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1. Introduction

In the last decade our understanding of effective actions of Type IIA and IIB string theory
has considerably increased. Knowing what features a field theory can or cannot have if derived
from string theory is a important step in predictability of the latter. Effective actions arising from
setups with D-Branes are of great interest for phenomenology, since stacks of D-Branes give rise
to effective non-Abelian Yang-Mills theories living on the brane, and intersection of D-Branes give
a natural way of constructing bi-fundamental chiral matter (for example, see [3]).

The present work, based on [1] (also studied independently by [2]), describes the N = 1
supersymmetric four-dimensional low-energy effective action of a Type IIA string theory com-
pactified on a general Calabi-Yau orientifold with a single D6-Brane. That is, we consider the
supergravity limit of Type IIA string theory, and we add to it light modes of the degrees of free-
dom living on the Brane (the open-string fields). We then work to write the resulting action in
the standard N = 1 form and extract the characteristic data, namely the gauge coupling functions,
superpotential, D-term-inducing gaugings, and the corresponding moduli space Kähler potential
and chiral coordinates.

With the data in hand, we look for connections via mirror symmetry to the known works for
single D-Branes in Type IIB theory compactified on Calabi-Yau orientifolds, [4, 5, 6]. Mirror
symmetry is a well established duality in Type II string theories. It states that Type IIA string
theory compactified on a Calabi-Yau Y is dual to Type IIB string theory compactified on another
Calabi-Yau Ỹ , the mirror of the first, with even and odd cohomologies exchanged from one an-
other. The closed string sector effective action on Calabi-Yau orientifold compactifications was
already discussed in [7]. In the present work we extend the analysis to include the data from single
D-Branes.

We thus proceed as follows. In section 2 we perform the dimensional reduction of the Calabi-
Yau by Kaluza-Klein expansions of the fields and keeping, in a first moment, only the massless
modes. This restriction on the brane moduli will also preserve supersymmetry conditions. From the
reduction we extract the gauge coupling functions, and compute corrections coming from mixings
with closed string gauge fields. We identify the correct chiral coordinates and write an expression
for the Kähler potential of the moduli space of open-string fields. In section 3, we allow for brane
modes that can break the supersymmetry conditions. These modes give rise to a scalar potential in
the effective action, that can be independently obtained by D-terms and a suitable Superpotential.
Finally in section 4 we discuss how to relate our setup to the Type IIB setups known in the literature.
The SYZ conjecture [17], that says that mirror symmetry can be understood as T-Duality on a T 3

torus of a T 3 fibred Calabi-Yau, will be useful to understand the precise mirror mapping of the brane
modes. Results here obtained can be extended to richer and phenomenologically more interesting
scenarios. We refer the reader to [1], for a more detailed analysis.

2. The dimensional reduction of the action

The first step in our analysis to obtain the four-dimensional effective action is to specify the
background. We will work in a direct product of a 4D Minkowski space R1,3 and a general Calabi-
Yau orientifold Y . We introduce in our setup space-time filling D6-branes.

2



P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
3
7

The Effective Action of Branes in CY Orientifolds Daniel Vieira Lopes

Requiring that we have N = 1 supersymmetry in 4d spacetime, this fixes the orientifold pro-
jection to obey [7, 8]

O = (−1)FLΩpσ
∗ , σ

∗J =−J , σ
∗CΩ = CΩ , (2.1)

Here Ωp is the world-sheet parity reversal, FL is the space-time fermion number in the left-
moving sector, σ is an anti-holomorphic and isometric involution of the compact Calabi-Yau, J
the Kähler form, and C is a function that contains the dilaton and normalizes the holomorphic
three-form Ω as

e2φCΩ∧CΩ =
1
6

J∧ J∧ J . (2.2)

Supersymmetry also implies conditions on the orientifold plane and the 3-cycle L0 wrapped by the
brane, namely [9]

J|O6-plane = 0 , Im(CΩ)|O6-plane = 0 and (2.3)

J|L0 = 0 , Im(CΩ)|L0 = 0 , 2Re(CΩ)|L0 = e−φ volL0 . (2.4)

The first two conditions in (2.4) are just the statement that the brane must wrap Special Lagrangian
cycles, while the last one states that the L0 has minimum volume. If we allow for fluxes in our
setup, it was shown in [10] that supersymmetry implies

FD6−B2|L0 = 0 , (2.5)

where FD6 is U(1) flux on the brane and B2|L0 is the NS-NS two-form restricted to the wrapped
cycle.

2.1 The four-dimensional Kaluza-Klein spectrum

The action in four dimensions will be obtained from compactification of the full action, that
is the action on the world-volume of the brane and the 10D Type IIA supergravity action. For that,
we perform a Kaluza-Klein expansion of the fields and keep only the massless states (as we take
the compactification energy scale high enough). That is, in the internal space the fields will be
expanded in harmonic forms of the Calabi-Yau.

Closed string sector

The closed string spectrum [7] consists of the 10d metric, the dilaton, the NS-NS B-Field and
the R-R fields C1,C3,C5,C7. After the orientifold projection, the surviving fields must obey (2.1),
σ∗B2 =−B2 and σ∗Cp = (−1)(p+1)/2Cp.

One can split the de Rham cohomologies into even and odd eigenspaces under the involution
σ∗, Hn

±. Since J and B2 obey the same condition under the anti-holomorphic involution, we can
define the complex field Jc = B2 + iJ and expand it in H2

−(Y,R),

Jc = B2 + iJ = (ba + iva)ωa = ta
ωa , (2.6)

where a = 1, . . . ,h(1,1)
− labels a basis ωa of H2

−(Y,R). The 4d scalar fields ta are in N = 1 chiral
multiplets [7]. Similarly we can define

Ωc = 2Re(CΩ)+ iCsc
3 = N′k αk−T ′

λ
β

λ , (2.7)
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where k = 1, . . . ,n−,λ = 1, . . . ,n+ label a basis (αk,β
λ ) of H3

+(Y,R). Here Csc
3 is the component

of the R-R three-form which is also a three-form on the Calabi-Yau manifold Y and hence descends
to scalars in four dimensions,

Csc
3 = ξ

k∧αk +ξλ ∧β
λ . (2.8)

In N = 2 compactifications we can expand Ω = XKαK −FKβ K with (αK ,β K) a symplectic
basis of H3(Y,R). Here XK are the Special Geometry coordinates and FK the XK-derivative of
the prepotential F . The involution σ∗ splits this basis into (αk,β

λ ) of H3
+(Y,R) and a dual basis

(αλ ,β k) of H3
−(Y,R), so we can identify

N′k = 2Re(CXk)+ iξ
k , T ′

λ
= 2Re(CFλ )+ i ξ̃λ . (2.9)

Additionally, the R-R three-form also leads to U(1) vectors in four space-time dimensions via
the expansion terms

Cvec
3 = Aα ∧ωα , (2.10)

where ωα is a basis of H2
+(Y,R). Their holomorphic gauge coupling functions fαβ have also been

determined in ref. [7]. Denoting byKαβa =
∫

Y ωα ∧ωβ ∧ωa, the intersection form of two elements
of H2

−(Y,R) with one element of H2
+(Y,R) one finds that fαβ = iKαβata.

Open string sector

To study the open string spectrum, we consider fixed background Kähler and complex structure
moduli. The first fields we analyze are the ones corresponding to brane deformations that do not
break N = 1 supersymmetry, that is, preserve special Lagrangian conditions (2.4). If we describe
the deformation by a vector field η normal to the special Lagrangian cycle L0, it was shown by
McLean [11] that the subset of deformations through special Lagrangian submanifolds are the
ones in which the 1-form defined as θη = ηyJ is harmonic. We can thus expand θη in a basis of
harmonic one-forms θi on L0 as

θη = η
i
θi (2.11)

with the basis defined as

θi = siyJ|L0 , ∗θi =−2eφ siyIm(CΩ)|L0 , i = 1, . . . ,b1(L0) , (2.12)

where si is a basis of the real special Lagrangian normal deformations, η = η isi and the condition
for ∗θi follows from [12].

Additionally to brane deformations, the spectrum also contains Wilson line the U(1) gauge
boson AD6 on the D6-brane that compactifies to

AD6 = A+ai
α̃i , (2.13)

where A is a U(1) gauge field and the ai(x) are b1(L0) real scalars in four dimensions, arising from
U(1) Wilson lines wrapping non-trivial one-cycles of the D6-brane. The forms α̃i provide a basis
of H1(L0,Z).

To summarize, one finds as massless variations around a supersymmetric vacuum h(1,1)
− +

h(2,1) + 1 chiral multiplets from the bulk and b1(L0) chiral multiplets (η i,ai) from the D6-brane.
The precise organization of these fields into N = 1 complex coordinates will be described in the
next section.
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2.2 Effective action of D6-branes

Since the closed sector was already treated in details in [7], we calculate the contribution
coming from the D6-brane to the four-dimensional low-energy effective action. To do so, we
perform the field expansions described in previous section to reduce the D6-Brane action

SSF
D6 =−

∫
W7

d7
ξ e−φ

√
−det(ι∗ (g10 +B2)−FD6)+

∫
W7

∑
q odd

ι
∗(Cq)∧ eFD6−ι∗(B2) . (2.14)

The first term is the Dirac-Born-Infeld (DBI) action that describes the local dynamics of string
fields on the brane (deformations and U(1) fields) while the second is the Chern-Simons action,
that contains information on brane charges and is important for global consistencies. ι∗ is the
pullback onto the brane world-volumeW7 =M3,1×L0.

Dirac-Born-Infeld Action

We start with the Dirac-Born-Infeld action. For simplicity, we start considering a zero back-
ground B-field. We expand the determinant in (2.14) to quadratic order in the fluctuations around
the supersymmetric background, using the normal coordinate expansion of the metric

ι
∗g10 =

(
e2D

ηµν +g(∂µη ,∂νη)
)

dxµ ·dxν +(ι∗g+δ (ι∗g))mndξ
m ·dξ

n , (2.15)

where gmn is the induced metric on L, and δ (ι∗g)mn is the metric variation induced by the variation
of the background Kähler and complex structure, set to zero by our assumptions, and the four-
dimensional flat space metric ηµν is in the Einstein frame.

We also perform the Kaluza-Klein expansion for the Field-Strength from (2.13),

FD6 = dAD6 = F +dai∧ α̃i + fD6, (2.16)

where fD6 ∈ H2(L0) is a brane U(1) flux that we set to zero in most part of this work. The DBI
action reduces to

S(4)
DBI =−

∫
1
2 Re fr F ∧∗F + e2DGi j dai∧∗da j + e2DĜi j dη

i∧∗dη
j , (2.17)

with the metrics
Gi j = 1

2 e−φG(α̃i, α̃ j) Ĝi j = 1
2 e−φG(θi,θ j) (2.18)

and G(α̃, α̃ ′) =
∫

L0
α̃ ∧∗α̃ ′ a “canonical” L2-metric defined on the L0 cycle. The real part of the

gauge coupling function is given simply by the volume wrapped by the brane,

Re fr =
∫

L0

2Re(CΩ) . (2.19)

The real fields η i and ai are not good coordinates for the N = 1 theory since in those theories all
the scalar fields must appear in chiral (complex) multiplets. It turns out that one can perform a
consistent change of basis from θi to α̃i via

θi = λ
j

i α̃ j , 1
2 e−φ ∗θi = µ ji β̃

j , (2.20)
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where β̃ i is a basis of H2(L0,Z). We define then the chiral coordinates

ξ
i = ui + iai with ui =

∫
L0

ηyJ∧ β̃
i, (2.21)

and the DBI action can be written in the standard N = 1 form

S(4)
DBI =−

∫
1
2 Re fr F ∧∗F + e2DGi j̄ dξ

i∧∗dξ̄
j̄ , (2.22)

that allows the straightforward introduction of the B-field, simply by defining uc =
∫

L0
ηyJc ∧ β̃ i,

and ξ i
c = ui

c + iai implies that the introduction of B can be absorbed in a redefinition of ai.

Chern-Simons Action

The Chern-Simons action also contains pullbacks of forms from the Calabi-Yau to the brane
3-cycle. Instead of performing a normal coordinate expansion as in (2.15), we take a different
approach and parameterize the normal variations by introducing a four-chain C4 which contains the
three-cycle Lη in its boundary

∂C4 = Lη −L0 , (2.23)

where L0 is the reference three-cycle, the supersymmetric background cycle.
Then, the Chern-Simons action can be rewritten as

SC4
CS =

∫
W8

d
[
eF−B2 ∧ (C3 +C5 +C7)

]
, (2.24)

withW8 =M3,1×C4 such thatW7 ⊂ ∂W8. This is in a similar spirit as the constructions in [13].
It is convenient to expand not the R-R forms individually, but rather the combination with the

B-field,

∑
p=3,5,7

e−B2 ∧Cp = (ξ k
αk− ξ̃λ β

λ )+(Aα ∧ωα +Aα ∧ ω̃
α) (2.25)

+(Cλ
2 ∧αλ −C̃2

k ∧β
k)+(C0

3 +Ca
3 ∧ωa +C3

a ∧ ω̃
a) ,

where (αλ ,β k) is a basis of H3
−(Y,R), and ωa, ωα , ω̃a, ω̃α are respectively bases of H2

−(Y,R),
H2

+(Y,R), H4
+(Y,R), H4

−(Y,R). The four-dimensional two-forms (Cλ
2 ,C̃2

k ) are dual to the scalars
(ξ k, ξ̃λ ), introduced in (2.9). The vectors Aα have been already introduced in (2.10), and Aα are
their four-dimensional duals. The last brackets in (2.25) contains the four-dimensional three-forms
(C0

3 ,C
a
3 ,C

3
a) which although non-dynamical, contribute to the scalar potential as in ref. [6].

The four dimensional Chern-Simons action becomes

S(4)
CS =

∫
1
2 Im fr F ∧F− (δλ dCλ

2 −δ
kdC̃2

k )∧A− (Iiλ dCλ
2 −Ik

i dC̃2
k )∧dai (2.26)

+
(
a j

∆ jα
)
dAα ∧F + J̃ αdAα ∧F +

(
a j

∆ ja
)
dCa

3 +dC3
a J̃ a ,

with couplings between open and closed fields given by

δλ =
∫

L0
αλ , δ k =

∫
L0

β k, Iiλ =
∫
C4

α̃i∧αλ , Ik
i =

∫
C4

α̃i∧β k , (2.27)

∆ia =
∫

L0
α̃i∧ωa, ∆iα =

∫
L0

α̃i∧ωα , J̃ a =
∫
C4

ω̃a ,

6
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and the imaginary part of the gauge coupling function Im fr =
∫

L0
Csc

3 , that together with (2.19),

fr =
∫

L0

Ωc. (2.28)

The coupling of (Cλ
2 ,C̃2

k ) with A leads, after elimination of the two-forms in terms of their
duals (ξ k, ξ̃λ ), to gaugings under A,

Dξ
k = dξ

k +δ
kA , Dξ̃λ = dξ̃λ +δλ A . (2.29)

These gaugings will be used in the next section for the general deformation case to derive the scalar
potential via D-terms.

The coupling of the brane gauge field AD6 with the R-R gauge field Ai appearing in the Chern-
Simons action induces a kinetic coupling between the two gauge fields. The duality condition
between C3 and C5 has to be satisfied, and to be consistent the action must be slightly modified. In
the original work [1] we perform a careful treatment of this mixing, and it turns out that the mixing
leads to a correction to the gauge coupling function fr,

fcorrected = fr +4ξ
j
∆ jα J̃ α . (2.30)

2.3 Kähler Potential and N = 1 coordinates

To describe the moduli space of N = 1 theories, an object of fundamental importance is the
Kähler potential. The metric of the moduli space should be obtained as a second derivative of the
Kähler potential in terms of the chiral coordinates.

First we look at the open string moduli space. By fixing all the closed moduli, we can treat
the open moduli ξ i = ui + iai as being the only relevant moduli in the theory, and the Kähler
potential Ko will be a function of the fields ξ i that describes the moduli space and gives the metric
Gi j = ∂ 2Ko/∂ξ i∂ ξ̄ j in (2.22). A natural proposal for Ko that gives the correct metric is

Ko =−1
2

∫
C4

J∧ β̂
i
∫
C4

Im(CΩ)∧ α̂i. (2.31)

In [1] we write similar expressions for the Kähler potential in Type IIB theories.
The closed moduli space in Type IIA orientifold compactifications was studied in [7]. It is

locally a direct product of two moduli spaces, MQ×MK , where MK depends on the Kähler
moduli and the B-field andMQ is described by the complex structure moduli, the dilaton and the
moduli from the R-R three-form. In terms of the coordinates introduced in section 2.1, MK is
described by ta from Jc = taωa with Kähler potential

KK(t− t̄) =− ln
[

4
3

∫
Y

J∧ J∧ J
]

=− ln
[

i
6Kabc(t− t̄)a(t− t̄)b(t− t̄)c

]
, (2.32)

where Kabc is the triple intersection of H2
−(Y,R) basis elements, Kabc =

∫
Y ωa ∧ωb ∧ωc. The

coordinates N′k and T ′
λ

of the complex structure moduli space MQ get corrected by the open
moduli as

Nk = Uk−2∂Vk(e
2DKo)+ iξ k , Tλ = Uλ −2∂V λ (e2DKo)+ iξ̃λ , (2.33)

7
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where Vk = 2e2DIm(CFk), V λ = 2e2DIm(CXk) and D the four-dimensional dilaton. The Kähler
potential is still given by

KQ =−2ln
[

i
∫

Y
CΩ∧CΩ

]
, (2.34)

but should be evaluated in terms of ξ i + ξ̄ i, Nk + N̄k and Tλ + T̄λ .

3. General deformations and the D- and F-term potential

In the previous section we considered only the harmonic modes of the open string fields, that
preserve the supersymmetry conditions. In the following we discuss the inclusion of non-harmonic
states, by introducing an infinite basis of fields from the Kaluza-Klein expansion. This infinite
field space gives rise to a non-vanishing scalar potential coming from the DBI action. This scalar
potential can be independently obtained from a holomorphic Superpotential that gives rise to F
terms, and from D terms arising from gaugings of scalar fields.

3.1 An infinite tower of states

When performing a Kaluza-Klein reduction of the D6-brane action to four space-time dimen-
sions now we would like to include all massive modes corresponding to arbitrary deformations of
L0 to Lη . This means that we include sections sI of NL0, the vector space normal to L0, which yield
one-forms in the contraction with J

θI = sIyJ|L0 ∈ Ω
1(L0) . (3.1)

For a compact L0 it is possible to label these one-forms by indices I = 1, . . . ,∞ by considering
the Kaluza-Klein eigenmodes of the Laplacian ∆L0 . The zero modes ∆L0θi = 0 are precisely the
harmonic forms θi introduced in (2.12). But since the basis θI depends explicitly on the metric
inherited form the ambient Calabi-Yau manifold, it will be better to work with a general countable
basis α̂I defined on L0.

The gauge field on the brane, if we allow for massive modes, can be expanded as

AD6 = AJ hJ +aI
α̂I , (3.2)

where hJ ∈C∞(L0) is a basis of functions on L0 and α̂J ∈ Ω1(L0) is a basis of general one-forms
on L0. The field-strength can be directly obtained as dAD6,

FD6 = FJ hJ−AJ ∧dhJ +daI ∧ α̂I + F̃ , F̃ = aI dα̂I + fD6 , (3.3)

where again fD6 ∈ H2(L0,R) is the background flux of FD6 on L0. Via the Hodge decomposition
each one-form α̂I can be uniquely decomposed into a harmonic form, an exact form dĥI and an
co-exact form d∗γ̂I on L0 as

α̂I = µ
i
Iα̃i +dĥI +d∗γ̂I , (3.4)

where α̃i are the b1(L0) harmonic forms introduced in (2.13). The field strength can be thus written
as

FD6 = F I hI +da j ∧ α̃ j +DâI ∧dhI +dãJ ∧d∗γI + F̃ , (3.5)

DâI = dâI−AI , F̃ = ãIdd∗γI + fD6 .

8
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Where we can see that the scalars âI are gauged by AI .
Similar to what was done in section 2.2, the DBI action can be calculated in terms of the

infinite set of fields and gives

S(4)
DBI = −

∫
1
2 Re fr IJ F I ∧∗FJ + e2DGi j dai∧∗da j + e2DG̃IJ dãI ∧∗dãJ

+e2DGIJDâI ∧∗DâJ + e2DĜIJ dη
I ∧∗dη

J +VDBI ∗1 , (3.6)

with potential VDBI given by

VDBI =
e3φ

V2

∫
L0

d∗θη ∧∗d∗θη +
e3φ

V2

∫
L0

(
dθη ∧∗dθη +(F̃−B2−dθ

B
η )∧∗(F̃−B2−dθ

B
η )
)

. (3.7)

Note that the two first terms of the scalar potential are precisely the ones that break special Lagran-
gian condition to the path of deformations, that is, they vanish if we impose deformations η

expanded in terms of harmonic forms. The last term contains the condition on the flux (2.5).
If the flux does not obey F −B2|L0 = 0, the action also acquires a scalar potential that breaks su-
persymmetry. There is also an additional term related to the B2 component along the deformation,
θ B

η = ηyB2.
The next step is to obtain this scalar potential from F and D terms,

VDBI = VF +VD , (3.8)

with

VF =
e3φ

V2

∫
L0

dθη ∧∗dθη +(F̃−B2−dθ
B
η )∧∗(F̃−B2−dθ

B
η ) . (3.9)

and

VD =
e3φ

V2

∫
L0

d∗θη ∧∗d∗θη (3.10)

F-term and Superpotential

The chiral multiplets can induce a scalar potential written in terms of a holomorphic super-
potential W as

VF = eKGIJ
∂ζ IW∂ζ JW . (3.11)

To specify W we define an extension of gauge field AD6 from L0 to C4 (denoted AD6 to distin-
guish from the one defined on L0), such that the extension FD6 = dAD6 satisfies

FD6|L0 = fD6 , FD6|Lη
= fD6 +aIdα̂I . (3.12)

One next defines the superpotential functional

W =
∫
C4

(Jc−FD6)∧ (Jc−FD6) (3.13)

depending on the open string data via the chain and FD6 and on closed string data via the com-
plexified Kähler form (2.6). This is an extension of the functional introduced in ref. [14], since we
have included the B-field through the complex two-form Jc, and is similar in construction to the
Superpotentials from [15].

It is possible to check explictly that W is holomorphic both in the complexified Kähler moduli
ta from (2.6) and the open moduli ξ I , and from (3.11) this Superpotential yields precisely (3.9).

9



P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
3
7

The Effective Action of Branes in CY Orientifolds Daniel Vieira Lopes

Gaugings and D-term

Finally, we also compute the D-term potential in (3.10) induced by the gaugings of the scalars
âIin (3.5) and (ξ k, ξ̃λ ) in the generalization of(2.29),

Dξ
k = dξ

k +δ
k
I AI , Dξ̃λ = dξ̃λ +δIλ AI . (3.14)

More precisely, these scalars are charged under the gauge transformations AI → AI + dΛI of the
U(1) vectors AI as

âI → âI−Λ
I , (ξ k, ξ̃λ )→ (ξ k−δ

k
I Λ

I, ξ̃λ −δλ IΛ
I) (3.15)

The potential arising from D-terms can be calculated from

VD = 1
2 Re f ABDADB , ∂ADI = KAB̄XB

I , (3.16)

where XB
I are the Killing symmetries appearing in the covariant derivatives (3.14). By direct cal-

culation, the only non-vanishing contribution for the scalar potential is

VD =
e3φ

V2

∫
L0

d ∗θη ∧∗d ∗θη . (3.17)

yielding the remaining term obtained from dimensional reduction. The vanishing of the D-term
potential, which is necessary in a supersymmetric vacuum, happens when the two-form ∗θη is
closed.

4. Mirror Symmetry

In this final section we comment on the connection via mirror symmetry of the data obtained
so far to what has been known in the literature for the effective actions of D3, D5 and D7 spacetime
filling branes in Type IIB string theory. First we review mirror symmetry on general orientifold
compactifications, without branes. Then we include brane moduli, and relate each single spacetime
filling D-brane configuration using the SYZ conjecture.

4.1 Calabi-Yau Orientifold background without branes

In Type IIB compactifications, there are two possible orientifold action O, corresponding to
either O3/O7 or O5/O9 orientifold planes,

O1 = ΩpσB(−)FL , σ∗BΩ = −Ω , O3/O7 ,

O2 = ΩpσB , σ∗BΩ = Ω , O5/O9 .
(4.1)

Here σB is a holomorphic (instead of antiholomorphic, as in the Type IIA case) involutive symmetry
σ2

B = 1 of the Calabi-Yau target space, and FL is the space-time fermion number in the left-moving
sector. The fields that survive the acting of (4.1) are not the same for both cases.

As in Type IIA orientifold compactifications, the moduli space in Type IIB also splits locally
in a direct productMK

B ×M
Q
B . NowMK

B contains the complex-structure moduli and, up to leading

10
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order, is not affected by the inclusion of brane moduli, whileMQ
B contains the Kähler structure, B-

field, dilaton and R-R-forms, and recieve corrections from open moduli. Imposing the symmetries
(4.1) to the Calabi-Yau, we expand the surviving fields as

O3/O7
B2 = bk ωk , C2 = ck ωk , k = 1, . . . ,h(1,1)

− (Ỹ ) ,
J = vλ ωλ , C4 = ρλ ω̃λ , λ = 1, . . . ,h(1,1)

+ (Ỹ ) .
(4.2)

O5/O9
B2 = bλ ωλ , C4 = ρλ ω̃λ , λ = 1, . . . ,h(1,1)

− (Ỹ ) ,
J = vk ωk , C2 = C̃2 + ck , k = 1, . . . ,h(1,1)

+ (Ỹ ) .
(4.3)

Note the difference in the definition of the basis labels k and λ . Although it might look confusing,
this notation will allow us a direct mapping to the basis (αk,βλ ) of H3(Y ) in Type IIA.

In terms of the moduli from (4.2) and (4.3), the chiral coordinates for the moduli spaceMQ
B

of the four-dimensional effective action in each orientifold compactification (4.1) are [16]

O3/O7
τ = C0 + ie−φB , Gk = ck− τbk ,
T ′B

λ
= e−φB 1

2Kλρσ vρvσ + iρλ − i 1
2KλklbkGl .

(4.4)

O5/O9
t ′k = e−φBvk− ick , Pλ =Kλρkbρtk + iρλ ,
S = e−φBV+ ih− i

2 ρλ bλ − 1
2 Pλ bλ .

(4.5)

Recall that on a Calabi-Yau there is a rescaling invariance of the holomorphic three-form Ω,
that allows us to fix one of its periods X I , that we will name X0 (and the corresponding cycle
α0). But in orientifold compactifications H3(Y ) splits in H3

+ and H3
−. Whether α0 is in H3

+ or H3
−

will specify if we will discriminate N0 or T0. Consequently, this choice will dictate whether the
Type IIA setup with O6 planes will be mirror to Type IIB with O3/O7 or to O5/O9. The mapping
between the chiral coordinates can be shown to be, in the large complex structure and large volume
limit, [16] (also reviewed in [1])

Type IIB ↔ Type IIA (4.6)

O3/O7 (−iτ,−iGk,−T ′B
λ

) ↔ (N′0,N′k,T ′A
λ

) (4.7)

O5/O9 (t ′k,Pλ ,S) ↔ (N′k,T ′A
λ

,T ′A0 ) . (4.8)

Here we have introduced the label A to Tλ of Type IIA side just to distinguish from the Type IIB
coordinate T B

λ
.

Under mirror symmetry the odd and even cohomologies of a mirror pair of Calabi-Yau mani-
folds are interchanged. The basis H3(Y ) in Type IIA can be therefore mapped to Heven(Ỹ ) as

4.2 Inclusion of Brane Moduli

We now comment on the brane moduli of Type IIB. We do not treat the D9 Brane case, since
it corresponds to Type I String Theory.

A setup with a single D3 brane [4] adds 6 real fields φ I corresponding to the possible move-
ments of the brane in Ỹ , since in the internal space the brane is a point. Using the inherited complex
structure of the Calabi-Yau, one can combine the six deformations into three complex scalars φ i,
i = 1,2,3.

11
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O3/O7

H3(Y ) Heven(Ỹ )

α0 ∈ H3
+(Y ) 1

αk ∈ H3
+(Y ) ωk ∈ H2

−(Ỹ )

αλ ∈ H3
−(Y ) ωλ ∈ H2

+(Ỹ )

β k ∈ H3
−(Y ) ω̃k ∈ H4

−(Ỹ )

β λ ∈ H3
+(Y ) ω̃λ ∈ H4

+(Ỹ )

β 0 ∈ H3
−(Y ) V−1volỸ

O5/O9

H3(Y ) Heven(Ỹ )

α0 ∈ H3
−(Y ) 1

αk ∈ H3
+(Y ) ωk ∈ H2

+(Ỹ )

αλ ∈ H3
−(Y ) ωλ ∈ H2

−(Ỹ )

β k ∈ H3
−(Y ) ω̃k ∈ H4

+(Ỹ )

β λ ∈ H3
+(Y ) ω̃λ ∈ H4

−(Ỹ )

β 0 ∈ H3
+(Y ) V−1volỸ

Table 4.1: The mirror mapping from the basis of H3(Y ) to the basis of even cohomologies of the mirror
Calabi-Yau Ỹ in O3/O7 and O5/O9 orientifold setups.

In a D7-Brane setup [5], the brane wraps a divisor S+ of the Calabi-Yau, and has deformation
moduli χ as well as Wilson line moduli a, since the brane U(1) field A can wrap non-trivial one-
cycles. The “+” in S+ indicates that the brane must wrap an even divisor under the orientifold
projection. In other words, its volume form must be in H4

+(Ỹ ). One can define a basis sA of
NS+ for the deformations that can be mapped to (2,0)-forms SA using the holomorphic 3-form,
SA = sAyΩ. Also, one define a basis γI of (0,1)-forms, with which we decompose χ = χAsA + χ̄ Ās̄Ā

and a = aIγI + āĪ γ̄Ī .
On a Calabi-Yau with O5 plane, we include a D5 brane that wraps a curve Σ+ in Ỹ [6].

Similarly as the D7 brane, the D5-brane has volume form in H2
+(Ỹ ), the deformations are described

by moduli ξ A expanded in a basis of normal vectors sA of NΣ+, and non-trivial configurations of
the U(1) field are described by Wilson line moduli aI expanded in a basis of one-forms γI , with
I = 1, ...,dimH(0,1)

0 (Σ+).
Following [4, 5, 6], the corrections to the N = 1 chiral coordinates (4.4) and (4.5) are

D3 : (τ ′ , Gk , T ′B
λ

) → (τ , Gk , T B
λ

)≡ (τ ′ , Gk , T ′B
λ

+ iωλ īφ
i
φ

̄); (4.9)

D7 : (τ ′ , Gk , T ′B
λ

) → (τ , Gk , T B
λ

)≡ (τ ′+LAB̄χ
A

χ̄
B̄ , Gk , T ′B

λ
+ iCλ IJ̄aI ā̄);

D5 : (t ′k , Pλ , S′) → (t , Pλ , S)≡ (t ′k +Lk
AB̄ξ

A
ξ̄

B̄ , Pλ , S′+CIJ̄aI āJ̄) ,

with couplings

LAB̄ =

∫
S+
SA∧S̄B̄∫

Ỹ Ω∧ Ω̄
, Cλ IJ̄ =

∫
S+

ωλ ∧ γI ∧ γ̄J̄ , Lk
AB̄ =−i

∫
Σ+

sAys̄B̄yω̃
k , CIJ̄ = i

∫
Σ+

γI ∧ γ̄J̄ . (4.10)

Let us now turn to the discussion of mirror symmetry. One question we might ask is, to
which particular D-brane will the D6-Brane be mapped in the mirror Calabi-Yau? The answer
comes easily if we understand mirror symmetry via the SYZ description [17]. It was conjectured
by Strominger, Yau and Zaslow that a Calabi-Yau manifold can be viewed as a three-torus T 3

fibration over a basis. Mirror symmetry would be T-duality along all the three-torus directions.
Naturally, the fibration must contain singularities, since a smooth fibration would imply a manifold
with h1(Y ) 6= 0 from the global 1-cycles on the torus, breaking the Calabi-Yau condition. In the
following analysis we will however look far from the singular points.
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Since T-Duality exchange Neumann and Dirichlet boundary conditions for open strings, it
exchanges the dimensionality of the brane for each T-dualized cycle that the brane wraps on the
three-torus. For example, a D6-Brane that wraps completely the T 3 torus, after T-duality becomes
a point in the dual torus, thus corresponding to a D3 brane. In general, the number of T 3 one-cycles
wrapped by the D6-brane specifies the brane configuration in the mirror side as the following table:

D6 D3 D6 D7 D6 D5 D6 D9
× × × ×

T3 × × × ×
× × × ×

× ×
Base × × × ×

× × × × × ×

Table 4.2: It is summarized how mirror symmetry acts on different brane configurations. The table shows
the six dimensions of the Calabi-Yau manifold, split into base and fiber. × indicates the directions wrapped
by each brane. Different wrappings of a D6-brane correspond to different branes in the Type IIB side.

The SYZ picture of table (4.2) allow us to understand in a simple manner the relation between
the open-moduli-corrected Type IIA chiral coordinates (Nk,T A

λ
), (2.33), and the corrected coor-

dinates in Type IIB, (4.9). For example, the D3 brane induces first order corrections only to the
coordinate T ′B

λ
. If we expect the mirror map (4.6) to hold, the corrections to the Type IIA coordi-

nates should read

−2∂V λ (e2DAKo) ∼= −i(ωλ )i j̄φ
i
φ

j̄ (4.11)

∂V0(e
2DAKo) = ∂Vk(e

2DAKo) = 0 ,

where the∼= indicates a mirror map between the data in the evaluation of the derivative in Type IIA
to the left-hand side in Type IIB. We will show in the following how to see easily the vanishing and
non-vanishing contributions on the Type IIA side of (4.11).

First let us look at the gauge coupling functions. In the limit of vanishing open string moduli
they are given by the analogous to the D6-brane gauge coupling function fD6 = Nk ∫

L αk−Tλ

∫
L β λ ,

fD3 = τ , fD5 = tΣ

∫
Σ+

ωΣ , fD7 = TS

∫
S+

ω̃
S , (4.12)

where Σ+(S+) is the curve(divisor) wrapped by the D5(D7)-brane, and they are obtained from a
basis of homology by

[Σ+] = nk [Σk] , Σk ∈ H+
2 (Y ) and (4.13)

[S+] = nλ [Sλ ] , Sλ ∈ H+
4 (Y ) .

Therefore the forms appearing in (4.12) are, in terms of the cohomology basis, ωΣ = nkωk and
ω̃S = nλ ω̃λ .

From the four internal dimensions the D7-brane wraps, locally two of them are along the
T 3-fiber and the other two on the base, as seen from table 4.2. The mirror D6-brane, on the other
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hand, wraps one dimension on T 3-fiber and two dimensions on the base. It is also inferred from
the gauge coupling function of the D7-brane (4.12) that ω̃λ sits on the brane, therefore having two
“legs” on the 3-Torus and two on the base. We define thus the notation ω̃λ : (bbtt), where b and t
correspond to base and torus components. Table 4.1 shows that ω̃λ on the Type IIB side is mapped
on the Type IIA side to β λ . Therefore, from table 4.2, since β λ must sit on the mirror D6-brane, it
should satisfy β λ : (bbt). β λ must be dual to αλ on the Calabi-Yau manifold Y, thus αλ : (btt). A
similar analysis can be done for the D5 and D3-Branes, from where we obtain αk : (btt), β k : (bbt),
β 0 : (bbb) and α0 : (ttt).

Back to the D3 matching (4.11), we can use the expression for the open Kähler potential (2.31)
and write

∂V0(e
2DAKo) =

1
2

∫
L0

α̂k∧ηyβ
0
∫

L0

β̂
k∧ηyJ . (4.14)

Since the brane wraps the three-torus, both integrands in (4.14) must be of the form (ttt). The
normal directions of this D6-brane are all on the base, so ηyβ 0 : (bb), making the first integral
vanish. Therefore there is no correction to N′0 = iτ coming from ∂V0 Ĝi j. By repeating the analysis
to ∂V λ Ĝi j and ∂Vk Ĝi j one shows that only the latter can be non-vanishing, and analysing in the same
fashion the D5 and the D7 brane cases we obtain the expected corrections from (4.6) and (4.9) .

5. Conclusions

In this work we described some of the main results of [1], on the four-dimensional N = 1
effective action of Type IIA Calabi-Yau orientifolds with a single space-time filling D6-brane. The
local N = 1 moduli space for brane deformations can be nicely described by a Kähler potential,
and we use it to describe the open moduli corrections to the Calabi-Yau complex structure Kähler
potential. We presented an expression for a holomorphic superpotential that reproduces a F-term
scalar potential for supersymmetry-breaking brane deformations, while a D-term potential is in-
duced by gaugings of the scalars. The holomorphic gauge coupling functions for the U(1) brane
field recieve holomorphic corrections coming from kinetic mixings with the R-R vector fields.

In the last part of the paper we related our Type IIA results to the N = 1 data for Type IIB
orientifold compactifications with D3-, D5-, or D7-branes using mirror symmetry. The SYZ pro-
posal to view the internal manifold as a local T 3 fibration allowed us the match of the N = 1 data
for branes and orientifold planes of different dimensionalities with the D6/O6 set-up.

As a possible extension of this work one could incorporate the results here obtained into
scenarios with intersecting stacks of branes. Another interesting possibility is to analyse the equiv-
alent of D6-branes in M- and F-Theory compatifications, as the D6-Branes become encoded in the
geometry, and compare with the results of this work.
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