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1. Introduction

(2+1)-dimensional gravity plays an important role in quantum gravity as a simple model for
higher dimensions. It allows one to investigate important physics questions arising in the quantisation
of the theory in a simplified framework, in which a full and rigorous quantisation of the theory is
possible. This includes conceptual questions such as the role of time and observers in the quantum
theory as well as mathematical questions surrounding quantisation, for an overview see [1].

In addition to its role in quantum gravity, (2+1)-gravity is of interest intrinsically due to its rich
mathematical structure, which includes its close relation to Chern-Simons gauge theory and moduli
spaces of flat connections [2, 3], aspects of three-dimensional geometry [4, 5] as well as knot theory
[6], Reshetikhin-Turaev Invariants [7] and conformal field theory [8].

While the quantisation of the Euclidean case is rather well understood, the quantisation of (2+1)-
gravity with Lorentzian signature proves more difficult. This is due to the fact that (2+1)-gravity can
be viewed as a constrained system and the implementation of the constraints in the quantum theory
is achieved via representation-theoretical methods. For (2+1)-gravity with Lorentzian signature,
the relevant Lie groups and quantum groups whose representations arise in the construction of the
quantum theory are non-compact, which causes difficulties that are not present in the compact cases.

This is a strong motivation to investigate approaches for the quantisation of this theory which
implement the constraints directly into the classical theory via gauge fixing and then quantise the
resulting classical description. An independent motivation to study the effect of gauge fixing on
the classical theory are indications that gauge fixing is related to the inclusion of an observer in
the classical and quantum theory [9, 10]. The inclusion of observers into the quantum theory is an
important conceptual question of quantum gravity, which can be studied in detail in this model.

A further motivation is the debate surrounding quantum group symmetries and non-commu-
tative structures in quantum gravity such as κ-Poincaré symmetries or Drinfel’d doubles [11, 12, 13,
14, 15, 16, 17]. While various models in quantum gravity exhibit quantum group symmetries, these
quantum group symmetries are often associated with certain extended or enlarged Hilbert spaces,
from which the gauge-invariant Hilbert space is obtained via the imposition of constraints. It is
therefore unclear how much of this quantum group symmetry survives constraint implementation
and if these symmetries are generic features of quantum gravity or merely technical tools in the
construction of the quantum theory. It seems plausible that a model containing an observer would
be useful in providing an answer to this question.

In this article, we summarise our results [10, 18] on gauge fixing in (2+1)-dimensional gravity
with vanishing cosmological constant and discuss their physical interpretation and their implications
in quantum gravity. We consider a rather general set of gauge fixing conditions based on two
point particles in the spacetime. These gauge fixing conditions have a direct physical interpretation
as conditions that specify an observer in the spacetime. Via Dirac’s gauge fixing procedure, we
then derive an explicit description of the resulting Dirac bracket. We show that the underlying
mathematical structures that define this bracket are classical dynamical r-matrices for the Lie
algebra iso(2,1). These classical dynamical r-matrices depend on two variables which have a direct
interpretation as energy and angular momentum of the spacetime as measured by the associated
observer.

We then discuss how different gauge fixing conditions are related by dynamical Poincaré
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transformations, which generalise the usual gauge transformations of classical dynamical r-matrices
in the literature [19]. We show that these transformations allow one to map each Dirac bracket and
the associated dynamical r-matrices to two simple standard solutions for almost all values of the
dynamical variables. These standard solutions have a direct interpretation as the centre-of-mass
frame of the spacetime.

Our article is structured as follows. In Section 2, we summarise the combinatorial description
of the phase space of (2+1)-gravity which plays an important role in the quantisation of the theory
and serves as the starting point for our gauge fixing procedure. We give a detailed discussion of its
geometrical interpretation and show how the variables that parametrise the phase space describe the
construction of spacetimes from regions in Minkowski space.

In Section 3 we show how this description of the phase space can be interpreted as a constrained
system. We discuss the gauge fixing conditions imposed to obtain the gauge-invariant phase space
of the theory and discuss how gauge fixing the theory amounts to specifying an observer. In Section
4, we determine the Dirac bracket associated with these gauge fixing conditions and show that it is
given by classical dynamical r-matrices. We find that different choices of gauge fixing conditions
are related by dynamical Poincaré transformations which depend on the total energy and angular
momentum of the universe, as measured by this observer. We then discuss how these transformations
allow one to obtain a centre-of-mass frame description of the spacetime, in which the centre of
mass appears as an effective particle at rest at the origin or a “tachyonic” particle with a spacelike
worldline. Section 5 contains our outlook and conclusions.

2. The phase space of (2+1)-gravity

2.1 Notations and conventions

We denote by e0 = (1,0,0), e1 = (0,1,0), e2 = (0,0,1) the standard basis of R3 and use
Einstein’s summation convention. Unless stated otherwise, all indices run from 0 to 2 and are
raised and lowered with the three-dimensional Minkowski metric η = diag(1,−1,−1). We write
εabc for the totally antisymmetric tensor in three dimensions with ε012 = 1. For three-vectors
x,y∈R3, we write η(x,y) = x ·y = ηabxayb, x2 = x ·x and x∧y for the three-vector with components
(x∧ y)a = εabcxbyc.

The proper orthochronous Lorentz group in three dimensions is the group SO+(2,1) ∼=
PSL(2,R) with Lie algebra so(2,1) ∼= sl(2,R). In the following, we write Ad for its adjoint
representation, which coincides with its representation by SO+(2,1) matrices. The Poincaré group
in three dimensions is the semidirect product of the proper orthochronous Lorentz group and R3:
ISO(2,1)≡ SO+(2,1)nR3. We parametrise elements of ISO(2,1) as

(u,a) = (u,0) · (1,− j) = (u,−Ad(u) j) with u ∈ SO+(2,1), j,a ∈ R3,

and the group multiplication law then takes the form

(u1,a1) · (u2,a2) = (u1 ·u2,a1 +Ad(u1)a2).

We fix a basis {Ja,Pa}a=0,1,2 of the Lie algebra iso(2,1), in which the Lie bracket takes the form

[Ja,Jb] = ε c
ab Jc, [Ja,Pb] = ε c

ab Jc, [Pa,Pb] = 0.
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The basis elements Ja are the generators of the Lorentz transformations, the basis elements Pa the
generators of the translations. An Ad-invariant symmetric bilinear form on iso(2,1), which defines
the Chern-Simons formulation of (2+1)-gravity, is given by

〈Ja,Pb〉= ηab, 〈Ja,Jb〉= 〈Pa,Pb〉= 0. (2.1)

We denote by PL
a ,P

R
a the right- and left-invariant vector fields on ISO(2,1) associated with the

translations and by JL
a ,J

R
a the ones associated with the Lorentz transformations. More generally, for

any basis {Ta}a=0,...,5 of iso(2,1), we define

La f (h) =
d
dt

∣∣∣∣
t=0

f (e−tTa ·h), Ra f (h) =
d
dt

∣∣∣∣
t=0

f (h · etTa) ∀ f ∈C∞(ISO(2,1)), (2.2)

where e : iso(2,1)→ ISO(2,1), x 7→ ex is the exponential map for ISO(2,1).

2.2 Phase space and Poisson structure

In the following we investigate gauge fixing in (2+1)-gravity with vanishing cosmological
constant in its formulation as a Chern-Simons gauge theory with gauge group ISO(2,1) [3]. We
consider spacetimes of topology M ≈ R×Sg,n, where Sg,n is an oriented surface of genus g with n
punctures representing massive point particles with spin.

It is shown in [3] that the physical or gauge-invariant phase space P of ISO(2,1)-Chern-
Simons theory on a manifold M ≈R×Sg,n is the moduli space of flat ISO(2,1)-connections on Sg,n.
This phase space can be parametrised in terms of group homomorphisms h : π1(Sg,n)→ ISO(2,1)
from the fundamental group π1(Sg,n) into ISO(2,1) that map the homotopy equivalence class of
a loop mi around the ith puncture to a fixed ISO(2,1)-conjugacy class Ci determined by the mass
µi ∈ [0,2π) and spin si ∈ R of the associated particle [20]:

h(mi) ∈ Ci = {h · exp(−µiJ0− siP0) ·h−1 | h ∈ ISO(2,1)}.

Two group homomorphisms h : π1(Sg,n)→ ISO(2,1) describe the same physical state if and only if
they are related by conjugation with ISO(2,1). This implies that the gauge-invariant phase space of
the theory is given by

P = HomC1,...,Cn

(
π1(Sg,n), ISO(2,1)

)
/ ISO(2,1)

= {h : π1(Sg,n)→ ISO(2,1) | h(mi) ∈ Ci}/ ISO(2,1). (2.3)

A set of generators of the fundamental group π1(Sg,n) is depicted in Figure 1. It consists of
a loop mi (i = 1, . . . ,n) around each puncture and the a- and b-cycles a j,b j ( j = 1, . . . ,g) for each
handle. These generators are subject to a single defining relation which states that the curve c in
Figure 1 is contractible:

π1(Sg,n) = 〈m1, . . . ,mn,a1,b1, . . . ,ag,bg | bga−1
g b−1

g ag · · ·b1a−1
1 b−1

1 a1mn · · ·m1 = 1〉.

By characterising group homomorphisms h : π1(Sg,n)→ ISO(2,1) in terms of the images
Mi = h(mi), A j = h(a j), B j = h(b j) of the generators, one obtains a parametrisation of the phase

4



P
o
S
(
C
O
R
F
U
2
0
1
1
)
0
5
1

Gauge fixing in (2+1)-gravity Catherine Meusburger

m1
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a jan

b1b j
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Figure 1: Generators of the fundamental group for an n-punctured genus g surface Sg,n.

space P in terms of ISO(2,1)-matrices:

P = {(M1, . . . ,Mn,A1,B1, . . . ,Ag,Bg) ∈ ISO(2,1)n+2g |
Mi ∈ Ci, [Bg,A−1

g ] · · · [B1,A−1
1 ] ·Mn · · ·M1 = 1}/ ISO(2,1). (2.4)

In the following, we refer to the images of elements d ∈ π1(Sg,n) under these group homomorphisms
as holonomies and denote them by the associated capital letter D = h(d) for d ∈ π1(Sg,n).

The moduli space P of flat ISO(2,1)-connections is equipped with a symplectic structure
that is induced by the canonical symplectic structure associated with the Chern-Simons action
[21]. A convenient description of this Poisson structure which serves as the starting point for its
quantisation is derived in [22, 23]. In this description, the Poisson structure on the moduli space
is characterised in terms of an auxiliary, non-canonical Poisson structure on an extended phase
space Pext = ISO(2,1)n+2g. This Poisson structure depends on the choice of a classical r-matrix
r = rαβ Tα ⊗Tβ ∈ iso(2,1)⊗ iso(2,1) and is given in terms of a Poisson bivector:

{F,G}= Br
FR(dF⊗dG) ∀F,G ∈C∞(ISO(2,1)n+2g),

Br
FR = 1

2 rαβ
(a)

( n

∑
i=1

LMi
α +RMi

α +
g

∑
j=1

LA j
α +RA j

α +LB j
α +RB j

α

)
⊗( n

∑
i=1

LMi
β +RMi

β +
g

∑
j=1

LA j

β +RA j

β +LB j

β +RB j

β

)
+ 1

2 rαβ
(s)

( n

∑
i=1

RMi
α ∧RMi

β +
g

∑
j=1

RA j
α ∧LA j

β +LB j
α ∧LB j

β

+∑
1≤i< j≤n

(
LMi

α +RMi
α
)
∧
(

LM j

β +RM j

β

)
+

n

∑
i=1

g

∑
j=1

(
LMi

α +RMi
α
)
∧
(

LA j

β +RA j

β +LB j

β +RB j

β

)
+∑
1≤i< j≤g

(
LAi

α +RAi
α +LBi

α +RBi
α
)
∧
(

LA j

β +RA j

β +LB j

β +RB j

β

))
, (2.5)

where rαβ
(s) =

1
2(r

αβ +rβα), rαβ
(a) =

1
2(r

αβ−rβα) denote the symmetric and antisymmetric component
of r and LX

α ,R
X
α the right- and left-invariant vector fields (2.2) associated with a basis {Tα}α=0,...,5

of iso(2,1) and with the different copies of ISO(2,1). It is shown in [22] that this bivector defines a
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Poisson structure on ISO(2,1) if and only if r is a classical r-matrix for iso(2,1), i.e. a solution of
the classical Yang-Baxter equation

[[r,r]] := [r12,r13]+ [r12,r23]+ [r13,r23] = 0,

with r12 = rαβ Tα ⊗Tβ ⊗1, r13 = rαβ Tα ⊗1⊗Tβ , r23 = rαβ 1⊗Tα ⊗Tβ . In this case, the resulting
Poisson structure induces a symplectic structure on the moduli space P , which agrees with the
canonical symplectic structure induced by the Chern-Simons action if and only if the symmetric
part of r is dual to the Ad-invariant symmetric form (2.1) in the Chern-Simons action:

rS ≡ rαβ
(s) Tα ⊗Tβ = 1

2(Pa⊗ Ja + Ja⊗Pa).

In the application to (2+1)-gravity with vanishing cosmological constant, a natural choice for the
r-matrix which satisfies this condition is given by r = Pa⊗ Ja. A detailed discussion of the Poisson
structure on ISO(2,1)n+2g obtained from this choice of r-matrix is given in [24], see also [17].

2.3 Geometrical interpretation

Although the relation between ISO(2,1)-Chern Simons theory and (2+1)-gravity with vanishing
cosmological constant is subtle [25, 26], the link between the two theories is close enough to provide
us with a direct geometrical interpretation of the description of the gauge-invariant phase space P

in formula (2.4).
As the Ricci tensor of a three-dimensional manifold determines its curvature uniquely, vacuum

solutions of the three-dimensional Einstein equations with vanishing cosmological constant are
flat and locally isometric to Minkowski space. The theory has no local gravitational degrees of
freedom and only a finite number of non-local degrees of freedom due to the presence of matter
(point particles) and the topology of the spacetime. These non-local degrees of freedom are encoded
in Poincaré transformations that describe the construction of spacetimes from open regions in
Minkowski space and are closely related to the holonomies in the previous subsection.

The construction of spacetimes from regions in Minkowski space is illustrated by the simplest
example, namely the spacetime associated with a single point particle in Minkowski space. The
metric associated with a particle in three-dimensional Minkowski space that is at rest at the origin
was derived in [27], see [28] for earlier results on the Euclidean case. It is shown there that in
cylindrical coordinates (τ,ρ,φ) it takes the form

ds2 = (dτ + s
2π dφ)2− 1

(1− µ
2π )

2 dρ2−ρ2dφ 2, (2.6)

where µ ∈ [0,2π) is the mass and s ∈ R the spin of the particle. By introducing a new set of
coordinates (t,r,ϕ) that is related to the cylindrical coordinates (τ,ρ,φ) via

t(τ,ρ,φ) = τ + s
2π φ , r(τ,ρ,φ) =

ρ
1− µ

2π
, ϕ(τ,ρ,φ) = (1− µ

2π )φ ,

one finds that the metric (2.6) can be related to the Minkowski metric

ds2 = dt2−dr2− r2dϕ2.

6
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r
φ

t

s

µ

Figure 2: Conical spacetime associated with a point particle. The two horizontal black lines depict the
identification of the boundary of the wedge according to (t,r,0)∼ (t + s,r,µ).

However, this metric is only locally, not globally, isometric to the Minkowski metric. This is
apparent from the range of the variable ϕ , which is no longer [0,2π) but [0,2π−µ). The metric thus
describes a conical spacetime obtained by cutting out a wedge of Minkowski space and identifying
its boundary according to (t,r,0)∼ (t + s,r,µ) as shown in Figure 2. This identification is given by
the action of the Poincaré transformation M = (exp(−µJ0),−se0).

By applying a Poincaré transformation (v,x) ∈ ISO(2,1), this description of the point particle
metric is easily generalised to particles whose worldline is a general timelike geodesic in Minkowski
space. Such a geodesic can be parametrised as g(T ) = T p̂+ x with x · p = 0, p̂2 = 1, where T is
the eigentime of the particle, p̂ its unit momentum three-vector and x the position of the particle
at T = 0. In this case, the identification of the boundaries of the wedge is given by a Poincaré
transformation M ∈ ISO(2,1) which takes the form

M = (u,−Ad(u) j) = (v,x) · (exp(−µJ0),−se0) · (v,x)−1, u,v ∈ SO+(2,1), j,x ∈ R3.

The relation between the variables u, j and v,x is given by

u = v · exp(−µJ0) · v−1 = exp(−µ p̂cJc), j = sp̂+
(
1−Ad(u−1)

)
x. (2.7)

The quantity p = µ p̂ = µ Ad(v)e0 has the interpretation of a momentum three-vector of the particle,
whose 0-component describes its energy and whose 1- and 2-component its momentum. The quantity
j can be viewed as a generalised angular momentum three-vector. Its 0-component describes the
angular momentum of the particle, its 2- and 3-component are related to Lorentz boosts. From
the formula above it is apparent that the angular momentum three-vector is composed of two
components. The first is parallel to its momentum three-vector and given by the particle’s spin. The
second component is orthogonal to the momentum three-vector and encodes the angular momentum
of the particle due to its motion. In the limit µ → 0, one has j→ sp̂+ p̂∧ x and hence recovers the
usual expression for the angular momentum.

The general case of a spacetime M ≈R×Sg,n of genus g with n point particles is more involved,
but the construction of spacetimes by identifying the boundary of an open region in Minkowski
space is similar. The main difference is that the associated region in Minkowski space is no longer
obtained by cutting out a wedge but takes a more complicated form depicted schematically in Figure
3. Its boundary is given by 2(n+ 2g) plane segments in Minkowski space, which are identified
pairwise by certain Poincaré transformations. These Poincaré transformations correspond to the
images of the generators of the fundamental group π1(Sg,n) under the group homomorphisms

7
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g1

g2

g3

g4

x1

s1
µ1 h(m1)

h(m2)

h(m3)

h(m4)

h(a1)

h(b1)

h(a2)h(b2)

Figure 3: Domain in Minkowski space for a spacetime of genus g = 2 with n = 4 particles.

g1

g2

g3

x1

g4

s1

s2

µ1

µ2

µ3

µ4

h(m1)

h(m2)

h(m3)

h(m4)

−→

g3

g4

g1

g2

Figure 4: Gluing of a spacetime of genus g = 0 with n = 4 point particles.

h : π1(Sg,n)→ ISO(2,1) in formula (2.4). The associated spacetime is obtained by gluing these
sides pairwise as shown in Figures 3, 4.

The condition that the holonomies for the loops mi around the punctures lie in fixed conjugacy
classes Ci are needed to ensure that the identification of the sides corresponding to point particles
gives rise to a cone with the correct opening angle and time shift defined by the mass and spin of the
particle. The condition that arises from the defining relation of the fundamental group ensures that
all black vertices in Figure 3 are mapped to a single point in the spacetime and guarantees that the
gluing procedure gives rise to a flat Lorentzian manifold with conical singularities. The holonomies
from the previous subsection thus have a direct interpretation as gluing data that describes the
construction of spacetimes from regions in Minkowski space.

Given a region in three-dimensional Minkowski space whose sides are identified by the holo-
nomies h(mi),h(a j),h(b j), one obtains another such region by applying a Poincaré transformation

8
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g ∈ ISO(2,1) to it. The sides of the image are then identified by the images of the holonomies
under the diagonal action of ISO(2,1) on C1× . . .×Cn× ISO(2,1)2g: h(mi) 7→ g · h(mi) · g−1,
h(a j) 7→ g · h(a j) · g−1, h(b j) 7→ g · h(b j) · g−1. As Poincaré transformations are isometries of
Minkowski space, the spacetimes obtained by gluing these two regions are isometric and hence
describe the same physical state. This motivates the appearance of the quotient by the action of
ISO(2,1) in formulas (2.3), (2.4). Poincaré transformations which act diagonally on all holonomies
have the status of gauge transformations: they are transitions between two different parametrisations
of the same physical state.

3. Gauge fixing and observers

3.1 The phase space of (2+1)-gravity as a constrained system

Formula (2.4) implies that the description of the phase space of (2+1)-gravity in terms of the
auxiliary Poisson structure (2.5) can be viewed as a constrained system in the sense of Dirac. From
this viewpoint, one has an extended phase space Pext = ISO(2,1)n+2g, equipped with the Poisson
structure (2.5). The physical (or gauge-invariant) phase space is obtained from this extended phase
space by imposing a set of 2n constraints which restrict the holonomies of the particles to the
conjugacy classes Ci and an ISO(2,1)-valued constraint which arises from the defining relation of
the fundamental group π1(Sg,n). The former can be expressed as

Tr(uMi)− cos µi ≈ 0, Tr( ja
Mi

Ja ·uMi)− si sin µi ≈ 0. (3.1)

The latter can be reformulated in terms of six constraints

Tr(Ja ·uC)≈ 0, ja
C ≈ 0 ∀a ∈ {0,1,2}, (3.2)

where (uC,−Ad(uC) jC) is the holonomy along the curve c in Figure 1:

(u−1
C , jC) := M−1

1 · · ·M
−1
n [A−1

1 ,B1] · · · [A−1
g ,Bg]. (3.3)

It is shown in [24, 10] that the two constraints (3.1) associated with each particle are Casimir
functions of the Poisson structure (2.5) and hence do not generate any gauge transformations. In
contrast, the six constraints (3.2) form a set of six first-class constraints. The associated gauge
transformations these constraints generate via the Poisson bracket are the diagonal Poincaré trans-
formations above which act on all holonomies by conjugation.

This implies that the description of the phase space in (2.4) with its canonical Poisson structure
can be obtained from Fock and Rosly’s Poisson structure (2.5) on the ambient space Pext =

ISO(2,1)n+2g by imposing the 2n Casimir-constraints (3.1) which implement the restriction of the
holonomies Mi to the conjugacy classes Ci and the six first-class constraints (3.2) associated with
the defining relation of the fundamental group π1(Sg,n).

3.2 Constraints and gauge fixing conditions

The description of the moduli space of flat connections in terms of the Poisson structure (2.5)
has a direct geometrical interpretation and plays an important role as the starting point of the combi-
natorial quantisation formalism for Chern-Simons gauge theory. From the viewpoint of constrained

9
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systems, combinatorial quantisation is a “constraint implementation after quantisation” approach
rooted in Dirac’s constraint quantisation prescription. The formalism proceeds by first quantising
the Poisson structure (2.5) on the ambient space and then imposing the quantum counterpart of the
constraints (3.2) in the resulting quantum theory.

This formalism is well-established and proven to work for Chern-Simons theory with com-
pact, semisimple gauge groups. In this case, the resulting quantum theory is given in terms of
the representation theory of q-deformed universal enveloping algebras at roots of unity, and the
implementation of the constraints is achieved via representation-theoretical methods. The formalism
has been generalised to Chern-Simons theories with certain non-compact gauge groups [29, 34].
However, there is no general formalism to treat the non-compact cases, because the representation
theory of the associated quantum groups is more involved.

For this reason, it is desirable to also pursue other quantisation approaches which impose
the constraints directly into the classical theory via gauge fixing and then attempt to quantise the
resulting gauge-fixed theory. In the following, we apply the first step of this procedure to the moduli
space of flat ISO(2,1)-connections. We gauge-fix the Poisson structure (2.5) on the ambient space
Pext by imposing a set of six gauge fixing conditions associated with the constraints (3.2) following
Dirac’s gauge fixing procedure.

Dirac’s gauge fixing procedure is a formalism that allows one to modify the Poisson structure
of a constrained system in such a way that constraints and gauge fixing conditions are Casimir
functions of this modified Poisson bracket, called the Dirac bracket. We give a brief summary of
this formalism for the case where all constraints are first-class and irreducible.

A constrained system with first-class constraints is a Poisson manifold (M,{ , }) with constraint
functions {φi}i=1,...,k ⊂C∞(Pext) such that the Poisson bracket of two constraint functions vanishes
on the constraint surface

⋂k
i=1 φ−1

i (0) ⊂M. Gauge fixing consists in imposing an additional set
of constraints {χ j} j=1,...,k ⊂C∞(Pext), the gauge fixing conditions, such that the following two
requirements are met:

1. It is possible to map any point p ∈
⋂k

i=1 φ−1
i (0) on the constraint surface to one for which the

gauge fixing conditions hold via the flows on M generated by the constraint functions φi.

2. The gauge fixing conditions must break the gauge symmetries completely. In other words, the
matrix C = ({φi,χ j})i, j=1,...,k must be invertible at least on the constraint surface.

If these conditions are satisfied, the Dirac matrix D = ({Ci,C j})i, j=1,...,2k obtained by combining the
constraints φi and the gauge fixing conditions χ j into a set of 2k constraints {Ci}i=1,...,2k is invertible.
The Dirac bracket { ,}D is given in terms of its inverse as

{F,G}D := {F,G}−
2k

∑
i, j=1
{F,Ci}(D−1)i j{C j,G} ∀F,G ∈C∞(M).

and defines a Poisson structure on the constraint surface for which the constraints φi and gauge
fixing conditions χi are Casimir functions. This allows one to strongly impose these constraints in
the classical theory.

In the application to the phase space of (2+1)-gravity, the Poisson manifold (M,{ ,}) is the
manifold Pext = ISO(2,1)n+2g with the Poisson bracket (2.5) and the constraint functions φi are

10
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given by (3.2). The associated gauge transformations these constraints generate via the Poisson
bracket correspond to the diagonal action of ISO(2,1) on ISO(2,1)n+2g and encode the gauge
freedom of applying a Poincaré transformation to the regions in Minkowski space from which
spacetimes are obtained by gluing.

This gauge freedom is linked to the absence of a preferred observer in general relativity. Physical
measurements of quantities such as the distance between certain particles or quantities associated
with the geometry of the handles on Sg,n depend on the choice of the observer. If one restricts
attention to observers in free fall, each observer corresponds to a timelike geodesic in Minkowski
space and the Poincaré transformations relating different domains in Minkowski space describe the
transitions between different observers. Eliminating this gauge freedom via gauge fixing conditions
thus corresponds to specifying an observer.

In the absence of a preferred reference frame, the only physically meaningful way of specifying
an observer is with respect to the geometry of the spacetime itself, for instance with respect to the
geometry of a handle or two point particles contained in the spacetime. A detailed discussion of this
issue is given in [10] and in [9] for the case of vacuum spacetimes.

In the following, we will restrict attention to gauge fixing conditions based on the motion of
two point particles. As permutations of the particles correspond to the action of the braid groups on
Sg,n and the associated surface Sg,n \D with a disc removed and these braid groups act by Poisson
isomorphisms [24], we can suppose without restriction of generality that these point particles are
the ones associated with the holonomies M1,M2.

A set of particularly simple gauge fixing condition of this type is investigated in [10]. These
gauge fixing conditions impose that the first particle is at rest at the origin and that the second
particle moves in the direction of the x1-axis in such a way that its distance to the first particle is
minimal at the intersection point of the two worldlines with the x1x2-plane. These conditions on the
particles’ worldlines are depicted in Figure 5.

After such a gauge fixing condition is imposed, only two of the original eight degrees of freedom
associated with the two particles remain: their relative velocity v= tanhψ and their minimal distance
α , as indicated in Figure 5. These two quantities give a Poincaré-invariant characterisation of the
resulting two-particle system and are given as conjugation-invariant functions of the product M2 ·M1

of their holonomies. The variable ψ depends only on its Lorentzian component while α involves
both, its Lorentzian and translational component, and is linear in the latter.

Although these gauge fixing conditions from [10] and the parametrisation of the two Poincaré-
invariant degrees of freedom of the two-particle system are motivated by their direct physical
interpretation, they are not unique. In the following, we therefore consider more general gauge
fixing conditions which are subject to the following two structural requirements:

1. The gauge fixing conditions are functions of the holonomies M1,M2.

2. The gauge fixing conditions involve three conditions that depend only on the Lorentzian
components of M1,M2 and three conditions that are linear in the variables jM1

, jM2
:

2

∑
i=1

Θ
Mi
a ja

Mi
≈ 0,

2

∑
i=1

Γ
Mi
a ja

Mi
≈ 0,

2

∑
i=1

Ω
Mi
a ja

Mi
≈ 0, ∆1 ≈ 0, ∆2 ≈ 0, ∆3 ≈ 0, (3.4)
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x0 = gM1

x1

x2

pM1

pM2gM2

ψ
α

Figure 5: The two dynamical variables ψ,α characterising the relative motion of two point particles.

where ΘMi
a ,ΓMi

a ,ΩMi
a ,∆ j ∈ C∞(SO+(2,1)× SO+(2,1)) and the two copies of the Lorentz

group SO+(2,1) are identified with the Lorentzian components of the holonomies M1 and M2

Both conditions are well-motivated. The first condition ensures that the gauge fixing conditions
have a direct physical interpretation by specifying an observer with respect to the motion of two
particles. The second is motivated by the wish to preserve the canonical N-grading of the Poisson
structure (2.5) which is associated with a physical dimension and plays an important role in the
quantisation of the theory.

We also allow more freedom in the parametrisation of Poincaré-invariant degrees of freedom of
the two-particle system by admitting general Poincaré-invariant functions of the product M2 ·M1 =

(u12,−Ad(u12) j12) defined as follows:

ψ = f (Tr(u12)), α = g(Tr(u12))Tr( ja
12Ja ·u12)+h(Tr(u12)), (3.5)

with diffeomorphisms f ,g ∈C∞(R) and a smooth function h ∈C∞(R). As before, the variable ψ
characterises the Lorentzian component of the group element M2 ·M1 and α depends on both, its
Lorentzian and translational component. It follows directly from the cyclic invariance of the trace
that both quantities are Poincaré-invariant and hence independent of the choice of observer.

4. The Dirac bracket

As the phase space of (2+1)-gravity is given as a constrained system with six first-class
constraints, the construction of the associated Dirac bracket involves inverting a (12×12)-Dirac
matrix. This could lead one to expect that the calculation of this Dirac bracket is not feasible or
that the resulting Dirac bracket takes a very complicated form. However, it turns out that this
is not the case. The Dirac bracket associated with the constraints (3.2) and general gauge fixing
conditions of the form (3.4) is derived in [18]. It is shown there that it extends canonically to a
Poisson structure on R2× ISO(2,1)n+2g−2, where R2 is parametrised by the variables ψ,α from
(3.5) and ISO(2,1)n+2g−2 by the non-gauge-fixed holonomies M3, . . . ,Mn,A1,B1, . . . ,Ag,Bg.

12
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Theorem 4.1 ([18]). The constraints (3.2) and gauge fixing conditions (3.4) define a Poisson struc-
ture { , }D on the gauge-fixed constraint surface that extends to a bracket on R2× ISO(2,1)n+2g−2.
This bracket takes the following form:

1. The Dirac bracket of ψ and α vanishes: {ψ,α}D = 0, and for X ∈ {M3, . . . ,Bg} and f ∈
C∞(SO+(2,1)n+2g−2):

{ψ, f}D = 0, {ψ, jX}D =−
(
1−Ad(u−1

X )
)

qψ ,

{α, f}D = ∑
Y∈{M3,...,Bg}

qa
α(J

R,Y
a + JL,Y

a ) f , {α, jX}D =−
(
1−Ad(u−1

X )
)
qθ −qα ∧ jX ,

with qψ ,qα ,qθ : R2→ R3 satisfying qψ ∧qα = 0 and ∂αqψ = ∂αqα = ∂ 2
αqθ = 0.

2. For F,G ∈C∞(ISO(2,1)n−2+2g) we have {F,G}D = Br
FR(dF⊗dG), where Br

FR is the Poisson
bivector (2.5) without the holonomies M1,M2 and r : R2→ iso(2,1)⊗ iso(2,1) is of the form

r(ψ,α) = Pa⊗ Ja−V bc(ψ)(Pb⊗ Jc− Jc⊗Pb)+ εbcdmd(ψ,α)Pb⊗Pc,

where V : R→Mat(3,R) and m : R2→ R3 satisfies ∂ 2
αm = 0.

As apparent from this theorem, the resulting Dirac bracket has a very simple form and is
closely related to the original Poisson structure (2.5) on the extended phase space Pext. The Poisson
brackets of functions of the non-gauge-fixed holonomies are again given by the Poisson bivector
(2.5). The only difference is that the holonomies of the two gauge-fixed particles are removed
from the description and instead of a classical r-matrix, this Poisson bivector is now determined
by a map r : R2→ iso(2,1)⊗ iso(2,1) whose arguments are the two Poincaré-invariant variables
ψ,α associated with the gauge-fixed particles. The variables ψ and α Poisson-commute, and their
Poisson brackets with functions of the residual holonomies are given by qψ ,qα ,qθ : R2→ R3.

It is shown in [18] that the vector qψ is closely related to the total momentum p12 of the two
gauge-fixed particles and qθ to their angular momentum j12 given as in (2.3), (2.7) as a function of
M2 ·M1. The group element M2 ·M1 defines a cone in Minkowski space whose axis is the unique
geodesic that is stabilised by M2 ·M1 and whose deficit angle and time shift are determined by,
respectively, ψ and α . However, unlike in the case of point particles, the Lorentzian component
u12 ∈ SO+(2,1) of the holonomy M2 ·M1 is not required to be elliptic, but can become parabolic or
hyperbolic. This implies that the axis of the associated cone can also become a light- or spacelike
geodesic. This occurs when the relative velocity of the two gauge-fixed particles becomes large and
corresponds to the formation of Gott pairs [30].

The other main difference is that the mass and spin variables associated with M2 ·M1 via (3.1)
are no longer fixed parameters but given as functions of the variables ψ and α . The deficit angle and
time shift associated to this cone are therefore dynamical: they depend on the relative velocity and
minimal distance of the two gauge-fixed particles. The former is determined by the parameter ψ and
encoded in the Lorentzian component of M2 ·M1, the latter by α and involves also the translational
component.

By imposing the constraints (3.3), one identifies the Poincaré element M2 ·M1 that characterises
this cone with the holonomy of a curve around all non-gauge-fixed particles and handles, as shown
in Figure 6:

M2 ·M1 ≈M−1
3 · · ·M

−1
n · [A−1

1 ,B1] · · · [A−1
g ,Bg] ∈ ISO(2,1).
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1

2

34n

c12
cR

12

g

Figure 6: The homotopic curves c12 and cR corresponding to the holonomies M12 = M2 ·M1 and MR =

M−1
3 · · ·M−1

n · [A−1
1 ,B1] · · · [A−1

g ,Bg].

This amounts to a description of the centre of mass of the residual system defined by the non-gauge-
fixed particles and handles as an effective particle. The geodesic stabilised by the Poincaré element
M2 ·M1 describes the motion of the centre of mass with respect to the observer determined by the
two gauge-fixed particles. The two parameters ψ , α determine, respectively, its energy and angular
momentum as measured by this observer.

4.1 Classical dynamical r-matrices

The simple form of the Dirac bracket and its close relation to the Poisson bracket (2.5) on
the extended phase space space suggest that there is an underlying mathematical structure which
ensures the consistency of this description and implies that the Dirac bracket satisfies the Jacobi
identity. For the original bracket (2.5) on the extended phase space Pext, this is ensured by the
classical Yang-Baxter equation. It is shown in [18] that a generalisation of this result also holds for
the Dirac bracket. The main difference is that the relevant mathematical structure is no longer a
classical r-matrix, i.e. a solution of the classical Yang-Baxter equation, but a classical dynamical
r-matrix, which solves the classical dynamical Yang-Baxter equation.

Theorem 4.2 ([18]). The bracket from Theorem 4.1 satisfies the Jacobi identity if and only if the
function r : R2→ iso(2,1)⊗ iso(2,1) is a solution of the classical dynamical Yang-Baxter equation

[r12,r13]+ [r12,r23]+ [r13,r23] =

x(1)α ∂α r23− x(2)α ∂α r13 + x(3)α ∂α r12 + x(1)ψ ∂ψ r23− x(2)ψ ∂ψ r13 + x(3)ψ ∂ψ r12,

with xα = qa
αJa +qa

θ Pa, xψ = qa
ψPa, and of the following additional equations:

0 = qa
ψ + εa

bc qb
ψ∂ψqc

ψ +qb
ψV a

b −qa
ψV b

b ,

0 = εa
dh qd

αV bh + εb
dh qd

αV ah + εcde qc
αV deηab− εb

de qa
αV de +qa

α∂αqb
θ −qb

ψ∂ψqa
α ,

0 = qa
θ + εa

bc qb
θ ∂αqc

θ + εa
bc qb

ψ∂ψqc
θ − εa

bc mbqc
α +qd

θV a
d −qa

θV d
d .

 (4.1)

It is shown in [18] that the classical dynamical Yang-Baxter equation (CDYBE) guarantees the
Jacobi identity for Poisson brackets involving functions of the residual non-gauge-fixed holonomies.
The additional conditions (4.1) ensure that the Jacobi identity also holds for mixed brackets which

14
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involve both, functions of the non-gauge-fixed holonomies, and functions of the variables ψ,α .
The classical dynamical Yang-Baxter and the additional conditions (4.1) thus take the place of
the classical Yang-Baxter equation in the Poisson structure (2.5), and the appearance of classical
dynamical r-matrices is related to the implementation of an observer into the description. The
two variables arising in the classical dynamical r-matrix have a direct physical interpretation: they
correspond to the total energy and angular momentum of the spacetime as measured by this observer.

A similar pattern was found in [31, 32, 33], where a regularisation procedure for point particles
coupled to SL(2,C)-Chern-Simons theory lead to a description involving classical dynamical r-
matrices and observers. As the formalism and description used in these works are very different and
do not involve gauge fixing the Poisson structure (2.5), these results suggests that the appearance of
classical dynamical r-matrix symmetries together with observers is not limited to specific models or
gauge fixing procedures but a generic feature of (2+1)-gravity.

This has important implications for the quantisation of the theory and for the question which
quantum groups are the relevant to quantum gravity in (2+1)-dimensions, which has been subject
to much debate. As the Poisson-Lie symmetries associated with the Poisson structure (2.5) can be
viewed as a classical counterpart or first-order approximation of the quantum group symmetries in
the associated quantum theory, the classical (dynamical) r-matrices arising in this description allow
one to draw conclusions about the relevant quantum group.

While some results [34, 17, 16] suggest that the Drinfel’d double D(SO+(2,1)) of the three-
dimensional Lorentz group is the relevant quantum group for the quantisation of the Poisson structure
(2.5) on the extended phase space, the results of the gauge fixing suggest that the implementation of
an observer in the resulting quantum theory leads to the appearance of dynamical quantum groups.
The dynamical variables of these dynamical quantum groups should be related to the total energy and
angular momentum of the universe as measured by this observer. This has interesting implications
for the physical interpretation of the theory and suggests that the role of quantum group symmetries
in (2+1)- and higher-dimensional gravity is more subtle than apparent at first sight.

4.2 Dynamical Poincaré transformations and the centre-of-mass frame

The choice of gauge fixing conditions in [10] is particularly simple and motivated by its direct
physical interpretation. However, it is obvious that this condition is not unique or distinguished from
similar conditions imposed on the motion of the two particles. This implies that there should be
dynamical transformations which depend on the variables ψ,α and relate different gauge choices.

Each gauge choice leads to a cone determined uniquely by the product M2 ·M1 of the holonomies
of the two gauge-fixed particles and such cones can be related by Poincaré transformations. This
suggests that the dynamical transformations should be Poincaré transformations which depend on
the variables ψ,α . Our requirements for the gauge fixing conditions imply that the Lorentzian com-
ponent of these dynamical Poincaré transformations should depend only on ψ while its translational
component should depend on both ψ and α , but on α at most linearly.

In this section we will show that dynamical Poincaré transformations p = (g,−Ad(g)t) ∈
C∞(R2, ISO(2,1)) with ∂αg = ∂ 2

αt = 0 can be interpreted as transformations of the classical dynam-
ical r-matrices and allow one to locally relate each Poisson structure obtained from gauge fixing to a
particularly simple standard solution. As a first step, we determine the transformation of the Dirac
brackets under dynamical Poincaré transformations.
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Lemma 4.3 ([18]). Let {,}D and r : R2 → iso(2,1)⊗ iso(2,1) be given as in Theorem 4.1 and
consider a Poincaré transformation p as above that acts on the residual holonomies M3, . . . ,Bg by
conjugation:

Φ
p : (ψ,α,M3, . . . ,Bg) 7→

(
ψ,α, p(ψ,α) ·M3 · p(ψ,α)−1, . . . , p(ψ,α) ·Bg · p(ψ,α)−1).

Then for all F,G ∈C∞(R2× ISO(2,1)n+2g−2):

{F ◦Φ
p,G◦Φ

p}D = {F,G}p
D ◦Φ

p,

where { , }p
D is the bracket from Theorem 4.1 associated with

qp
ψ = Ad(g)qψ , qp

α = Ad(g)qα , qp
θ = Ad(g)(qθ −qα ∧ t),

rp = (Ad(p)⊗Ad(p))
[
r− (qp,a

α Ja +qp,a
θ Pa)∧ p−1∂α p+qp,a

ψ Pa∧ p−1∂ψ p
]
.

}
(4.2)

This lemma shows that the dynamical Poincaré transformations relating different gauge choices
can be identified with a simultaneous transformation of the classical dynamical r-matrix r : R2→
iso(2,1)⊗ iso(2,1) and the vector-valued maps qψ ,qα ,qθ : R2→ R3 in Theorem 4.1. In particular,
this implies that the Poincaré-transformed quantities rp, qp

ψ ,q
p
α ,q

p
θ satisfy the CDYBE and the

additional conditions (4.1) if and only if the original quantities r, qψ ,qα ,qθ satisfy them.

Corollary 4.4. Let r : R2 → iso(2,1)⊗ iso(2,1), qψ ,qα ,qθ : R2 → R3 as in Theorem 4.1 be a
solution of the CDYBE that satisfies the conditions in (4.1) and let p :R2→ ISO(2,1) be a dynamical
Poincaré transformation as in Lemma 4.3. Then rp :R2→ iso(2,1)⊗ iso(2,1), qp

ψ ,q
p
α ,q

p
θ :R2→R3

given by (4.2) are solutions of the CDYBE and conditions (4.1), and the map Φp defines a Poisson
isomorphism between the Poisson structures { , }D and { , }p

D.

This corollary implies that these dynamical Poincaré transformations can be viewed as a
generalisation of the usual gauge transformations of classical dynamical r-matrices introduced in
[19]. The difference is that in our case, these r-matrices are not required to be invariant under
the action of a fixed Cartan subalgebra, but are associated with a two-dimensional subalgebra of
iso(2,1) which is defined by qψ ,qα ,qθ and allowed to vary with the variables ψ,α . It is shown in
[18] that the conditions (4.1) can be viewed as a generalisation of the invariance condition in [19] to
this setting.

In view of Corollary 4.4, it is natural to ask if by applying such dynamical Poincaré transforma-
tions to solutions of the CDYBE, it is possible to relate them to a set of particularly simple standard
solutions. As the classical dynamical r-matrices together with the maps qψ ,qα ,qθ : R2→ R3 deter-
mine the Dirac bracket completely, this would amount to a complete classification of the Poisson
structures resulting from our gauge fixing conditions.

It is shown in [18] that this is indeed possible for those values of the variable ψ for which
qψ(ψ) and qα(ψ) are time- or spacelike if, additionally, one performs a suitable rescaling of the
parameters ψ and α:

Theorem 4.5 ([18]). Let I ⊂R be an open interval and r : I×R→ iso(2,1)⊗ iso(2,1), qψ ,qα ,qθ :
R2→ R3 a solution of the CDYBE and of equations (4.1) for which q2

ψ ,q
2
α 6= 0, qψ ∧ qα = 0 on

I×R. Then there exists a Poincaré transformation p : I×R→ ISO(2,1) and a diffeomorphism
y = (y1,y2) : I×R→ I′×R with ∂αy1 = ∂ 2

αy2 = 0 such that one of the following holds:
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1. qp
ψ ,q

p
α ,q

p
θ ∈ span{e0} for all ψ ∈ I and

rp(ψ,α) = 1
2(Pa⊗Ja+Ja⊗Pa)− 1

2 tan y1(ψ)
2 (P1∧J2−P2∧J1)+

y2(ψ,α)

4cos2 y1(ψ)
2

P1∧P2,

2. qp
ψ ,q

p
α ,q

p
θ ∈ span{e1} for all ψ ∈ I and

rp(ψ,α) = 1
2(Pa⊗Ja+Ja⊗Pa)− 1

2 tanh y1(ψ)
2 (P2∧J0−P0∧ J2)+

y2(ψ,α)

4cosh2 y1(ψ)
2

P2∧P0.

These classical dynamical r-matrices are invariant under, respectively, the action of the
Cartan subalgebras h1 = span{J0,P0} and h2 = span{J1,P1}.

This result is intuitive from the perspective of Lie algebras, as every Cartan subalgebra of
iso(2,1) is conjugate to either h1 or h2. Moreover, it has a direct geometrical interpretation: As
discussed in the previous sections, the product M2 ·M1 of the two gauge-fixed holonomies determines
a cone in Minkowski space whose axis is the geodesic stabilised by M2 ·M1. The direction of its axis
is given by qψ and its offset orthogonal to its axis is encoded in qθ . If qψ is timelike or spacelike,
the associated geodesic can be mapped to, respectively, the x0-axis or the x1-axis via a suitable
Poincaré transformation that depends on the variables ψ,α . This transforms the associated classical
dynamical r-matrices and brings qψ ,qα ,qθ into the form in Theorem 4.5. The role of the rescaling
in Theorem 4.5 is to eliminate the freedom in defining ψ,α as functions of the Lorentzian and
translational component of the holonomy M2 ·M1 in (3.5) and defines the mass and spin of the
associated cone as a function of y1 and y2.

From the discussion in the previous sections it then follows that the timelike solution in Theorem
4.5 corresponds to an observer in the centre-of-mass frame of the universe, to whom the centre of
mass appears as a particle that is at rest at the origin. The interpretation of the spacelike solution
in Theorem 4.5 is less direct. It arises for those values of the parameter ψ for which the gauge-
fixed holonomies M1,M2 form a Gott pair [30] and can be viewed as a “tachyonic” particle whose
worldline is identified with the x1-axis.

This amounts to a complete local classification of all possible Dirac brackets for those values of
the parameter ψ for which q2

ψ(ψ),q2
α(ψ) 6= 0. Theorem 4.5 states that every such solution can be

identified with one of the two standard solutions above for all values of the parameter ψ for which
q2

ψ(ψ),q2
α(ψ) 6= 0. The possible outcomes of the gauge fixing procedure are thus equivalent to the

ones associated with the centre-of-mass frames, where the centre of mass of the residual system
appears as a particle at rest at the origin or a “tachyonic” particle associated with the x1-axis.

However, it is shown in [10, 18] that for generic Dirac brackets resulting from our gauge fixing
conditions the signature of qψ ,qα varies with ψ . In particular, the solutions described there exhibit
values of the variable ψ for which these vectors become lightlike. These lightlike solutions appear
as transition points between the time- and spacelike cases discussed above and do not correspond to
a fixed Cartan subalgebra of iso(2,1). The solutions of the CDYBE resulting from gauge fixing in
(2+1)-gravity are therefore not simply given by standard classical dynamical r-matrices as in [19]
but connect in a non-trivial way non-equivalent standard classical dynamical r-matrices associated
with non-conjugate cartan subalgebras of iso(2,1).
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5. Outlook and conclusions

In this article we investigated gauge fixing in (2+1)-dimensional gravity with vanishing cos-
mological constant. We discussed how gauge fixing this theory amounts to the introduction of
an observer and determined the resulting Dirac bracket for a rather general set of gauge fixing
conditions. We showed that these Dirac brackets are determined by solutions of the classical dy-
namical Yang-Baxter equation, whose two dynamical variables have a direct interpretation as the
total energy and total angular momentum of the spacetime measured by this observer. We showed
how dynamical Poincaré transformations allow one to relate, for almost all values of the dynamical
variables, any Dirac bracket obtained from this gauge fixing to two particularly simple standard
solutions which correspond to the centre-of-mass frame of the spacetime.

That these statements hold for a very large class of gauge fixing conditions and that classical
dynamical r-matrix symmetries were also obtained in a different and independent approach based
on the regularisation of punctures coupled to Chern-Simons theory [31, 32, 33] suggest that the
appearance of classical dynamical r-matrices in gauge-fixed (2+1)-gravity is generic and related to
the introduction of observers into the theory.

From the physics perspective, this result suggests that the relevant quantum groups for the
quantisation of (2+1)-gravity should become dynamical quantum groups when an observer is
implemented in the quantum theory. As the dynamical variables in the classical theory are the
total energy and angular momentum measured by this observer, the dynamical quantum group
symmetries, unlike the quantum groups acting on extended, non-gauge-invariant Hilbert spaces,
should manifest themselves in the measurements of observers.

It is also instructive to compare the classical dynamical r-matrices arising in this description
to the Hopf algebra symmetries associated with other models such as κ-Poincaré symmetries.
By comparing the r-matrices arising in these descriptions, one finds that the classical dynamical
r-matrices in Theorem 4.5 are rather similar to the ones arising in (2+1)-dimensional κ-Poincaré
symmetries but do not coincide with them. The difference is that the classical dynamical r-matrices
in this article also contain a term which involves the tensor product of two generators of translations,
which is not present in the classical r-matrices of κ-Poincaré symmetries. It would be interesting to
investigate if κ-Poincaré symmetries can be obtained from the dynamical r-matrices in Theorem 4.5
via a suitable limiting procedure in which the angular momentum of the cone tends to zero.

Finally, it would be desirable to quantise the gauge-fixed Poisson structure derived in this article.
As the Dirac brackets are of a form very similar to the Poisson structure in [22, 23] which serves as
the starting point of the combinatorial quantisation formalism, this formalism could also be applied
to quantise the gauge-fixed theory. In that case the difficulties associated with the implementation of
the constraints would no longer be present and the quantisation of the theory would reduce to the
construction of the dynamical quantum groups that correspond to the classical dynamical r-matrices
in the classical description. In particular, it would be interesting to see if this construction gives
rise to quantisation conditions on the total mass and angular momentum of the spacetime which are
encoded in its dynamical variables.
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