0 0 0

ec
i (1,1,1)

qi (3,2,1,1/3) qiUT
L UT

C qi(3,2,1/6) 1 −1 1/3 0

qc
i (3̄,1,2,−1/3) U∗

C U∗
Rqc

i uc
i (3̄,1,−2/3) 1 −1 −1/3 0

dc
i (3̄,1,1/3) 1 −1 −1/3 0

EXTRA MATTER FIELDS

D̄a (3̄,1,1,2/3) U∗
CDa D̄a(3̄,1,−1/3) 2 1 0 −1

Da (3,1,1,−2/3) DaUT
C Da(3,1,1/3)

Ha (1,2,2,0) ULHaUT
R ha(1,2,1/2) 2 1 0 0

h̄a(1,2,−1/2)

HIGGS FIELDS

S (1,1,1,0) S S (1,1,0) 4 0 0 0

Φ̄ (1,1,2,−1) Φ̄UT
R ν̄c

Φ(1,1,0) 0 0 0 0

ēc
Φ (1,1,−1)

Φ (1,1,2,1) U∗
RΦ̄ νc

Φ(1,1,0) 0 0 0 0

ec
Φ (1,1,1)

P (1,1,1,0) P P (1,1,0) 4 0 0 0

Q̄ (1,1,1,0) Q̄ Q̄ (1,1,0) 0 −2 0 0

Q (1,1,1,0) Q Q (1,1,0) 0 2 0 0

h (1,2,2,0) ULhUT
R Hu (1,2,1/2) 2 2 0 0

Hd (1,2,−1/2)

Table 1: The representations, the transformations under GLR, the decompositions under GSM as well as the
extra global charges of the superfields of our model. Here, UC ∈ SU(3)C, UL ∈ SU(2)L, UR ∈ SU(2)R and
T and ∗ stand for the transpose and the complex conjugate of a matrix respectively.

for evading the domain-wall problem associated with PQPT together with a new imposed global
U(1)D symmetry – see Sec. 2.3.

In particular, the superpotential, W , of our model reads:

W =WFHI +WPQ +λSQ̄Q + WMSSM +WDW, (2.1)

where WFHI and WPQ are given by Eqs. (1.1) and (1.9) respectively and the anticipated in Sec. 1.3
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unavoidable coupling is included. In addition,
• WMSSM is the part of W which contains the usual terms of the Minimal SUSY SM (MSSM),

supplemented by a mass term and Yukawa interactions for right-handed neutrinos, νc
i :

WMSSM = λµ
Q̄2h2

2mP
+ yν i j

Φ̄lc
i Φ̄lc

j

mP
+ yli jlihlc

j + yqi jqihqc
j . (2.2)

Here, the ith generation SU(2)L doublet LH quarks and leptons are denoted by qi and li respectively,
whereas the SU(2)R doublet antiquarks and antileptons by qc

i and lc
i respectively. The electroweak

Higgs are contained in a SU(2)L ×SU(2)R bidoublet Higgs h. The first term in the right-hand side
(RHS) of Eq. (2.2) generates the µ term of MSSM via the PQ breaking scale – see Sec. 1.2 –, while
the second term generates intermediate scale masses for νc

i and, thus, seesaw masses [3] for the
light neutrinos – the coupling constant matrix yν i j is considered diagonal.

• WDW is the part of W which gives intermediate scale masses via ⟨Q̄⟩ – see Sec. 1.2 – to
D̄a −Da and Ha. Namely,

WDW = λDaQ̄D̄aDa +λHaQ̄H2
a , (2.3)

where the coupling constant matrices λDa and λha are considered diagonal. Although these matter
fields acquire intermediate scale masses after the PQ breaking, the unification of the MSSM gauge
coupling constants is not disrupted at one loop. In fact, if we estimate the contribution of D̄a,Da,

and H̄a to the coefficients b1, b2, and b3, controlling [17] the one loop evolution of the three gauge
coupling constants g1,g2, and g3, we find that the quantities b2 − b1 and b3 − b2 (which are [17]
crucial for the unification of g1,g2, and g3) remain unaltered.

The Kähler potential for our model can include interference terms of S and P even at the
quadratic level, i.e., it has the form

K = |S|2 + |P|2 + a(SP∗+S∗P)+b
|S|4

4m2
P
+ c

|P|4

4m2
P
+d

|S|2|P|2

m2
P

+
e|S|2 + f |P|2

2m2
P

(SP∗+S∗P)

+
g

4m2
P

[
(SP∗)2 +(S∗P)2

]
+ · · · , (2.4)

where all the coefficients a,b,c,d,e, f and g are taken, for simplicity, real. The ellipsis represents
terms involving the waterfall fields (Φ, Φ̄, Q, and Q̄) which have negligible impact on our analysis.

2.2 The Cosmological Scenario

The F–term SUGRA scalar potential, VSUGRA of our model can be found by applying the
well-known formula – see e.g. Ref. [2]:

VSUGRA = eK/m2
P

(
F∗

i∗ (K, ji∗)
−1 Fj −3

|W |2

m2
P

)
with Fi =W,i +K,i

W
m2

P
· (2.5)

Here, a subscript , i [, i∗] denotes derivation with respect to the complex scalar field i [i ∗]. Taking
the limit mP → ∞, we can obtain the SUSY limit of VSUGRA, VF, which turns out to be

VF =
1

(1− a2)

(∣∣κ (
Φ̄Φ−M2)+λ Q̄Q

∣∣2 + κ2
a

∣∣Q̄Q−M2
a

∣∣2)+ κ2|S|2
(
|Φ̄|2 + |Φ|2

)
+

∣∣λSQ+κaPQ+λDaD̄aDa +λHaH2
a
∣∣2 + |Q̄|2

(
|λS+κaP|2 +λ 2

Da
(
|D̄a|2 + |Da|2

)
+λ 2

Ha|Ha|2
)

− a
(1− a2)

[
κa

(
Q̄∗Q∗−M2

a
)[

κ
(
Φ̄Φ−M2)+ λ Q̄Q

]
+ c.c.

]
, (2.6)
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SUPER- SCALARS MASS FERMIONS MASS

FIELDS (12 REAL) SQUARED (6 WEYL) SQUARED

Φ̄, Φ Re & Im [ν̄c
Φ ±νc

Φ] κ2
(
|S|2 ± M2

1−a2

)
ψν± = ψν̄±ψν√

2
κ2|S|2

Re & Im [ēc
Φ ± ec

Φ]
ψē±ψe√

2

Q̄, Q Re & Im [Q̄±Q] |σa|2 ± κ(λ−aκa)M2

1−a2 ψQ± =
ψQ̄±ψQ√

2
|σa|2

Table 2: The SUSY-breaking mass spectrum along the inflationary trajectory of Eq. (2.8a). Here, ψx with
x = ν̄ ,ν , ē,e, Q̄ and Q denote the chiral fermions associated with the superfields x = ν̄c

Φ,ν
c
Φ, ē

c
Φ,e

c
Φ, Q̄ and Q

respectively.

where the complex scalar components of the superfields are denoted by the same symbol. From
the potential in Eq. (2.6) and taking into account that M ≫ fa, we find that the SUSY vacuum lies
at the directions – cf. Eqs. (1.4) and (1.12):

⟨S⟩ ≃ 0, ⟨P⟩ ≃ 0, ⟨D̄a⟩= ⟨Da⟩= ⟨Ha⟩= ⟨ēc
Φ⟩= ⟨ec

Φ⟩= 0, (2.7a)

⟨ν̄c
Φ⟩= ⟨νc

Φ⟩= M and ⟨ϕQ⟩= fa , (2.7b)

where we have introduced the canonically normalized scalar field ϕQ = 2Q = 2Q̄ – cf. Eq. (1.12).
As a consequence, W leads to a spontaneous breaking of GLR and U(1)PQ. In addition, W gives
rise to a stage of FHI and a PQPT, since VF possesses two D– and F–flat directions for

ν̄c
Φ = νc

Φ = ēc
Φ = ec

Φ = Q̄ = Q = D̄a = Da = Ha = 0 (2.8a)

and S = ēc
Φ = ec

Φ = Q̄ = Q = 0 and ν̄c
Φ = νc

Φ = M, (2.8b)

with a constant potential energy density respectively

(a) VHI0 ≃ κ2M4/(1− a2) and (b) VPQ0 = κ2
a f 4

a /16. (2.9)

By constructing the scalar spectrum along the direction of Eq. (2.8a) – see Table 2 –, we can deduce
that it can be used as inflationary path since it corresponds to a classically flat valley of minima for

(a) |S|> M√
1− a2

and (b) |σa|>
√

κ(λ − aκa)

1− a2 M, where σa = λS+κaP. (2.10)

Since VPQ0 ≪VHI0, VPQ0 can dominate over radiation after the end of FHI leading to a PQPT. This
cosmological scenario can be attained if Eq. (2.10a) is violated before Eq. (2.10b), since, in this
case, we obtain ν̄c

Φ = νc
Φ = M and Q̄ = Q = 0 and not ν̄c

Φ = νc
Φ = 0 and Q̄ = Q = fa/2.

2.3 Evading the Domain-Wall Problem

Soft SUSY breaking and instanton effects explicitly break U(1)R ×U(1)PQ to a discrete sub-
group, which can be found, for every n, by solving the system of equations:

eirR(W ) = 1
eir ∑i R(i)+p∑i PQ(i) = 1

}
⇒

{
4r = 0 (mod 2π)
−12r+2(n−6)p = 0 (mod 2π)

where

{
eirR ∈U(1)R

eipPQ ∈U(1)PQ,
(2.11)
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with r [p] being a U(1)R [U(1)PQ] rotation and the sum over i is applied over all SU(3)C 3 and 3̄ of
the model. We conclude that the unbroken subgroup is Z4 ×Z2(n−6). It is then important to ensure
that this subgroup is not spontaneously broken by ⟨Q⟩ and ⟨Q̄⟩, i.e., the equations

e2ips⟨Q⟩= ⟨Q⟩ and e−2ips⟨Q̄⟩= ⟨Q̄⟩ ⇒ 2ps = 0 (mod 2π) . (2.12)

are satisfied identically – otherwise, cosmologically disastrous domain walls are produced [10] at
PQPT. This goal can be accomplished by choosing n = 5 or n = 7. Therefore, for these n’s, the
domain-wall production during PQPT can be eluded.

3. The Inflationary Era

Below, we describe the salient features of the inflationary potential in Sec. 3.1 and we analyze
the inflationary dynamics in Sec. 3.2.

3.1 The Inflationary Potential

The inflationary potential along the trajectory of Eq. (2.8a) can be written as

VHI =VHI0 +VHIs +VHIc, where (3.1)

• VHI0 is the dominant contribution to VHI along the F-flat direction, given in Eq. (2.9a).
• VHIs is the SUGRA corrections to VHI which can be found by expanding VSUGRA in Eq. (2.5)

along the trajectory of Eq. (2.8a). Namely,

VHIs ≃ VHI0

(1− a2)m2
P

[
A1|S|2 +A12 (S∗P+PS∗)+A2|P|2

]
+

VHI0

4(1− a2)2m4
P

[
B1|S|4 +B2|P|4

+ B3|S|2|P|2 +
(
B4|S|2 +B5|P|2

)
(S∗P+PS∗)+B6

(
(S∗P)2 +(P∗S)2

)]
=

VHI0

2m2
P

(
m2
+

(
s2 +q2)+m2

−σ 2)+ · · · , (3.2a)

where the coefficients A1−A3 and B1−B6, given in Ref. [1], are functions of the coefficients a, ...,g
in Eq. (2.4); the real fields σ ,s and q are the eigenvectors (corresponding to the eigenvalues m2

±)
of the matrix involved in the quadratic part of VHIs. This can be worked out [1] after the quadratic
part, KSP, of K in Eq. (2.4) has been brought into a canonical form, i.e., we obtain also

KSP = |S|2 + |P|2 + a(SP∗+S∗P) =
(
σ2 + s2 +q2)/2.

Since m2
− ≃ 0, its corresponding eigenvector, σ , can be qualified as the inflaton. Note that we need

the higher order terms of K in Eq. (2.4) so that we obtain m2
− ≤ 0 and therefore, observationally

acceptable ns’s – see Sec. 5. Indeed, for a ̸= 0 and b = c = d = e = f = g = 0 we get m2
− = 0.

• VHIc represents the contribution to VHI from one-loop radiative corrections, due to SUSY-
breaking mass spectrum presented in Table 2, which can be calculated [18] to be

VHIc ≃
κ2VHI0

8π2(1− a2)

(
ln

κ2xM2

(1− a2)Λ2 +
3
2

)
+

(λ − aκa)
2VHI0

16π2(1− a2)

(
ln

κ(λ − aκa)xaM2

(1− a2)Λ2 +
3
2

)
, (3.2b)

with x = |S|2(1− a2)/M2 and xa = |σa|2(1− a2)/κ(λ − aκa)M2. Here, we take into account that
the dimensionality of the representations to which Φ̄ and Φ [Q̄ and Q] belong is 2 [1] – see Table 1.
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Figure 1: The evolution of σ (black lines),
s (gray lines), and q (light gray lines) as
functions of N for the values of the pa-
rameters shown in Eqs. (5.4) and (5.8),
κ = 0.0045, a = −0.011, b = −0.01 and
fHIi = 3 · 1017 GeV (solid lines) or fHIi =

2.5 ·1017 GeV (dashed lines). For the em-
ployed values of parameters, the require-
ments of Sec. 5.1 are fulfilled.

3.2 The Inflationary Dynamics

The equations of motion (e.o.m) of the various fields are ( ˙= d/dt with t the cosmic time):

f̈ +3H ḟ +VHI, f = 0 ⇒ H2 f ′′+3H2 f ′+VHI, f = 0 with f = σ , s, and q (3.3)

and ′ = d/dN where N = ln(R/RHIi). Here R(t) is the scale factor of the universe and the subscript
“HIi” denotes values at the onset of FHI. We impose the following initial conditions (at N = 0):

fHIi = f (0) = (1.5−4.5) ·1017 GeV and f ′(0) = 0 with f = σ , s, or q. (3.4)

When fHIi is large enough, s reaches an attractor and our results are independent of the precise
value of fHIi, as can be clearly deduced from Fig. 1, where we plot σ (black lines), s (gray lines),
and q (light gray lines) as functions of N for fHIi = 3 ·1017 GeV (solid lines) or fHIi = 2.5 ·1017 GeV
(dashed lines). In both cases, we adopt the values of the parameters shown in Eqs. (5.4) and (5.8),
κ = 0.0045, b=−0.01 and a=−0.011 which fulfill the requirements of Sec. 5.1. For both choices
of fHIi’s, we obtain m2

− =−0.0126, m2
+ = 1.83, ns = 0.968, NHI∗ = 52, σHIf = 4.08 ·1016 GeV and

sHIf = 1.3 ·1014 GeV although in the first [second] case we obtain NHI = 87.1 [NHI = 175.5] – NHI

and NHI∗ are defined below Eq. (5.1) in Sec. 5.1. We observe that immediately after the onset of
FHI, q decreases sharply, whereas the value of s at the end of FHI, sHIf, turns out to be just mildly,
and not drastically reduced compared to σ – in sharp contrast to the situation of Ref. [19]. This is
due to the participation of s in both Eqs. (3.2a) and (3.2b).

4. The Post-Inflationary Era

We below describe the post-inflationary evolution of our model, presenting the dynamics of
the two fields, σ and s, in Sec. 4.1 and this of the two reheating processes in Sec. 4.2. For later
convenience, we arrange in Table 3 the mass spectrum of our model at the SUSY vacuum of
Eqs. (2.7a) and (2.7b).

4.1 The Dynamics of Scalars

When FHI is over, the inflaton system with mass mI – see Table 3 – consisting of the two
complex scalar fields S and (δνc

Φ −δ ν̄c
Φ)/

√
2 – where δνc

Φ = νc
Φ −M and δ ν̄c

Φ = ν̄c
Φ −M – settles

9



P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
2
8

Combining FHI with a PQ Phase Transition C. Pallis

EIGENSTATES EIGENVALUES EIGENSTATES EIGENVALUES

BOSONS FERMIONS (MASSES) BOSONS FERMIONS (MASSES)

S, δ ν̄c
Φ+δνc

Φ√
2

ψS±ψν+√
2

mI =
√

2κM P, δ Q̄+δQ√
2

ψP±ψQ+√
2

mPQ = λa
fa√
2

Re[ν̄c
Φ −νc

Φ]
ψν̄−ψν√

2

√
2gM δ Q̄−δQ√

2
ψQ̄−ψQ√

2
0

Re[ēc
Φ − ec

Φ]

Im[ēc
Φ + ec

Φ]
ψe,ψē gM ν̃c

i νc
i 2yν iM2/mP

A1
R±iA2

R√
2

λ1
R±iλ2

R√
2

gM Da, D̄a ψDa , ψD̄a
λDa fa/2

A3
R±AB−L√

2
λ3

R±iλB−L√
2

0,
√

2gM Ha ψHa λHa fa/2

Table 3: The mass spectrum of the model at the SUSY vacuum of Eq. (2.7a) and (2.7b). Here, Am
R [λm

R ] with
m = 1,2,3 are gauge bosons [gauginos] associated with the SU(2)R, while these corresponding to U(1)B−L

are denoted by AB−L [λB−L]. Also, ψx with x = S, ν̄ ,ν , ē,e,P, Q̄,Q, D̄a,Da and Ha denote the Weyl spinors
associated with the superfields x = S, ν̄c

Φ,ν
c
Φ, ē

c
Φ,e

c
Φ,P, Q̄,Q, D̄a,Da and Ha respectively.

into a phase of damped oscillations and decays reheating the universe to a temperature

T1rh =

(
72

5π2g1rh∗

)1/4√
Γ1mP, where Γ1 =

1
16π

λ 2 mI (4.1)

is the decay width emerging from the third term in the RHS of Eq. (2.1). Here, g1rh∗≃ 438.75 [g1rh∗≃
513.75] for n = 5 [n = 7] counts the relativistic degrees of freedom of the model.

For λ ≃ (0.05−0.1), we get T1rh > V 1/4
PQ0. Therefore, we obtain matter domination (MD) for

T ≥ T1rh and radiation domination (RD) for V 1/4
PQ0 . T . T1rh. During MD, s [19, 20] acquires an

effective mass equal to
√

3/2H. Solving its e.o.m for N > NHI, we can extract its value, sPQi, –
and the corresponding value of P, PPQi – at T = T1rh which coincides with its value at the onset of
PQPT since, during the subsequent RD era, s remains [19, 20] frozen. Namely we find

PPQi = APsPQi with sPQi ≃
(

ρ1rh

VHI0

)1/4

sHIf and ρ1rh =
π2

30
g1rh∗T 4

1rh, (4.2)

where AP is a function [1] of the coefficients of K in Eq. (2.4).
For T .V 1/4

PQ0, W in Eq. (2.1) is dominated by WPQ in Eq. (1.9) and the relevant F-term scalar
potential is given in Eq. (1.11) which along the flat direction of Eq. (2.8b) gives rise to the con-
stant potential energy density of Eq. (2.9b). Assuming gravity mediated soft SUSY breaking, the
potential along the direction of Eq. (2.8b) for |P| ≥ fa/2 has the form:

VPQ ≃VPQ0 +m2
P |P|2 −

√
2VPQ0 |aP||P|+

κ2
aVPQ0

16π2

(
ln

κ2
a |P|2

Λ2 +
3
2

)
, (4.3)

where the 2nd and 3rd contributions arise from soft SUSY breaking effects and the forth contribu-
tion represents the 1-loop corrections [18] due to the SUSY breaking [1]. Mainly due to this last
contribution, VPQ does not give rise to another FHI, since the η-criterion is spoiled. Nonetheless,
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when |P|< fa/2, an instability occurs along the |P|-axis triggering thereby a PQPT. If, in addition,
|PPQi|> fa/2 we obtain an out-of-equilibrium decay of the PQ system, i.e., a secondary reheating.

During this latter phase, the PQ system with mass mPQ – see Table 3 – comprised of the
complex fields P and (δ Q̄−δQ)/

√
2 – where δQ = Q− fa/2 and δ Q̄ = Q̄− fa/2 – enters a phase

of oscillations reheating the universe to the temperature

T2rh =

(
72

5π2g2rh∗

)1/4√
Γ2mP, where Γ2 =

1
2π

λ 2
µ

(
fa

2mP

)2

mPQ (4.4)

is the decay width emerging from the first term in the RHS of Eq. (2.2). Also, g2rh∗ = 228.75 counts
the relativistic degrees of freedom.

4.2 The Dynamics of Reheating Processes

A more accurate description of the reheating dynamics can be obtained by solving the relevant
Boltzmann equations. In particular, the energy density, ρ1 [ρ2], of the oscillatory system which
reheats the universe at the temperature T1rh [T2rh], the energy density of produced radiation, ρR,
and the number density of G̃, nG̃, satisfy the equations [1]:

ρ̇1 +3Hρ1 +Γ1ρ1 = 0,

ρ̇2 +3Hρ2 +Γ2ρ2 = 0,

ρ̇R +4HρR −Γ1ρ1 −Γ2ρ2 = 0,

ṅG̃ +3HnG̃ −CG̃ (neq)2 = 0,


with


H = (ρ1 +ρ2 +ρR)

1/2 /
√

3mP,

CG̃ = 3π ∑3
i=1 cig2

i ln(ki/gi)/16ζ (3)m2
P,

neq = ζ (3)T 3/π2, T = 30ρR/g∗π2.

(4.5)

Here, (ki) = (1.634,1.312,1.271), (ci) = (33/5,27,72) and g∗(T ) = g1rh∗ [g∗(T ) = g2rh∗] for T ≥
TPQ [T < TPQ] where TPQ is defined as the solution of the equation ρR (TPQ) = VPQ0. We use the
following initial conditions – the quantities below are considered as functions of the independent
variable N̄ = ln(R/RHIf) with RHIf being the value of the scale factor at the end of FHI:

ρ1(0) =VHI0, ρR(0) = nG̃(0) = 0, and ρ2(N̄PQ) =VPQ0, (4.6)

where N̄PQ is the value of N̄ corresponding to the temperature TPQ.
In Fig. 2, we illustrate the cosmological evolution of the quantities logρi with i = 1 (dotted

gray line), i = 2 (dashed gray line), and i = R (gray line), logVPQ0 (black dashed line), and logYG̃
(black solid line) as functions of logT for the values of the parameters adopted in Fig. 1. We
observe that FHI is followed successively by a MD era, which lasts until T = 6 ·1013 GeV ≃ T1rh

(where ρ1 = ρR), a RD epoch, terminated at TPQ = 1.4 · 1010 GeV, a MD era, completed at T =

3.1 · 104 GeV ≃ T2rh (where ρ2 = ρR) and followed by the conventional RD epoch. We also see
that the G̃ abundance immediately after FHI is Y1G̃ = 5.5 ·10−9 which can be estimated by [14, 15]

Y1G̃ =
nG̃
s
(T1rh)≃ 1.9 ·10−12

(
T1rh

1010 GeV

)
with s=

2π2

45
g∗T 3. (4.7)

However, the G̃ abundance decreases sharply to Y2G̃ = 1.6 ·10−14 which can be approximated by

Y2G̃ =
nG̃
s
(T2rh)≃

(
π2

30
g1rh∗

)1/4 T2rh

V 1/4
PQ0

Y1G̃. (4.8)

11



P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
2
8

Combining FHI with a PQ Phase Transition C. Pallis

14 13 12 11 10 9 8 7 6 5 4 3
10

20

30

40

50

60

V
PQ0

ρ
1

ρ
2

ρ
R

 

 

lo
g

 (
ρ

i / 
G

eV
 4
)

log (T / GeV)

14 13 12 11 10 9 8 7 6 5 4 3
-14
-13
-12
-11
-10
-9
-8
-7

~

 

 

lo
g

 (
 Y

G
 )

Figure 2: The evolution of the quanti-
ties logρi with i = 1 (gray dotted line),
i = 2 (gray dashed line), i = R (gray line),
logVPQ0 (black dashed line), and logYG̃
(black solid line) as functions of logT
for κ = 0.0045,a = −0.011, b = −0.01
and the values of the remaining parame-
ters shown in Eqs. (5.4) and (5.8). For the
employed vales of parameters, the require-
ments of Sec. 5.1 are fulfilled.

We observe that Y2G̃ is suppressed relative to Y1G̃ by the ratio T2rh/V 1/4
PQ0 ≪ 1 due to the entropy

released during the out-of-equilibrium decay of the PQ system. Interestingly enough, the dilution
of Y1G̃ is independent of κa – see Eqs. (2.9b) and (4.4).

5. Testing Against Observations

We below exhibit the constraints that we impose on our cosmological set-up in Sec. 5.1 and
delineate the allowed parameter space of our model in Sec. 5.2.

5.1 Observational Constraints

The parameters of our model can be restricted imposing the following requirements – note that
in the points (iv) and (v) below we adopt an updated version of the relevant constraints compared
to our analysis in Ref. [1]:

(i) The violation of the instability conditions in Eq. (2.10) occurs according to the desired order.

(ii) The number of e-foldings NHI∗ that the scale k∗ = 0.002/Mpc suffered during FHI has to be
sufficient to resolve the horizon and flatness problems of Standard Big Bang cosmology:

NHI∗ = NHI −N∗ ≃ 23+
2
3

ln
V 1/4

HI0
1 GeV

− 1
3

ln
V 1/4

PQ0

1 GeV
+

1
3

ln
T1rhT2rh

1 GeV2 , (5.1)

where N∗ and NHI are the values of N from the onset of FHI until k∗ crossed outside the
horizon of FHI and the end of FHI, respectively. NHI is the largest N at which we obtain
violation of Eq. (2.10a) or of the condition:

max{ε(σ(N)), |η(σ(N))|} ≤ 1, with ε ≃ m2
P

2

(
VHI,σ

VHI

)2

and η ≃ m2
P

VHI,σσ

VHI
· (5.2)

(iii) The power spectrum, PR∗, of the curvature perturbation at k = k∗ is to be confronted with the
WMAP7 data:

P1/2
R∗ =

V 3/2
HI

2
√

3πm3
P|VHI,σ |

∣∣∣∣∣
N=N∗

≃ 4.93 ·10−5. (5.3)
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(iv) The mass,
√

2gM, of the heaviest gauge boson at the SUSY vacuum – see Table 3 – is to take
the value dictated by the unification of the gauge coupling constants within MSSM, i.e.,

√
2gM ≃ 2 ·1016 GeV ⇒ M ≃ 2 ·1016 GeV with g ≃ 0.7, (5.4)

being the value of the unified gauge coupling constant at GUT scale - not to be confused with
the coefficient g appearing in Eq. (2.4).

(v) The spectral index, ns, is to be consistent with the fitting of the WMAP7 results by the ΛCDM
model (with negligible running αs ≃ 0).

ns = 1−6ε(N∗) + 2η(N∗) = 0.968±0.024 ⇒ 0.944 . ns . 0.992 at 95% c.l. (5.5)

(vi) In order for the PQPT to take place after a short temporary domination of VPQ0, we require

|PPQi|> fa/2 ⇒ sPQi > fa/Ap. (5.6)

(vii) Assuming unstable G̃, we impose an upper bound on Y2G̃ in order to avoid problems with the
standard Big Bang nucleosynthesis [15]:

Y2G̃ .

10−14

10−13
for G̃ mass mG̃ ≃

0.69 TeV

10.6 TeV.
(5.7)

5.2 Numerical Results

As can be seen from the analysis above, our cosmological set-up depends on the following
parameters: κ, κa, λ , fa, λµ , n, a, b, c, d, e, f , and g. We fix throughout our computation:

λ = 0.1, fa = 1012 GeV, κa = λµ = 0.01, n = 5 and c = d = e = f = g = 0.1. (5.8)

The chosen fa and λµ result to µ ≃ 1 TeV via the first term of the RHS of Eq. (2.2). Also, the
selected κa and λ play a crucial role in the determination of T1rh and T2rh – via Eq. (4.1) and (4.4)
and facilitate the violation of the conditions in Eq. (2.10) in the desired order. Their variation,
thought, does not cause drastic changes in the inflationary predictions. The same is also valid for
the fixed in Eq. (5.8) parameters of K, in Eq. (2.4) which – contrary to a and b – do not influence
the computation of m2

+ and m2
−. As we show below, the selected values above give us a wide and

natural allowed region of the remaining fundamental inflationary parameters (κ ,a, and b).
Besides the parameters above, in our computation, we use as input parameters the quantities N∗

and fHIi with f = σ , s, and q. We set fHIi ≃ (1.5−3.5) ·1017 GeV so as to obtain NHI ≃ 70−140.
We then restrict M and N∗ so that Eqs. (5.1) and (5.3) are fulfilled. It is gratifying that our model
supports solutions which simultaneously fulfill Eqs. (5.3) and (5.4) contrary to most realizations of
FHI – cf. Ref. [6] – which requires, via Eq. (5.3), M’s lower than those indicated in Eq. (5.4). We
finally check if the preferred hierarchy in the violation of Eqs. (2.10a) and (2.10b) is achieved and
proceed imposing the requirements (v) - (vii) of Sec. 5.1.

Letting a vary for a number of fixed values of b, we can depict the values allowed by all the
constraints of Sec. 5 in the κ − a plane – see the left plot of Fig. 3. The various lines terminate
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Figure 3: Allowed values by the requirements of Sec. 5.1 in the κ − a plane for various b’s indicated on
the curves (left) and the variation of VHI as a function of σ for b =−0.01 and (κ,a)’s indicated in the graph
(right). In both graphs we use the values of the parameters shown in Eqs. (5.4) and (5.8). For the right
graph we set fHIi = 3 ·1017 GeV (ns = 0.992, dashed line) or fHIi = 2.5 ·1017 GeV (ns = 0.968, solid line)
or fHIi = 2 ·1017 GeV (ns = 0.944, dotted line). The values corresponding to σ∗ and σf are also depicted.

at low [high] κ’s due to the saturation of Eq. (5.5) from below [above]. We readily conclude that
the allowed (a,b)’s for fixed ns are almost κ-independent. This is because m2

− is fixed too. In
particular, for ns = 0.944, 0.968 and 0.992, we have −m2

− ≃ 0.0178, 0.0126 and 0.0077 and κ =

0.0028,0.0045 and 0.0072, respectively. In all cases, m2
+ ≃ 1.83, Y1G̃ ≃ 5 ·10−9 and Y2G̃ ≃ 2 ·10−14.

Therefore, our scenario can be realized for both signs of a and b, contrary to the cases studied in
Ref. [6] where negative b’s are necessitated. Also, compared the extracted Y2G̃’s with the bounds
of Eq. (5.7), we infer that G̃ with masses even lower than 10 TeV become observationally safe.

One of the outstanding features of our proposal is that the reduction of ns can be attained
without disturbing the monotonicity of the potential – cf. Ref. [6]. This fact is highlighted in the
right plot of Fig. 3, where we present the variation of the inflationary potential VHI as a function
of σ , for b =−0.01 and three pairs of κ and a’s, shown in the graph, corresponding to ns = 0.944
(dotted line), 0.968 (solid line) and 0.992 (dashed line). The values corresponding to σ∗ and σf

are also designed. We observe that for σ ’s, VHI develops an oscillatory behavior due to the initial
oscillations of s and q – see Fig. 1. However, VHI for lower σ ’s remains monotonic and, therefore,
no complications arise in the realization of FHI.

6. Conclusions

We showed that, combining FHI with a PQPT based on renormalizable superpotential terms,
we can obtain: (i) Observationally viable FHI at the SUSY GUT scale with natural values, ±(0.01−
0.1), for the model parameters; (ii) a simultaneous resolution of the strong CP and µ problems of
MSSM; (iii) a second stage of reheating after PQPT, which leads to observationally safe values of the
G̃ abundance. An important prerequisite for all these is that the field, which triggers PQPT, remains
after FHI well above the PQ scale thanks to (i) its participation in the SUGRA and logarithmic
corrections during FHI and (ii) the high reheat temperature after the same period. A noteworthy
open issue of our scenario is this of baryogenesis which cannot be processed via non-thermal
leptogenesis [4] since the produced lepton asymmetry after FHI is efficiently diluted.
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