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ciple. The space-time geometry is described by the tensor product of a four-dimensional Riema-

nian manifold by a discrete noncommutative space consisting of only two points. With a specific

choice of the finite dimensional involutive algebra, the noncommutative spectral action leads to

the standard model of electroweak and strong interactions minimally coupled to Einstein and

Weyl gravity. We present the main mathematical ingredientsof this model and discuss their phys-

ical implications. We argue that the doubling of the algebrais intimately related to dissipation

and the gauge field structure. We then show how this noncommutative spectral geometry model,

a purely classical construction, carries implicit in the doubling of the algebra the seeds of quan-

tization. After a short review on the phenomenological consequences of this geometric model as

an approach to unification, we discuss some of its cosmological consequences. In particular, we

study deviations of the Friedmann equation, propagation ofgravitational waves, and investigate

whether any of the scalar fields in this model could play the rôle of the inflaton.
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1. Introduction

One of the main open issues in theoretical high energy physics is the unification of all forces,
including gravity, so that all interactions correspond to one underlying symmetry. At low energy
scales, one can consider an effective theory with physics being described by the sum of the Einstein-
Hilbert and the Standard Model action. However, while the first part of this action is based upon
diffeomorphism invariance, the second one is based upon internal symmetries of a gauge group.
This different nature of symmetries for the two parts of the effective action may be at the origin to
the difficulty of finding a unified theory of all interactions,including gravity. As one approaches
the Planck energy scale the quantum nature of space-time reveals itself and this simplistic effective
theory breaks down. Close to the Planck scale the appropriate formulation of geometry should
be within a quantum framework and the nature of space-time would change in a way so that one
can recover the low energy picture of diffeomorphism and internal gauge symmetries. A proposal
that could lead to a quantum nature of space-time has been introduced within noncommutative
geometry.

In the framework of noncommutative spectral geometry, gravity and the standard model fields
were put together into matter and geometry on a noncommutative space made from the product
of a four-dimensional standard commutative manifold by a noncommutative internal space. The
approach is based on a simple idea: using a very simple mathematical input, namely the choice of a
finite dimensional algebra, one can derive [1] the full complexity of the standard model Lagrangian
coupled to gravity, by employing the formalism of noncommutative geometry and spectral action.

Noncommutative spectral geometry offers an elegant approach to unification, based on the
symplectic unitary group in Hilbert space, rather than on finite dimensional Lie groups. The model
offers a unification of internal symmetries with the gravitational ones. All symmetries arise as
automorphisms of the noncommutative algebra of coordinates on a product geometry. Due to
the lack of a full quantum gravity theory, whicha priori should define the geometry of space-
time at Planckian energy scales, we will follow an effectivetheory approach and consider the
simplest case beyond commutative spaces. Thus, below but close to the Planck energy scale, space-
time will be considered as the product of a Riemanian spin manifold by a finite noncommutative
space. At higher energy scales space-time should become noncommutative in a nontrivial way,
while at energies above the Planck scale the whole concept ofgeometry may altogether become
meaningless. As a next but highly nontrivial step, one should consider noncommutative spaces
whose limit is the almost commutative space considered here.

It is worth clarifying that the noncommutative spectral geometry approach discussed here, goes
beyond the noncommutative geometry notion employed in the literature to implement the fuzziness
of space-time by means of[xi,x j] = iθ i j, whereθ i j is an anti-symmetric, real,d ×d (d stands for
the dimension of space-time) matrix, andxi denote spatial coordinates.

In what follows, we briefly present the elements of noncommutative spectral geometry [2, 3]
as an approach to unification and highlight the relation between the doubling of the algebra and the
gauge fields [4], an essential element to make the link with the standard model of particle physics.
We then argue that the doubling of the algebra is related to dissipation, which incorporates the
seeds of quantization [4]. After a short review on the phenomenological predictions of this purely
geometric approach to the standard model, we discuss some ofits cosmological consequences [5,
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6, 7, 8, 9, 10].

2. Elements of noncommutative spectral geometry

We consider the geometry of space-time as being described bythe tensor productM ×F of
a four-dimensional smooth compact1 Riemanian manifoldM by a tiny discrete finite noncom-
mutative spaceF composed of just two points. The geometry is thus described by the product of
a continuous geometry for space-time by an internal geometry for the standard model of particle
physics. The finite geometryF will be chosen so that it is one of the simplest and most natural
finite noncommutative geometries of the right dimension to solve the fermion doubling problem.

The noncommutative nature of the finite discrete spaceF is given by the spectral triple
(AF ,HF ,DF ), where all ingredients are finite dimensional. In the spectral triple, AF is an
involution of operators on the finite-dimensional Hilbert spaceHF of Euclidean fermions andDF

a self-adjoint unbounded operator inHF . The operatorDF is such thatJDF = ε ′DF J, whereJ
is an anti-linear isometry of the finite dimensional Hilbertspace, with the properties

J2 = ε , Jγ = ε ′′γJ ;

γ is the chirality operator andε ,ε ′,ε ′′ ∈ {±1}.

Let us discuss the physical reason for introducing the discrete spaceF . There is a distinc-
tion between the metric (spectral) dimension, specified by the behavior of the eigenvalues of the
Dirac operator, and the KO-dimension (K-theoretic dimension), an algebraic dimension based on
K-theory. We first start with the metric dimension. The relevant Dirac operator for space-time is
the ordinary Dirac operator on a curved space-time, thus themetric dimension is equal to four. The
internal Dirac operator consists of the fermionic mass matrix, which has a finite number of eigen-
values, and therefore the internal metric dimension is equal to zero. Thus, the metric dimension of
theM ×F geometry is just four, the same as that of the ordinary space-time manifold. We proceed
with the KO-dimension. There are 8 possible combinations for the numbersε ,ε ′,ε ′′, leading to a
KO-dimension modulo 8. To resolve the fermion doubling problem, by projecting out the unphysi-
cal degrees of freedom resting in the internal space, the real structure of the finite geometryF turns
out to be such that its KO-dimension is equal to six, leading to (ε ,ε ′,ε ′′) = (1,1,−1). Setting the
KO-dimension of the product spaceM ×F to be 10∼ 2 modulo 8, allows one to impose simul-
taneously the reality and Weyl conditions in the Minkowskian continued forms. Thus, the reason
for introducingF is to correct the KO-dimension from four to ten (modulo 8). Inother words, the
fermion doubling problem requires [11, 12] crossing the ordinary four-dimensional continuum by
a space of KO-dimension 6.

The spectral geometry is given by the product rules:

A = C∞(M )⊕AF , H = L2(M ,S)⊕HF , D = DM ⊕1+ γ5⊕DF ,

whereL2(M ,S) is the Hilbert space ofL2 spinors andDM is the Dirac operator of the Levi-Civita
spin connection on the four-dimensional manifoldM . The chirality operator isγ = γ5⊕γF and the

1The Euclidean space-time manifold is taken to be compact forsimplicity.
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anti-unitary operator on the complex Hilbert space isJ = JM ⊕JF , with JM the charge conjugation.
In order to avoid the fermion doubling problem, one must take

J2
F = 1 , JF DF = DF JF , JF γF = −γF JF . (2.1)

In what follows we only consider the noncommutative discrete spaceF ; to simplify the notation
we omit the subscriptF .

The main input of this purely geometric approach to the standard model of particle physics is
the choice of a finite dimensional involutive algebra [2, 3].In the context of left-right symmetric
models, the algebra is a direct sum of the matrix algebrasMN(C) with N = 1,3 with two copies
HL ,HR of the algebra of quaternionsH, namely

ALR = C⊕HL ⊕HR⊕M3(C) ;

the left-right symmetric algebra. The fermions of the standard model can be identified with a basis
for a sum of 3 (i.e. the number of generations, which is considered here to be equal to 3) copies of
the representation of the algebraALR, which is the sum of the irreducible bimodules of odd spin.
The algebraALR admits a natural sub-algebraC⊕M3(C), corresponding to integer spin.

However, our aim is to construct a model that accounts for massive neutrinos and neutrino
oscillations, thus it cannot be a left-right symmetric model. We will therefore select a sub-algebra
of the left-right symmetric algebra, which breaks left-right symmetry and leads to the involutive
algebra:

{(λ ,qL ,λ ,m) | λ ∈ C , qL ∈ H , m ∈ M3(C)} ,

isomorphic toC⊕H⊕M3(C). The algebra of quaternions2
H ⊂ M2(C) is

H =

{(

α β
−β̄ ᾱ

)

; α ,β ∈ C

}

.

Consider a finite dimensional Hilbert spaceH of dimensionn, with an anti-unitary operatorJ,
such thatJ2 = 1. Noncommutative geometry imposes constraints on the involutive algebras of
operators in the Hilbert space. The involutive algebraA must be such that

[a,b0] = 0 , ∀a,b ∈ A ,

whereb0 = Jb⋆J−1 and the representation ofA andJ in H is an irreducible representation. To get
an irreducible solution, the dimensionn must be eitherk2 or 2k2. Classifying all irreducible finite
noncommutative geometries of KO-dimension six, it was shown [13] that onlyn = 2k2 can avoid
fermion doubling. There are thus six possibilities for the algebraA , namely

{Mk(C) or Mk(R) or Ma(H)}⊕{Mk(C) or Mk(R) or Ma(H)} .

It turns out that five of these possibilities are ruled out [14]. Imposing an anti-linear isometryI such
that I2 = −1 in just one of the algebras and letting the other one free, the algebraA must be then
the following one [15]:

A = Ma(H)⊕Mk(C) with k = 2a .

2To obtain the Lagrangian of the standard model of particle physics we assume quaternion linearity.
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The choicek = 4 is the first one that produces the correct number ofk2 = 16 fermions in each of
the three generations3; the number of generations is a physical input.

For commutative geometries, a real variable described by a real-valued function on a space
is given by the corresponding algebra of coordinates, whilefor noncommutative geometries is
represented as operators in a fixed Hilbert space. Since realcoordinates are represented by self-
adjoint operators, all information about space is encoded in the algebra of coordinatesA , which
is related to the gauge group of local gauge transformations. While the choice of the algebra
constitutes the main input of this model, the choice of Hilbert space is irrelevant.

The operatorD corresponds to the inverse of the Euclidean propagator of fermions. It is given
by the Yukawa coupling matrix which encodes the masses of theelementary fermions and the
Kobayashi–Maskawa mixing parameters. The commutator[D,a], with a ∈A , plays the rôle of the
differential quotientda/ds, with ds the unit of length. The familiar geodesic formula

d(x,y) = inf
∫

γ
ds (2.2)

(the infimum is taken over all possible paths connectingx to y), which is used in Riemanian geom-
etry to determine the distanced(x,y) between two pointsx andy, is replaced in noncommutative
geometry by

d(x,y) = sup{| f (x)− f (y)| : f ∈ A , ||[D, f ]|| ≤ 1} (2.3)

(whereD is the inverse of the line elementds). To describe noncommutative geometry, we will
focus on the Dirac operatorD , instead of the metric tensorgµν which is used for spaces with
commuting coordinates. The standard model fermions provide the Hilbert spaceH of a spectral
triple for the algebraA , while the bosons are obtained through inner fluctuations ofthe Dirac
operator of the product geometry.

Since all experimental data are of a spectral nature, we aim at extracting information, from
our noncommutative geometry construction, which is of a spectral nature. The spectral action
functional in noncommutative spaces is analogous to the Fourier transform in spaces for which
spatial coordinates commute. We then apply the spectral action principle, stating that the bare
bosonic4 Euclidean action is the trace of the heat kernel associated with the square of the Dirac
operator and is of the form Tr( f (D/Λ)); f is a cut-off function andΛ fixes the energy scale. This
action can be seenà laWilson as the bare action at energy scaleΛ. Thus, following the Wilsonian
approach, one can obtain physical predictions for the standard model parameters by running them
down to low (present) energy scales through the renormalization group equations. Let us emphasize
that this picture is only valid at high energies (at the scaleΛ, taken to be the unification scale) and
the spectral action must be considered in the Wilsonian approach, where all coupling constants
are energy dependent and follow the renormalization group equations. Since bothD andΛ have
physical dimensions of a mass, there is no absolute scale on which they can be measured. The rôle
of the cut-off scaleΛ is equivalent to keeping only frequencies smaller than the mass scaleΛ. Note

3If at the CERN Large Hadron Collider new particles are discovered, one may be able to include them by considering
a higher value fork.

4The fermionic term can be included by adding(1/2)〈Jψ,Dψ〉, whereJ is the real structure on the spectral triple
andψ is a spinor in the Hilbert space of the quarks and leptons.
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that Tr( f (D/Λ)) is the fundamental action functional that can be used not only at the classical level
but also at the quantum level, after Wick rotation to Euclidean signature.

The formalism of spectral triples favors Euclidean rather than Lorentzian signature5. The
discussion of phenomenological/cosmological aspects of the theory relies on a Wick rotation to
imaginary time, into the Lorentzian signature. While sensible from the phenomenological point of
view, there exists as yet no justification on the level of the underlying theory.

In conclusion, one can obtain the full standard model minimally coupled to Einstein and Weyl
gravity, plus higher order nonrenormalizable interactions suppressed by powers of the inverse of
the mass scale of the theory, through the action functional [1]

S = Tr

(

f

(

D

Λ

))

+
1
2
〈Jψ ,Dψ〉 , ψ ∈ H + (2.4)

applied to uni-modular inner fluctuations

D → DA = D + A + ε ′JAJ−1 ;

A = A⋆ is a self-adjoint operator of the form

A = ∑
j

a j[D ,b j] , a j,b j ∈ A .

Using heat kernel methods, the trace Tr( f (DA/Λ)) can be written in terms of the geometrical
Seeley-de Witt coefficientsan, which are known for any second order elliptic differentialoperator,
as∑∞

n=0 F4−nΛ4−nan , where the functionF is defined such thatF(D2
A) = f (DA). Thus, the bosonic

part of the spectral action can be expanded in powers ofΛ in the form [16, 17]

Tr

(

f

(

DA

Λ

))

∼ ∑
k∈DimSp

fkΛk
∫

−|DA|−k + f (0)ζDA(0) +O(1) . (2.5)

The momentafk are defined asfk ≡
∫ ∞

0 f (u)uk−1du for k > 0 and f0 ≡ f (0), the noncommutative
integration is defined in terms of residues of zeta functionsζDA(s) = Tr(|DA|−s) at poles of the zeta
function, and the sum is over points in the dimension spectrum of the spectral triple.

For the four-dimensional Riemanian geometry, the trace is expressed perturbatively in terms
of the geometrical Seeley-deWitt coefficientsan, as [18]:

Tr

(

f

(

DA

Λ

))

∼ 2Λ4 f4a0 +2Λ2 f2a2 + f0a4 + · · ·+ Λ−2k f−2ka4+2k + · · · . (2.6)

The smooth even functionf , which decays fast at infinity, only enters in the multiplicative factors:

f4 =
∫ ∞

0
f (u)u3du,

f2 =

∫ ∞

0
f (u)udu ,

f0 = f (0),

f−2k = (−1)k k!
(2k)!

f (2k)(0) . (2.7)

5The issue of Euclidean versus Lorentzian signature is also encountered in the nonperturbative path-integral ap-
proach to quantum gravity.
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Since f is taken as a cut-off function, its Taylor expansion at zero vanishes, therefore the asymptotic
expansion, Eq. (2.6), reduces to

Tr

(

f

(

DA

Λ

))

∼ 2Λ4 f4a0 +2Λ2 f2a2 + f0a4 ; (2.8)

the cut-off functionf plays a rôle only through its momentaf0, f2, f4, which are three real parame-
ters, related to the coupling constants at unification, the gravitational constant, and the cosmological
constant, respectively. In the four-dimensional case, theterm inΛ4 in the spectral action, Eq. (2.5),
gives a cosmological term, the term inΛ2 gives the Einstein-Hilbert action functional with the
physical sign for the Euclidean functional integral (provided f2 > 0), and theΛ-independent term
yields the Yang-Mills action for the gauge fields corresponding to the internal degrees of freedom
of the metric. The scale-independent terms in the spectral action have conformal invariance.

The physical Lagrangian, obtained by applying the spectralaction principle in the product
geometry, is entirely determined by the geometric input, namely theM ×F space. It contains,
in addition to the full standard model Lagrangian, the Einstein-Hilbert action with a cosmological
term, a topological term related to the Euler characteristic of the space-time manifold, a conformal
Weyl term and a conformal coupling of the Higgs field to gravity. The Higgs field is the vector bo-
son of the internal noncommutative degrees of freedom. The bosonic action in Euclidean signature
reads [1]

S E =

∫

(

1

2κ2
0

R + α0CµνρσCµνρσ + γ0 + τ0R⋆R⋆ +
1
4

Gi
µνGµν i +

1
4

Fα
µνFµνα

+
1
4

BµνBµν +
1
2
|DµH|2−µ2

0 |H|2 −ξ0R|H|2 + λ0|H|4
)√

g d4x , (2.9)

where

κ2
0 =

12π2

96f2Λ2− f0c
,

α0 = − 3 f0
10π2 ,

γ0 =
1

π2

(

48f4Λ4− f2Λ2
c+

f0
4

d

)

,

τ0 =
11f0
60π2 ,

µ2
0 = 2Λ2 f2

f0
− e

a
,

ξ0 =
1
12

,

λ0 =
π2

b

2 f0a2 ; (2.10)

H is a rescaling
H = (

√

a f0/π)φ ,

of the Higgs fieldφ to normalize the kinetic energy, and the momentumf0 is physically related to
the coupling constants at unification.
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Notice the absence of quadratic terms in the curvature; there is only the term quadratic in the
Weyl curvature and the topological termR⋆R⋆. In a cosmological setting, namely for Friedmann-
Lemaître-Robertson-Walker geometries, the Weyl term vanishes. Notice also the term that couples
gravity with the standard model, a term which should always be present when one considers gravity
coupled to scalar fields. It is important to emphasize that the relations in Eq. (2.10) are tied to the
scale at which the expansion is performed. There isa priori no reason for the constraints to hold at
scales below the unification scaleΛ, since they represent mere boundary conditions6.

The geometric parametersa,b,c,d,e describe the possible choices of Dirac operators on the fi-
nite noncommutative space. These parameters correspond tothe Yukawa parameters of the particle
physics model and the Majorana terms for the right-handed neutrinos. They are given by [1]

a = Tr
(

Y ⋆
(↑1)Y(↑1) +Y ⋆

(↓1)Y(↓1) +3
(

Y ⋆
(↑3)Y(↑3) +Y ⋆

(↓3)Y(↓3)

))

,

b = Tr

(

(

Y ⋆
(↑1)Y(↑1)

)2
+
(

Y ⋆
(↓1)Y(↓1)

)2
+3
(

Y ⋆
(↑3)Y(↑3)

)2
+3
(

Y ⋆
(↓3)Y(↓3)

)2
)

,

c = Tr(Y ⋆
RYR) ,

d = Tr
(

(Y ⋆
RYR)2

)

,

e = Tr
(

Y ⋆
RYRY ⋆

(↑1)Y(↑1)

)

, (2.11)

with Y(↓1),Y(↑1),Y(↓3),Y(↑3) andYR being(3×3) matrices, withYR symmetric. TheY matrices are
used to classify the action of the Dirac operator and give thefermion and lepton masses, as well as
lepton mixing, in the asymptotic version of the spectral action. The Yukawa parameters run with
the renormalization group equations of the particle physics model.

It is worth noting that since running towards lower energiesimplies that nonperturbative effects
in the spectral action cannot be any longer neglected, any results based on the asymptotic expan-
sion and on renormalization group analysis can only hold forearly universe cosmology. Hence,
the spectral action at the unification scaleΛ offers a framework to investigate early universe cos-
mological models. For later times, one should consider the full spectral action, a direction which
requires the development of nontrivial mathematical tools.

3. Dissipation and the origin of quantization

The central ingredient of the noncommutative spectral geometry model, namely the doubling
of the algebra acting on the doubled Hilbert space, is also present in the quantum mechanics for-
malism of the Wigner function

W (p,x, t) =
1

2π h̄

∫

Ψ∗
(

x− 1
2

y, t

)

Ψ
(

x+
1
2

y, t

)

e−i py
h̄ dy ,

and the density matrix

W (x+,x−, t) ≡ 〈x+|ρ(t)|x−〉 = Ψ∗(x−, t)Ψ(x+, t) . (3.1)

6One can find in the literature the unjustifiedansatzthat these boundary conditions are functions of the energy scale.
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Here we split the coordinatex(t) of a quantum particle being into two coordinatesx+(t) andx−(t):

x+(t) = x(t)+
1
2

y(t) and x−(t) = x(t)− 1
2

y(t) , (3.2)

going forward and backward in time, respectively.

The forward and backward in time evolution of the density matrix W (x+,x−, t) is then de-
scribed by two copies of the Schrödinger equation, as

ih̄
∂ 〈x+|ρ(t)|x−〉

∂ t
= H〈x+|ρ(t)|x−〉 , (3.3)

whereH = H+−H− with H± the two Hamiltonian operators.
Thus, the density matrix and the Wigner function require theintroduction of a doubled set of

coordinates and of their respective algebras. Equation (3.3) implies that the eigenvalues ofH are
directly the Bohr transition frequencies

hνnm = En −Em ,

which was the first hint towards an explanation of spectroscopic structure. This can be seen as
the connection between noncommutative algebra, spectroscopic experiments and energy level dis-
cretization.

Moreover, the doubling of the algebra is implicit even in theclassical theory when considering
the Brownian motion of a particle with equation of motion

mẍ(t)+ γ ẋ(t) = f (t) ; (3.4)

f (t) is a random Gaussian distributed force with

< f (t) f (t ′) >noise= 2γ kBT δ (t − t ′) . (3.5)

Equation (3.4) can be derived [19] from a Lagrangian in a canonical procedure, using a delta func-
tional classical constraint representation as a functional integral. By averaging over the fluctuating
force f , one gets

< δ [mẍ + γ ẋ− f ] >noise=

∫

Dy < exp[
i
h̄

∫

dt L f (ẋ, ẏ,x,y)] >noise , (3.6)

where

L f (ẋ, ẏ,x,y) = mẋẏ+
γ
2
(xẏ− yẋ)+ f y . (3.7)

Hence, the constraint condition at the classical level introduced a new coordinatey, and the standard
Euler-Lagrange equations are obtained:

d
dt

∂L f

∂ ẏ
=

∂L f

∂y
;

d
dt

∂L f

∂ ẋ
=

∂L f

∂x
, (3.8)

leading to

mẍ+ γ ẋ = f , mÿ− γ ẏ = 0 . (3.9)

9
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It is worth noting that the Lagrangian system, Eqs. (3.7)-(3.9), above was obtained in a completely
classical context7 in order to build a canonical formalism for a dissipative system. Thex-system
is anopen system; to set up the canonical formalism it is required toclose it and this is done by
introducing its time-reversed copy, they-system. The resulting{x− y}-system is a closed one.

To highlight [4] the relation between the doubling of the algebra and the gauge field structure
let us consider the equation of the classical one-dimensional damped harmonic oscillator

mẍ+ γ ẋ+ kx = 0 , (3.10)

with time independentm, γ andk. As we have just discussed, in the canonical formalism for open
systems the doubling of the degrees of freedom is required insuch a way as to complement the
given open system with its time-reversed image, and thus obtain a globally closed system for which
the Lagrangian formalism is well defined. Considering the oscillator in the doubledy-coordinate

mÿ− γ ẏ+ ky = 0 , (3.11)

and introducing the coordinates

x1(t) =
x(t)+ y(t)√

2
and x2(t) =

x(t)− y(t)√
2

, (3.12)

the Lagrangian of this closed system takes the form

L =
1

2m
(mẋ1 +

e1

c
A1)

2− 1
2m

(mẋ2 +
e2

c
A2)

2− e2

2mc2 (A1
2 + A2

2)− eΦ , (3.13)

where we have introduced the vector potential

Ai =
B
2

εi jx j for i, j = 1,2 , (3.14)

with
B ≡ γc

e
, (3.15)

and
εii = 0 , ε12 = −ε21 = 1 ; (3.16)

The Lagrangian Eq. (3.13) describes two particles with opposite chargese1 = −e2 = e in the po-
tential

Φ ≡ k
2e

(x1
2− x2

2) ≡ Φ1−Φ2 , (3.17)

with Φi ≡ (k/2/e)xi
2, in the constant magnetic fieldB defined byB = ∇×A.

Thus, the doubled coordinate, e.g.,x2 acts as the gauge field componentA1 to which thex1-
coordinate is coupled, andvice versa. In conclusion, the energy dissipated by one of the two
systems is gained by the other, implying that the gauge field acts as the bath or reservoir in which
the system is embedded [4].

Following ’t Hooft’s conjecture [20], stating that there are classical deterministic models for
which loss of information might lead to a quantum evolution,we argue [4] that the noncommutative

7Note thath̄ has been introduced for dimensional reasons.
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spectral geometry classical construction carries implicit in its feature of the doubling of the algebra
the seeds of quantization. We will show that the Hamiltonianof a classical damped harmonicx-
oscillator and its time-reversed image, they-oscillator, belongs to the class of Hamiltonians for
which this conjecture was proposed.

The system’s Hamiltonian can be written as [21, 22]

H =
2

∑
i=1

pi fi(q) , (3.18)

with the functionsf1, f2 given by

f1(q) = 2Ω , f2(q) = −2Γ , (3.19)

where

Γ =
γ

2m
, Ω =

√

1
m

(k− γ2

4m
) with k >

γ2

4m
. (3.20)

The nonvanishing Poisson brackets are{qi, pi} = 1.
The Hamiltonian Eq. (3.18) belongs to the class of Hamiltonians considered by ’t Hooft. The

fi(q) are nonsingular functions of the canonical coordinatesqi and the equations for theq’s, namely
q̇i = {qi,H}= fi(q)), are decoupled from the conjugate momentapi. In such a case, there is a com-
plete set of observables which Poisson commute at all times.This implies that the system admits
a deterministic description even when expressed in terms ofoperators acting on some functional
space of states|Ψ〉, such as the Hilbert space. Such a description in terms of operators and Hilbert
space, does not implyper se quantization of the system. Quantization is achieved only as a conse-
quence of dissipation.

Let us write the Hamiltonian as
H = HI −HII , (3.21)

with

HI =
1

2ΩC
(2ΩC −ΓJ2)

2 , HII =
Γ2

2ΩC
J2

2 , (3.22)

where the Casimir operatorC and the (second) SU(1,1) generatorJ2 are

C =
1

4Ωm

[(

p2
1− p2

2

)

+ m2Ω2(x2
1− x2

2

)]

, (3.23)

(taken to be positive) and
J2 =

m
2

[

(ẋ1x2− ẋ2x1)−Γr2] , (3.24)

respectively, andr is given byr2 = x2
1− x2

2.
Let us then impose the constraintJ2|Ψ〉 = 0, which defines physical states and guaranties that

H is bounded from below. This implies

H|Ψ〉 = HI|Ψ〉 = 2ΩC |Ψ〉 =

(

1
2m

p2
r +

K
2

r2
)

|Ψ〉 , (3.25)

with K ≡ mΩ2. Hence,HI reduces to the Hamiltonian for the two-dimensional isotropic (or radial)
harmonic oscillator ¨r + Ω2r = 0.

11
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The physical states are invariant under time-reversal and periodical with periodτ = 2π/Ω.
The generic state|Ψ(t)〉H can be written as

|Ψ(t)〉H = T̂

[

exp

(

i
h̄

∫ t

t0
2ΓJ2dt ′

)]

|Ψ(t)〉HI , (3.26)

whereT̂ denotes time-ordering and the constanth̄, with dimension of an action, is introduced for
dimensional reasons. The states|Ψ(t)〉H and|Ψ(t)〉HI satisfy the equations:

ih̄
d
dt
|Ψ(t)〉H = H |ψ(t)〉H ,

and ih̄
d
dt
|Ψ(t)〉HI = 2ΩC |Ψ(t)〉HI , (3.27)

respectively. The periodicity of the physical states imply

|Ψ(τ)〉 = exp

(

iϕ − i
h̄

∫ τ

0
〈Ψ(t)|H|Ψ(t)〉dt

)

|Ψ(0)〉

= exp(−i2πn) |Ψ(0)〉 , (3.28)

or equivalently,
〈Ψ(τ)|H|Ψ(τ)〉

h̄
τ −ϕ = 2πn , n = 0,1,2, . . . . (3.29)

Usingτ = 2π/Ω andϕ = απ, whereα is a real constant, we thus obtain

〈Ψn(τ)|H|Ψn(τ)〉 = h̄Ω
(

n+
α
2

)

. (3.30)

The indexn signals then dependence of the state and the corresponding energy. Equation (3.30)
gives the effectiventh energy level of the system corrected by its interaction withthe environment.
In conclusion, the dissipation termJ2 of the Hamiltonian is responsible for the zero point (n = 0)
energyE0 = (h̄/2)Ωα , which is the signature of quantization. In conclusion, thezero point quan-
tum contributionE0 to the spectrum of physical states signals the underlying dissipative dynamics.

4. High Energy Phenomenology of the Noncommutative Spectral Geometry

Let us proceed with a short discussion on the phenomenological consequences [1] of the non-
commutative spectral approach to the standard model, the most successful particle physics model
we have at hand.

As a consequence of the choiceM2(H)⊕M4(C) for the algebraA of the discrete spaceF ,
the spectrum of the fermionic particles (the number of states in the Hilbert space) per family8

is predicted to be 42 = 16. Moreover, the selected (in order to be consistent with the axioms of
noncommutative geometry) algebra leads to the gauge group of the standard model. Thus, the
16 spinors get the correct quantum number with respect to thestandard model gauge group. The
gauge bosons of the standard model gauge group are the inner fluctuations of the metric along
continuous directions. In addition, there is a Higgs doublet corresponding to the inner fluctuations

8The number of families is a physical input.
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along the discrete directions. The spectral action approach leads to a mass of this Higgs doublet
with a negative sign and a quartic term with a plus sign, implying the existence of a mechanism of
spontaneous breaking of the electroweak symmetry.

Let us assume that the functionf is well approximated by the cut-off function and ignore
higher order terms. Normalization of the kinetic terms implies

g2
3 f0

2π2 =
1
4

and g2
3 = g2

2 =
5
3

g2
1 , (4.1)

leading to

sin2 θW =
3
8

, (4.2)

a relation which was also found in the context of SU(5) and SO(10) grand unified theories. Since
the predicted relations, Eq. (4.1b), from the noncommutative spectral geometry are the ones that
hold for all grand unified theories, this implies that the spectral action holds at unification scale.

Assuming the big desert hypothesis, the running of the couplingsαi = g2
i /(4π) with i = 1,2,3,

up to one-loop corrections9, is

βi =
1

(4π)2 big
3
i with b =

(

41
5

,−19
6

,−7

)

. (4.3)

Performing one-loop renormalization group analysis for the running of the gauge couplings and
the Newton constant, it was shown [1] that these do not meet ata point, the error being within just
few percent. The fact that the predicted unification of the coupling constants does not hold exactly,
implies that the big desert hypothesis is only approximately valid and new physics are expected
between unification and present energy scales. In terms of our assumption for the cut-off function,
the lack of a unique unification energy implies that even though the functionf can be approximated
by the cut-off function there exist small deviations.

The noncommutative spectral geometry model predicts also the existence of a see-saw mech-
anism for neutrino masses with large right-handed neutrinomass of the order ofΛ. Moreover, it
predicts the constraint:

∑
σ

(yσ
ν )2 +(yσ

e )2 +3(yσ
u )2 ++3(yσ

d )2 = 4g2 , (4.4)

on the Yukawa couplingsyσ with σ = 1,2,3, at unification scale.
The mass of the top quark is given from

mtop =
1√
2

ukt , (4.5)

with u = 2M/g the vacuum expectation value of the Higgs field andkt the top quark Yukawa
coupling. We assume that at unification scale of∼ 1.1×1017 GeV the value ofg is ∼ 0.517 and
theτ neutrino Yukawa coupling can be neglected. Then using the renormalization group equations,
the model predicts a top quark mass of∼ 179 GeV, compatible with the experimental value.

9Only at one-loop order the renormalization group equationsfor the coupling constantsgi are uncoupled from the
other standard model parameters.
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In the spectral action, the Higgs coupling is proportional to the gauge couplings, which restricts
the mass of the Higgs. Using the cut-off function, this modelpredicts a heavy Higgs mass. In zeroth
order approximation, it predicts a mass of the Higgs boson approximately equal to 170 GeV, which
is ruled out by current experimental data. However, this answer is very sensitive to the value of
the unification scale, as well as to deviations of the spectral function from the cut-off function
we have used. The actual value of the Higgs mass will be determined by considering higher order
corrections and incorporating them to the renormalizationgroup equations. Nevertheless, it is quite
encouraging that this purely geometric approach to the standard model predicted the right order of
magnitude for the Higgs mass. Given that this noncommutative spectral geometry model has to be
seen as an effective theory, this result is quite remarkable.

Since the predicted top quark mass is consistent with experimental data while the predicted
Higgs mass is ruled out, one may deduce that the top quark massis less sensitive to the ambiguities
of the unification scale than the Higgs mass. This conclusionmay be understood in the following
way. We have splitted the action functional into the bosonicand the fermionic parts. The bosonic
action has been then determined by an infinite expansion assuming convergence of higher order
terms. Thus, while for the bosonic part we have relied on the first terms of the expansion in
inverse powers of the cut-off scale, the fermionic part being much simpler did not require such an
assumption.

Considering an energy scaleΛ ∼ 1.1×1017 GeV, the standard form of the gravitational action
and the experimental value of Newton’s constant at ordinaryscales implyκ−1

0 ∼ 2.43×1018 GeV.
Let us also note that this approach to unification does not provide any explanation of the

number of generations, nor leads to constraints on the values of the Yukawa couplings.
Finally, the parameterΛ which has been introduced as a free parameter in the spectralaction,

can be seen as the vacumm expectation value of a dynamical (dilaton) field. Such a filed may
lead to cosmological consequences and it is worth examiningwhether it could play the rôle of the
inflaton field.

5. Cosmological consequences

The noncommutative spectral action lives by construction at high energy scales, thus providing
a natural framework to address early universe cosmology. Investigating the cosmological conse-
quences of the model, one can test its validity and/or constrain its parameters. In what follows, we
review some cosmological aspects of this purely geometric approach to the standard model. Let us
first specify the notation and conventions we use. The signature is taken(−,+,+,+) and the Ricci
tensor is defined asRµν = Rρ

µνρ, with Rµνρ
σ ωσ =

[

▽µ ,▽ν
]

ωρ .
The Lorentzian version of the gravitational part of the asymptotic formula for the bosonic

sector of the noncommutative geometry spectral action, including the coupling between the Higgs
field and the Ricci curvature scalar, reads [1]

S L
grav =

∫

(

1

2κ2
0

R + α0CµνρσCµνρσ + τ0R⋆R⋆ − ξ0R|H|2
)√−g d4x , (5.1)

leading to he equations of motion [6]

Rµν − 1
2

gµνR +
1

β 2δcc

[

2Cµλνκ
;λ ;κ +CµλνκRλκ

]

= κ2
0δccT

µν
matter , (5.2)
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where
β 2 ≡− 1

4κ2
0α0

and δcc ≡ [1−2κ2
0ξ0H2]−1 . (5.3)

Let us first study the low energy regime and then proceed with the high energy regime. Depending
on whether we are in the former or the latter one, will specifywhether or not the coupling between
the Higgs field and the background geometry can be neglected.

5.1 Low energy regime

In the low energy weak curvature regime, the nonminimal coupling term between the back-
ground geometry and the Higgs field can be neglected, implying δcc = 1. For a Friedmann-
Lemaître-Robertson-Walker space-time, the Weyl tensor vanishes, hence the noncommutative spec-
tral geometry corrections to the Einstein equation vanish [6]. Thus for such a background, the con-
straint [23]βR2 ≥ 3.2× 10−9m−1, imposed onad hoccurvature squared terms (of different form
but of the same order) does not necessarily hold within the noncommutative spectral action context.
It is however important to constrainβ since a lower limit toβ can be equivalently seen as an upper
limit to the momentf0 of the cut-off function used to define the spectral action. Since f0 can be
used to specify the initial conditions on the gauge couplings, a constraint onβ corresponds to a
restriction on the particle physics model at unification scale.

Let us briefly summarize how one can constrainβ [9, 10] within the noncommutative spectral
geometry model. Consider linear perturbations around a Minkowski background metric in the
synchronous gauge. The perturbed metric reads

gµν = diag
(

{a(t)}2 [−1,(δi j + hi j (x))]
)

, (5.4)

with a(t) the cosmological scale factor. Since we only consider a flat background,a(t) = 1 and
ȧ ≡ da/dt = 0. The remaining gauge freedom can be completely fixed by setting ∇ihi j = 0.

The linearized equations of motion derived from the noncommutative spectral action for such
perturbations are

(

�−β 2)
�hµν = β 2 16πG

c4 T µν
matter , (5.5)

whereT µν
matter is taken to lowest order inhµν . It is thus independent ofhµν and satisfies the conser-

vation equations
∂

∂xµ T µ
ν = 0 . (5.6)

Sinceβ plays the rôle of a mas, it has to be real and positive, implying α0 < 0. For α0 > 0
the gravitational waves evolve according to a Klein-Gordonlike equation with a tachyonic mass,
and hence the background, which has been considered to be a Minkowski space, is unstable. In
conclusion, we must restrict toα0 < 0 for Minkowski space to be a (stable) vacuum of the theory.

Let us study the energy lost to gravitational radiation by orbiting binaries. In the far field
limit, |r| ≈ |r−r′| (wherer andr′ stand for the locations of the observer and emitter, respectively),
the spatial components of the general first order solution for a perturbation against a Minkowski
background are given in terms of the quadrupole moment,

Dik (t) ≡ 3
c2

∫

xixkT 00(r, t) dr . (5.7)
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as

hik (r, t) ≈ 2Gβ
3c4

∫ t− 1
c |r|

−∞

dt ′
√

c2(t − t ′)2−|r|2
J1

(

β
√

c2 (t − t ′)2−|r|2
)

D̈ik (t ′
)

, (5.8)

whereJ1 is a Bessel function of the first kind, in terms of the quadrupole moment.
While in theβ → ∞ limit the theory reduces to that of General Relativity and the familiar re-

sults for a massless graviton are recovered, for finiteβ gravitational radiation contains both massive
and massless modes, both of which are sourced from the quadrupole moment of the system.

In the far field limit, the rate of energy loss for a binary pairof massesm1,m2 in a circular (for
simplicity) orbit in the(xy)-plane, reads

−dE

dt
≈ c2

20G
|r|2ḣi jḣ

i j , (5.9)

with

ḣi jḣi j =
128µ2|ρ |4ω6G2β 2

c8

[

f 2
c

(

β |r|, 2ω
βc

)

+ f 2
s

(

β |r|, 2ω
βc

)]

, (5.10)

and the definitions

fc (x,z) ≡
∫ ∞

0

ds√
s2 + x2

J1(s)cos
(

z
√

s2 + x2
)

;

fs(x,z) ≡
∫ ∞

0

ds√
s2 + x2

J1(s)sin
(

z
√

s2 + x2
)

,

The orbital frequencyω is constant and given by

ω = |ρ |−3/2
√

G(m1+ m2) , (5.11)

with |ρ | the magnitude of the separation vector between the two bodies.
The integrals in Eq. (5.11) exhibit a strong resonance behavior at z = 1, which corresponds to

the critical frequency
2ωc = βc , (5.12)

around which strong deviations from the familiar results ofGeneral Relativity are expected. This
critical (maximum) frequency comes from the natural lengthscale (given byβ−1), at which non-
commutative geometry effects become dominant. Forω < ωc, the β → ∞ limit reproduces the
General Relativity result, as it should. Since this is not the case ifω > ωc, we conclude that the
critical frequency is the maximum one. Any deviation from the standard result is suppressed by the
distance to the source, at least for orbital frequencies small compared toβc.

The form of the gravitational radiation from binary systemscan be used to constrainβ . For
circular binary orbits we only need to know the orbital frequency and the distance to the binary
system. The parameterβ is then constrained by requiring the magnitude of deviations from General
Relativity to be less than the uncertainty. Thus, forω < ωc we get a lower limit onβ [10]:

β > 7.55×10−13 m−1 . (5.13)
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Due to the large distances to these binary systems, the constraint is almost exactly due toβ >

2ω/c. Thus, the strongest constraint comes from systems with high orbital frequencies. Future
observations of rapidly orbiting binaries, relatively close to the Earth, could thus improve this
constraint by many orders of magnitude.

Let us go back to the background equations. In order for the corrections to Einstein’s equations
to be apparent at the level of the background, we need to consider anisotropic models. We will thus
derive the modified Friedmann equation for the Bianchi type-V model, for which the space-time
metric in Cartesian coordinates reads

gµν = diag
[

−1,{a1(t)}2e−2nz,{a2(t)}2e−2nz,{a3(t)}2] , (5.14)

wherea(t), b(t) andc(t) are, in general, arbitrary functions andn is an integer.

DefiningAi (t) = lnai (t) with i = 1,2,3, the modified Friedmann equation reads [6]:

κ2
0T00 =

−Ȧ3
(

Ȧ1+ Ȧ2
)

−n2e−2A3
(

Ȧ1Ȧ2−3
)

+
8α0κ2

0n2

3
e−2A3

[

5
(

Ȧ1
)2

+5
(

Ȧ2
)2−

(

Ȧ3
)2

−Ȧ1Ȧ2− Ȧ2Ȧ3− Ȧ3Ȧ1− Ä1− Ä2− Ä3+3
]

− 4α0κ2
0

3 ∑
i

{

Ȧ1Ȧ2Ȧ3Ȧi

+ȦiȦi+1

(

(

Ȧi − Ȧi+1
)2− ȦiȦi+1

)

+
(

Äi +
(

Ȧi
)2
)

[

−Äi −
(

Ȧi
)2

+
1
2

(

Äi+1+ Äi+2
)

+
1
2

(

(

Ȧi+1
)2

+
(

Ȧi+2
)2
)

]

+
[...

A i +3ȦiÄi −
(

Äi +
(

Ȧi
)2
)

(

Ȧi − Ȧi+1− Ȧi+2
)

]

×
[

2Ȧi − Ȧi+1− Ȧi+2
]

}

. (5.15)

The correction terms in this modified Friedmann equation come in two types. The first one con-
tains terms which are fourth order in time derivatives, and thus for the slowly varying functions,
usually used in cosmology, they can be taken to be small corrections. The second one occurs at the
same order as the standard Einstein-Hilbert terms, howeverbeing proportional ton2, it vanishes
for homogeneous versions of Bianchi type-V. Thus, althoughanisotropic cosmologies do contain
corrections due to the additional noncommutative spectralgeometry terms in the action, they are
typically of higher order. Inhomogeneous models do containcorrection terms that appear on the
same footing as the original (commutative) terms. In conclusion, the corrections to Einstein’s
equations are present only in inhomogeneous and anisotropic space-times.

5.2 High energy regime

At energies approaching the Higgs scale, the nonminimal coupling of the Higgs field to the
curvature can no longer be neglected, leading to corrections even for background cosmologies. To
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understand the effects of these corrections let us neglect the conformal term in Eq. (5.2), i.e. set
β = 0. The equations of motion then become [6]

Rµν − 1
2

gµνR = κ2
0

[

1

1−κ2
0 |H|2/6

]

T µν
matter . (5.16)

Hence,|H| leads to an effective gravitational constant.
Alternatively, consider the effect of this term on the equations of motion for the Higgs field

in a constant gravitational field. For constant curvature, the self interaction of the Higgs field is
increased, since

−µ0|H|2 →−
(

µ0 +
R
12

)

|H|2 . (5.17)

The nonminimal coupling between the Higgs field and the Riccicurvature may turn out to
be particularly useful in early universe cosmology [7, 8]. Such a coupling has been introduced
ad hocin the literature, in an attempt to drive inflation through the Higgs field. However, the
coupling constant between the scalar field and the background geometry is not a free parameter
which could be tuned to achieve a successful inflationary scenario, it should be instead dictated by
the underlying theory.

In a Friedmann-Lemaître-Robertson-Walker metric, the Weyl tensor vanishes, while the non-
dynamical term is also neglected. Thus the Gravity-Higgs sector of the asymptotic expansion of
the spectral action, in Lorentzian signature reads

S L
GH =

∫

[1−2κ2
0ξ0H2

2κ2
0

R− 1
2
(∇H)2−V (H)

]√−g d4x , (5.18)

where
V (H) = λ0H4−µ2

0H2 , (5.19)

with µ0 andλ0 subject to radiative corrections as functions of energy. For large enough values of
the Higgs field, the renormalized value of these parameters must be calculated, while the running
of the top Yukawa coupling and the gauge couplings must be evolved simultaneously.

At high energies the mass term is sub-dominant and can be neglected, thus only the first term
in Eq. (5.19) survives. For each value of the top quark mass, there is a value of the Higgs mass
where the effective potential is on the verge of developing ametastable minimum at large values
of the Higgs field and the Higgs potential is locally flattened[8]. Since the region where the
potential becomes flat is narrow, slow-roll must be very slow, in order to provide a sufficiently long
period of quasi-exponential expansion and thus solve the shortcomings of the standard hot big bang
cosmological model. If the inflaton field is also going to source the initial density fluctuations then
besides the constraints on the slow-roll parametersε ,η to get sufficient number of e-foldings, one
should also check whether the amplitude of density perturbations∆2

R in the spectrum of the cosmic
microwave background temperature anisotropies is in agreement with measurements. Inflation
predicts that at horizon crossing (denoted by stars), the amplitude of density perturbations is related
to the inflaton potentialV through

(

V∗
ε∗

)
1
4

= 2
√

3π mPl ∆
1
2
R , (5.20)
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whereε∗ ≤ 1 andmPl stands for the Planck mass. Its value, as measured by WMAP7 [24], requires

(

V∗
ε∗

)
1
4

= (2.75±0.30)×10−2 mPl . (5.21)

We can then calculate the renormalization of the Higgs self-coupling and construct an effective
potential which fits the renormalization group improved potential around the flat region. By doing
this calculation up to two-loops we have found [8] that around the plateau (the minimum of the
potential), there is a very good analytic fit to the Higgs potential, which takes the form

V eff = λ eff
0 (H)H4 = [a ln2(bκH)+ c]H4 , (5.22)

where the parametersa,b are found to relate to the low energy values of top quark massmt as

a(mt) = 4.04704×10−3−4.41909×10−5
( mt

GeV

)

+1.24732×10−7
( mt

GeV

)2
,

b(mt) = exp
[

−0.979261
( mt

GeV
−172.051

)]

. (5.23)

The third parameter,c = c(mt,mφ ), encodes the appearance of an extremum and depends on the
values for top quark mass and Higgs mass. An extremum occurs if and only if c/a ≤ 1/16, the
saturation of the bound corresponding to a perfectly flat region. It is convenient to writec =

[(1+ δ )/16]a, whereδ = 0 saturates the bound below which a local minimum is formed.
These results have been obtained for the case of minimal coupling, whereas in noncommu-

tative spectral action there is a small nonminimal coupling, ξ0 = 1/12. The corrections due to
conformal coupling to the potential imply that flatness doesnot occur atδ = 0 anymore but for
fixed values ofδ depending on the value of the top quark mass. More precisely,for inflation to
occur via this mechanism, the top quark mass fixes the Higgs mass extremely accurately. Scanning
through the parameter space it emerges that sufficiente-folds are indeed generated provided there is
a suitably tuned relationship between the top quark mass andthe Higgs mass. In conclusion, while
the Higgs potential can lead to the slow-roll conditions being satisfied once the running of the self-
coupling at two-loops is included, the constraints imposedfrom the cosmic microwave background
temperature anisotropies measurements make the predictions of such a scenario incompatible with
the measured value of the top quark mass.

Finally, running of the gravitational constant and corrections by considering the more appro-
priate de Sitter, instead of a Minkowski, background do not improve substantially the realization of
a successful inflationary era [8].

The noncommutative spectral action provides in addition tothe Higgs field, another (massless)
scalar field [25], denoted byσ , which is unlike all other fields in the theory, such as the Higgs field
and gauge fields. Note thatσ does not exhibit a coupling to the matter sector.

Including this field, the cosmologically relevant terms in the Wick rotated action read [25]

S =
∫

[

1
2κ2R−ξHRH2−ξσ Rσ2− 1

2
(∇H)2− 1

2
(∇σ)2−V(H,σ)

] √−g d4x , (5.24)
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where
V (H,σ) = λHH4−µ2

HH2+ λσ σ4+ λHσ |H|2σ2 . (5.25)

The constants are related to the underlying parameters as follows:

ξH =
1
12

, ξσ =
1
12

(5.26)

λH =
π2

b

2 f0a2 , λσ =
π2

d

f0c2 (5.27)

µH = 2Λ2 f2
f0

, λHσ =
2π2

e

ac f0
. (5.28)

In conclusion, neither theσ field can lead to asuccessfulslow-roll inflationary era, if the coupling
values are conformal [8].

One should then examine whether the dilaton field, a dynamical field that can replace the cut-
off Λ, could play the rôle of the inflaton10. Then the operatorD/Λ is replaced bye−Φ/2De−Φ/2,
whereΦ stands for the dilaton field [18]. The action for the Gravity-Dilaton-Higgs sectors, was
then shown to be [18]

SGDH =
∫ √

G

[

− 1

2κ2
0

R +
1
2

(

1+
6

κ2
0 f 2

)

Gµν∂µΦ∂ν Φ

+GµνDµH
′∗DνH

′ −V0

(

H
′∗H

′
)]

d4x , (5.29)

whereGµν is the metric in Einstein frame andf stands for the dilaton decay constant. The scale
f is of the order of the Planck scale. The dilatonΦ can be related to a scalar field̃σ of dimension
one throughΦ = (1/ f )σ̃ . It is worth noting that the difference between the above action and the
spectral one is that the latter has a conformal coupling between the background geometry, in other
words the Ricci curvatureR(G), and the Higgs fieldH, which is required in order to get scale
invariant matter couplings.

Certainly, to investigate whether the dilaton fieldΦ could play the rôle of the inflaton, one
should first calculate its potential.

6. Conclusions

In Connes’ formulation of noncommutative geometry, which we have adopted here, mathemat-
ical and physical notions are described in terms of spectralproperties of operators. By extending
the one-to-one correspondence between spaces and commutative C⋆-algebras to noncommutative
algebras, Connes’ approach aims at mapping notions of differential geometry into algebraic terms.
The topology of space is described in terms of the algebras, or equivalently, the properties of space
are encoded in some continuous fields. The model depends crucially on the choice of the algebra
A , represented on a Hilbert spaceH , and the generalized Dirac operatorD . TheseA ,H ,D form
a spectral triple, a fundamental ingredient of the whole formalism, which contains the information
on the geometry of space-time. The Dirac operatorD describes the metric aspects of the model
and the behavior of the fundamental matter fields represented by vectors of the Hilbert spaceH .

10In particular on non-compact spaces where the Dirac operator has no longer a discrete spectrum.
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The fluctuations of the Dirac operatorD contain the boson fields, including the mediators of the
forces and the Higgs field.

This noncommutative spectral geometry model has been introduced as an approach to the stan-
dard model of particle physics coupled to gravity. By considering the standard model of strong and
electroweak interactions as a phenomenological model, onetries to retrieve the noncommutative
geometry of space-time. It turns out that the geometry can beconsidered as the productM ×F

of a four-dimensional smooth compact Riemanian manifoldM by a discrete finite noncommuta-
tive spaceF composed of just two points. The choice of the discrete spaceis specified by the
symmetries of the Hilbert space in which quarks and leptons are placed.

The physical picture is straightforward. The left- and right-handed fermions are placed on two
different sheets. The Higgs fields are just the gauge fields inthe discrete dimensions. The inverse
of the separation between the two sheets can be interpreted as the electroweak energy scale. It
is interesting to remark that this picture is similar to the the Randall-Sundrum scenario, where a
four-dimensional brane is embedded into a five-dimensionalmanifold as a three-dimensional brane
placed atx5 = 0 andx5 = πrcomp, with rcomp the compactification radius.

The choice of a discrete space consisting of only two points can be (naively) criticized as a
simplified approach. However, the two-sheeted construction has a deeper physical meaning. The
doubling of the algebra is related to dissipation and the gauge field structure, required to explain the
standard model of particle physics. Moreover, by applying ’t Hooft’s conjecture, stating that loss of
information within completely deterministic dynamics canlead to a quantum evolution, dissipation
may then lead to quantum features. Thus, the classical construction of noncommutative spectral
geometry carries implicit in the doubling of the algebra theseeds of quantization.

The noncommutative spectral geometry model lives by construction at very high energy scales.
It hence provides a natural framework to study early universe cosmology. In other words, it moti-
vates a particular gravitational model which applied to a given cosmological background can lead
to interesting observational consequences.

It is a pleasure to thank the organizers of the Workshop on NonCommutative Field Theory
and Gravity, held in the beautiful island of Corfu, for inviting me to present this work during a
stimulating and interesting meeting.
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